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Nature of coherent emission
Three generic types

I Plasma emission (solar radio bursts, planetary bow shocks)

I Electron cyclotron maser emission (planes, Sun, flare stars)

I Pulsar radio emission (not understood)

Three “coherent” mechanisms Ginzburg & Zheleznyakov (1975)

I Emission by bunches (localization in x & p)

I Reactive instability (localization in p)

I Maser growth = negative absorption

Back reaction (BR) to coherent emission

I Bunches: BR disperses the bunch in x-space FASTEST

I Reactive: BR broadens beam in p-space NEXT FASTEST

I Maser: BR = quasilinear relaxation STILL FAST

I BR => suppression of instability

I Astrophysics: relaxation to marginal stability DEFAULT



Plasma emission
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Figure: Schematic of processes leading to F & H plasma emission



Quasilinear relaxation
Beam instability

I Resonance ω − k · v = 0 => v > ω/k = vφ
I Instability for dF (v)/dv > 0 at v = vφ
I Driver (“pump”): faster electrons outpacing slower electrons

I Quasilinear relaxation decreases dF (v)/dv > 0
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Figure: Evolutions of beam distribution: (a) initial distribution; (b)
distribution after number of growth times indicated.



Plasma instabilities: marginal stability
Dilemma

I Plasma instabilities grow rapidly

I Exhaust free energy in few hundred growth times

Marginal stability

I System must relax to marginally stable state

I Balance: very slow driver (“pump”)

I & large number of localized, transient bursts of growth

Observational evidence

I Langmuir waves in IPM in highly localized “clumps”

I Log-normal statistics for E in clumps
I Consistent with “stochastic growth theory” (SGT):

I random localized bursts of growth, E = eGE0

I growth factor G random variable
I => E log-normal in bursts Robinson 1992; Cairns & Robinson 1997



Electron cyclotron maser emission (ECME)

Jupiter’s DAM

I Bursts at < 40 MHz

I Emitted at Ωe

I Bizarre radiation pattern

I Confirmed by spacecraft
Dulk 1967

Io effect

I Correlation with moon Io discovered in 1962

I Io drags flux tube through corotating magnetosphere

I => EMF ≈ 2 MV; explains ≈ 2 MeV electrons



Io-related arcs

Arc pattern confirmed bizarre angular distribution



Requirements for ECME

Resonance condition

I Cyclotron resonance condition ω − Ωe/γ − kzvz = 0

I Instability driven by ∂f /∂p⊥ > 0

I Escape of radiation requires Ωe � ωp

Loss-cone driven ECME

I ∂f /∂p⊥ > 0 in loss-cone

I Driver: forced precipitation
p2⊥/B = const.

I Loss cone after mirroring

αβ sin

cosαβ

Explains bizarre radiation pattern for DAM



Escape of ECME
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I Curves on the left for ωp � Ωe

I Cyclotron maser in whistler mode (cannot escape)

I Curves on right for ωp � Ωe

I ECME in x mode can escape provided Doppler shifted to
above cutoff frequency



Earth’s AKR

I Analogous radiation from the Earth at < 0.5 MHz

I Correlates with inverted-V precipitating electrons

I Emitted in low density cavity Benson & Calvert 1979



Recent developments

  

Faster growth for shell distribution
BUT: ECME cannot escape in presence of cold plasma

Astrophysical applications

I ECME favored for solar spike bursts

I ECME accepted for flare stars

I Also applied to blazars Begelman, M.E., Ergun, R.E., Rees, M.J. 2005, ApJ 625, 51



Triggering and fine structure

Triggers

I What triggers the localized bursts of growth?
I Enhance local growth rate
I Reduce local loss rate
I Enhance local background

I SGT suggests random triggers

I Exceptional (non log-normal) events?

Fine structures: extreme events

I Exceptional events common but not random
I Triggered VLF emissions
I Triggering of ECME by type III bursts

I Extremely narrow bandwidth events
I Fine structures in DAM
I Giant bursts in pulsars

I Maser theory requires RPA: bandwidth > growth rate



VLF emissions

Triggered VLF

I Whistlers triggered by Morse code dashes

I Emissions drift in frequency



Driver for VLF emissions

Free energy for VLF emissions

I Electrons in radiation belts in steady state

I Drift in from solar wind

I Sets up ∂f (v⊥)/∂v⊥ > 0

Loss of electrons

I Scattering into loss cone by whistlers

I => steady average auroral electron precipitation

I Actual precipitation very bursty

I Fine structures in bursts and whistlers correlate



Helliwell’s model

Phenomenological model

I Resonance satisfied
ω − Ωe − kzvz = 0

I Waves grow in interaction
region (IR)

I Resonance also satisfies
d [ω − Ωe − kzvz ]/dt = 0

I Frequency drift due to
motion of IR

Helliwell, R.A. 1967 JGR 72, 4773



Fine structures in Jovian S bursts

	  

Phase coherence Carr, T.D. 2001

I Phase-coherent bursts
I Background Galactic noise level changes
I Amplification before S-burst suppressed after S-burst



ECME form of Helliwell’s model

Coherent fine structures

I Resonance satisfied: ω − Ωe/γ − kzvz = 0

I Helliwell’s condition satisfied: d [ω − Ωe/γ − kzvz ]/dt = 0

I Applied to x mode for Ωe � ωp

I Can explain observed drifts Willes, A. 2002



Crab giant bursts

Giant bursts in Main Pulse

I several microbursts

Giant bursts in Main Pulse

I nanoshots

Giant bursts in Interpulse

I Bands



Summary

I Plasma emission & ECME relatively well understood

I Masers operate near marginal stability

I Actual source the envelope of statistically large number of
localized, transient bursts of wave growth

I Triggering & fine structure outside the scope of simple theory

I Helliwell’s (1967) phenomenological model plausible basis

I Pulsar radio emission & giant bursts poorly understood



Why don’t we understand pulsar radio emission?
Pulsar electrodynamics

I Pulsar electrodynamics inadequately understood
I Ideas developed for aligned model
I Ignores central role of displacement current
I Precludes predicting emission from first principles

Location of apparent source

I Emission from polar-cap regions
I Aberration & geometry plausibly => source height
I Seemingly unrelated to acceleration site

Polarization
I Observed polarization imposed as propagation effect
I Suggests apparent source is not actual source
I => further uncertainty on source location

‘Rosetta-stone’ approach

I Look for definitive signature of emission mechanism
I Many suggestions but no consensus



Pulsar radio emission mechanisms
Plasma-like-emission

I Ouflowing relativistic particles => beam instability
I n2O > 1 in small range
I Dispersion curve allow escape
I Interesting variant in oscillating model

Curvature emission

I Synchrotron-like emission
I Maser possible for df (γ)/dγ > 0
I Maser emission only for one polarization

Linear acceleration emission
I Due to acceleration by E‖
I Maser possible for df (γ)/dγ > 0

Anomalous cyclotron emission
I ω − sΩ − k‖v‖ = 0, s = −1
I Requires mode with n2 > 1
I Applies only in weak-B region



Pulsar wave modes
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