Pulsar radio emission - oscillating model

M. Verdon, D. Melrose

University of Sydney

10th June, 2010

Outline

- ▶ Problems understanding pulsar radio emission
 - Magnetosphere model
 - ► Emission mechanisms
- Oscillating model
- ▶ Wave modes
 - Time-dependence
 - Coupling

What is a pulsar?

Emission models

- Production of emission is not well understood
- Must be a coherent process
- Variety of proposed mechanisms
- ▶ Most involve time-stationary magnetosphere

Pulsar fields

- Rotating magnetic field generates large electric field
- ▶ Particles pulled from pulsar, generate secondary particles
- ▶ Magnetosphere populated with plasma, corotates
- Goldreich-Julian density to enforce corotation (Goldreich & Julian, 1969)

Time-stationary models

▶ Pairs produced due to the extremely strong electric field, forming a charge layer to screen the parallel field (eg Ruderman & Sutherland 1975)

Steady plasma outflow above the PFF

Problems

- ► Very unlikely to have steady, time-stationary flow (Sturrock 1971)
- ▶ Initial parallel electric field is inductive, curl $\mathbf{E} \neq 0$; field from Goldreich-Julian density electrostatic, curl $\mathbf{E} = 0$
- ► Time-stationary models violently unstable (Levinson et al 2005)

Radiation mechanisms

- ► Three basic types (Ginzberg & Zheleznyakov, 1975)
- ▶ Coherent curvature emission N particles $\rightarrow I \propto N^2$
- ► Emission is from 'bunches' of particles (or solitons), uses changing curvature of pulsar's magnetic field localization in position and momentum space (Ruderman & Sutherland 1975, Melikidze, Gil, Pataraya 2000)
- Partially screened gap with columns of outflow
- Problems bunch formation, back-reaction

Radiation mechanisms

- Plasma instabilities
- Masers rapid wave growth in some mode due to negative absorption (population inversion)
- Reactive instabilities intrinsic growth in a wave, eg two-stream instability (localization in momentum space)

Radiation mechanisms

- Appealing to plasma instabilities works only with a high growth rate
- Most models use a thin beam through a background plasma
- Growth rate $\Gamma \propto (\frac{n_b}{n_p})^{1/2} \frac{1}{2\gamma_p^{1/2}\gamma_b^{3/2}}$ (Gedalin et al. 2002)
- Beams much less dense, very low growth rates contrived solutions? (Usov 1987, Ursov & Usov 1988)

Wave growth

- Currently favoured theory uses plasma instability to generate waves
- ▶ Growth occurs with certain growth rate in each mode
- ► After long time expect radiation predominantly in the faster growing mode, single polarization

OPMs

▶ Observed that emission has (sometimes nearly equal) mixture of two orthogonal modes

(Mitra, Sarala & Rankin)

▶ Polarization is often substantially elliptical

OPMs

- Need coupling into two different modes
- Efficient coupling only near a point where polarization of the modes is changing rapidly
- ▶ Sufficient rapid change occurs only near cyclotron resonance
- ▶ Elliptical polarization also needs cyclotron resonance
- ▶ Waves generated near ω_p , orders of magnitude below Ω_c

Problems - summary

- Must be coherent, fast enough growth
- ► OPMs are hard to generate
- ► Time-stationary models unstable

Oscillating model

- ▶ Introduced as the result of perturbing the stationary model (Levinson et al., 2005)
- Oscillations as large-amplitude outward-propagating waves

(Luo & Melrose, 2008)

Oscillating model

- ▶ Include displacement current, allow system to evolve
- Model has counterstreaming electrons and positrons in the magnetosphere
- \blacktriangleright Relative streaming Lorentz factor varies from $\gamma \sim 1$ to $\gamma \sim 10^6$
- Counterstreaming instabilities present
- lacktriangle Cyclotron frequency $\Omega_{ extsf{c}} \propto rac{1}{\gamma}$ oscillates over wide range

Linear response

- Wave dispersion properties important for understanding generation of emission
- Model as a 1D pair plasma, treat in centre of momentum frame
- ► Calculate linear response and find available wave modes
- ▶ Plot ω as a function of β for some k

Wave dispersion

$$\omega$$
 vs. β , $\Omega_c=3\omega_p$, $k=30$

Mode coupling

- Mode coupling is expected to occur when the polarization is changing most rapidly
- ► Look for polarization swings near mode crossings
- Mode coupling in intrinsically time-dependent medium is nontrivial

Polarization ellipse

- Mode coupling strong when polarization ellipse changes shape rapidly
- lacksquare $T_M=\pm 1$ circular, $T_M=0,\infty$ linear
- Can plot T_M as a function of k or β once the modes are identified
- Compare with shape of dispersion curves, position of resonances
- lacktriangle Cyclotron resonance at $\omega = \Omega_c/\gamma \pm \beta kc$

Polarization and dispersion as a function of β

What should we see?

- ► We expect backward emission, esp. at low frequency model should produce emission in both directions
- Elliptical polarization can be explained
- ▶ Low frequency emission, at $\omega \leq \gamma^3 c/R_c$, dominated by curvature effects (we see emission from a short time)
- Models with high- γ outflow must be curvature dominated below this frequency; oscillating model has phases where γ much lower, perhaps coherent emission signatures at low frequency

Conclusion

- Pulsar radio emission not well understood
 - Magnetospheric models unstable
 - OPMs hard to explain
 - Efficient coupling requires cyclotron resonance
- Oscillating model provides some solutions
 - Including displacement current gives more realistic model
 - Allow interaction with cyclotron resonance
 - Rapid polarization change near resonance point, coupling
 - lacksquare $\Omega_c \propto 1/\gamma$ can be below ω_p in phase where γ is maximum
 - Observational effects include expectation of backwards emission
 - Same emission should be observed at lower frequencies