Magnetic Fields in Molecular Clouds

Paolo Padoan

ICREA - ICC, University of Barcelona

Collaborators:

T. Lunttila and M. Juvela (Helsinki University)
Å. Nordlund (Niels Bohr Institute, Copenhagen)
D. Collins, A. Kritsuk, M. Norman (UC San Diego)
S. Ustyugov (Keldysh Institute, Moscow)

Content

Question 1: How strong is the <u>mean</u> magnetic field of GMCs?

The formation of GMCs from large-scale compressions:

- General argument about trans-Alfvénic MHD turbulence
- Large-scale (~200pc) *multiphase* turbulence simulations

Question 2: How strong is the <u>rms</u> magnetic field of GMCs?

Magnetic field amplification in supersonic MHD turbulence: – Small-scale (~5-20pc) *isothermal* turbulence simulations

Question 3: Are weak fields in GMCs consistent with observations?

- Comparison of simulations with Zeeman measurements:
- Energy ratios
- Core versus envelope

Question 1:

How strong is the mean magnetic field of GMCs?

Two different views on the magnetic field strength in clouds

1) The "traditional" view of molecular clouds

Strong mean magnetic field: Molecular clouds are magnetically supported

 $E_{\rm G} \sim E_{\rm K} \sim E_{\rm M} \gg E_{\rm TH} \rightarrow$ Star formation is controlled by **ambipolar drift** (see review by *Shu, Adams & Lizano 1987*)

2) The super-Alfvénic model of molecular clouds

Padoan and Nordlund (1997-1999): The mean magnetic field is weaker $E_{\rm G} \sim E_{\rm K} > E_{\rm M} > E_{\rm TH} \rightarrow$ Super-Alfvénic turbulence:

- Molecular clouds are not magnetically supported
- The *B* field detected in dense cores is much larger than the mean *B* field
- Prestellar cores are formed by turbulent shocks, not by ambipolar drift

Why are GMCs born super-Alfvénic?

GMCs are formed by large-scale compressions in the warm ISM (SN remnants).

- Before the compression, the turbulence is trans-Alfvénic, or mildly super-Alfvénic.
- After the compression: $\rho_{cold} \sim 100 \rho_{warm} \rightarrow E_{K,cold} = \rho_{cold} u^2 / 2 \sim 100 E_{K,warm}$ The magnetic energy per unit volume initially does not change much
- \rightarrow the turbulence becomes highly super-Alfvénic and supersonic.
- → *B* is *locally* stretched and compressed so $\langle B^2 \rangle$ grows, with $\langle B \rangle \sim \text{const.}$

Large-scale multiphase MHD turbulence (PPML – 512³)

Previous works with SN driving (*Korpi et al. 1999; Mac Low et al. 2005; De Avillez and Breitschwerdt 2005, 2007; Joung and Mac Low 2006, 2009*) have stressed the important role of dynamic pressure:

- Large gas mass fraction out of thermal equilibrium
- Densities and temperatures of GMCs are reached without gravity
- GMCs could be transient (though their cold gas may be longer-lived)
- Effective driving scale ~ 75 pc
- $\delta B/B_0 \sim 1$, not very large

Kritsuk et al. 2010: Idealized turbulent box:

- -L = 200 pc, random solenoidal forcing 1 < k < 2, no SN, no gravity
- Periodic domain, 512³ zones, $L = 200 \text{ pc} \rightarrow \Delta x = 0.39 \text{ pc}$
- $-\mathcal{M}s \approx 4, \mathcal{M}a \approx 2$ (using mean gas pressure and B_0)
- $< n > = 5 \text{ cm}^{-3}, n_{\text{max}} \approx 5,000 \text{ cm}^{-3}, T_{\text{min}} = 18 \text{ K}$
- Analytical cooling and heating rate approximations from Wolfire et al. 2003

<u>Result</u>: *GMCs have* $\langle B \rangle \sim B_0$ (large-scale mean magnetic field), even if they are ~100 times denser than the mean.

Cold clouds: $\langle B_{MC} \rangle \approx 2 B_0$, $\langle B_{GMC} \rangle \approx B_0$

- \rightarrow Clouds are born with a weak mean magnetic field
- \rightarrow Almost no *B* compression going from warm gas to cold clouds!

As a result of the weak mean magnetic field, GMCs are super-Alfvénic with respect to their own **.

Only smaller clouds can be in equipartition, or sub-Alfvénic (but notice that all clouds were selected with the same density threshold, $\sim 100 \text{ cm}^{-3}$).

Velocity-size relation: Large clouds have large velocity dispersion, but $\langle B \rangle \sim B_0$ (flat *B-n* relation), hence they are very super-Alfvénic.

Question 2:

How strong is the <u>rms</u> magnetic field of GMCs?

Numerical simulations of MHD turbulence (PPML – 1024³)

(Ustyugov et al. 2009; Kritsuk et al. 2009a,b, 2010)

- Uniform initial magnetic and density fields
- Large scale ($1 \le k \le 2$), random, solenoidal initial velocity and forcing
- Forcing for several crossing times \rightarrow steady state
- No gravity, no ambipolar drift, isothermal equation of state

Based on mean B and n:
 Based on rms
$$v_A$$
:

 \mathcal{M}_S
 $\mathcal{M}_{A,0}$
 β_0

 10
 31.6
 20.0

 10
 10.0
 2.0

 10
 3.2
 0.2

All these models are *super-Alfvénic* with respect to the *mean* magnetic field (lower mean magnetic field than in the "standard" model).

Is $\langle B^2 \rangle$ amplified to equipartition by a turbulent dynamo?

$$\beta_0 = 2 c_S^2 / v_{A,0}^2 = 2 (\mathcal{M}_{A,0} / \mathcal{M}_S)^2$$

Time evolution of magnetic energy

Rapid saturation of $E_{\rm m}$ to a level *below equipartition* for $\mathcal{M}_{\rm A,0}$ =10 and 30 \rightarrow The turbulent dynamo is inefficient in supersonic turbulence.

Haugen et al. 2004: At $Pr_{M} \sim 1$ and $\mathcal{M}_{S} \sim 2.5$ the critical magnetic Reynolds number for dynamo action is $Re_{M,cr} = 80$, and depends weakly on \mathcal{M}_{S} . But they find some evidence of growth rate decreasing with increasing \mathcal{M}_{S} .

The "GMCs" selected from the multiphase runs have $\mathcal{M}_{A,0}$ in the range 2 – 10.

According to the isothermal runs, approximately half of these GMCs should reach equipartition with respect to the rms B, in 2 - 3 dynamical times.

Indeed, their $\mathcal{M}_{A,rms}$ values are scattered within a factor of two above the saturated values of the 1,000³ isothermal runs \rightarrow Age of transient GMCs in the turbulent flow?

Question 3:

Are weak fields in GMCs consistent with observations?

Synthetic Zeeman Measurements from MHD Simulations

Lunttila et al. 2009: Solution of the coupled radiative transfer equations for the four Stokes parameters (1665 and 1667 MHz OH lines)

<u>Very low mean field, $\langle B \rangle = 0.34 \ \mu G$ </u> (but $\langle B^2 \rangle^{1/2} = 3.05 \ \mu G$)

Core selection in the 1665 MHz OH maps (3' beam) with P-P-V clumpfind algorithm (*Williams et al. 1995*): *Cores correspond to brightness temperature peaks (not so much to projected density structures).*

Comparison with Observations (Troland and Crutcher 2008)

Using only detections: $\langle \lambda \rangle_{sim} \approx 2.5 \pm 0.4, \quad \langle \lambda \rangle_{obs} \approx 2.5 \pm 0.6 \qquad \langle \beta_{turb} \rangle_{sim} \approx 0.6 \pm 0.4, \quad \langle \beta_{turb} \rangle_{obs} \approx 0.9 \pm 0.6$

The mass-to-flux ratio and the magnetic-to-kinetic energy ratio in the cores are consistent with the observations, despite the very low mean magnetic field.

Is the mean B in the envelope as strong as inside the dense core?

Ratio between mass-to-flux in the core and in the envelope

Prediction of super-Alfvénic turbulence (*Lunttila et al. 2008*): Large scatter in R_{μ} , $R_{\mu} < 1$ for $B > 10 \,\mu\text{G}$

Prediction of ambipolar-drift model of core formation (*Ciolek & Mouschovias 1994*): $R_{\mu} > 1 (\sim 4)$

Crutcher et al. 2008: $R_{\mu} = 0.41 \pm 0.2$ (for the core B1)

Conclusions

- Giant Molecular Clouds are super-Alfvénic with respect to their **.
- In most GMCs the turbulence may remain super-Alfvénic also with respect to $\langle B^2 \rangle^{1/2}$, unless $\mathcal{M}_{A,0} \leq 3$ and the cloud is older than ~ 2 dynamical times.
- Super-Alfvénic simulations yield magnetic field strength and energy ratios in dense cores consistent with the observed values based on Zeeman measurements.
- The predicted relative mass-to-flux ratio (core to envelope) is consistent with Zeeman measurements of molecular cores.

The turbulence controls the dynamics within GMCs

→ The turbulence can prevent locally the gravitational collapse (star formation occurs only in the densest regions)

The turbulence controls the dynamics within GMCs

→ The turbulence can prevent locally the gravitational collapse (star formation occurs only in the densest regions)

How strong is the magnetic field?

B-n relation $(N=1024^3)$

Weaker Magnetic field \rightarrow Steeper *B*-*n* relation and larger scatter

- $\mathcal{M}_{A,0}$ = 32: The upper envelope shows local equipartition of magnetic and dynamic pressure (passive role of B)

- $\mathcal{M}_{A,0}$ = 3: Magnetic pressure often in excess of dynamic pressure

PDFs of *B* conditioned to *n* ($N=1024^3$)

Extended exponential PDF tails, especially for the weaker mean B case: Field stretching, not just compressions (the gas density PDF is Log-Normal).

Typical Zeeman detections yield $B >> \langle B \rangle$, and even $>> \langle B^2 \rangle^{1/2}$. (even worse due to Zeeman bias towards large density – see below.....) Numerical convergence for $\mathcal{M}_{A,0}=10$

We can further illustrate this result from the point of view of steady-state turbulence correlations: B-n and velocity-size relations.

B-n relation:

The *B*-*n* relation is very flat, especially if *B* is averaged over a region of 20 pc (blue contours).