
Splotch: High Performance Visualization using MPI,

OpenMP and CUDA

Klaus Dolag (Munich University Observatory)

Martin Reinecke (MPA, Garching)

Claudio Gheller (CSCS, Switzerland),

Marzia Rivi (CINECA, Italy), Mel Krokos (University of Portsmouth),

Motivations

Numerical simulations in astrophysics and fluid-dynamics produce

huge (tens or hundreds of Terabytes) and complex data.

Effective tools to explore and analyze these data are required.

Visualization is the most immediate and intuitive way of inspecting

large-scale data sets:

o accelerate and simplifying cognitive process

o focus on subsamples and features of interest

o detect correlations and special characteristics of data

o ………

Visualization is also an effective instrument for education and

outreach.

Objectives

Our main focus is on huge datasets (tens to hundreds

of terabytes) that cannot be visualized interactively

and/or using “standard” visualization facilities.

We want to use HPC resources, exploiting hybrid

architectures that allow to load and process data in

an acceptable time.

Sort of “brute force approach”, where all other

solutions fail (or cannot be easily used).

We have focused on the following paradigms:

- MPI (internode)

- OpenMP (intranode)

- (CUDA/OpenCL for GPUs)

Splotch: overview

Splotch is a ray-tracing algorithm for

effective visualization of large-scale

astrophysical datasets coming from

particle-based simulations. Based on

(approximate) solution of the radiative

transport equation

where the density is calculated

smoothing the particle quantity on a

“proper” neighborhood, by a Gaussian

like distribution function.

Splotch: overview (cont.ed)

Basic Splotch steps:

1. Read data

2. Process (normalization, logs…) data

3. Set the point of view (roto-translation) and prospective projection in

the xy-plane

4. Color (associate a emission and absorption to each particle)

5. Render (solve radiative transfert equation producing partial image)

6. Save final image (tga, jpeg)

C++ procedural (not OO) code, completely self contained (no need for

external libraries – except those for parallelization)

Specific care spent to high performance and memory consumption.

No configure procedure available… Set Makefile by hands…

Workflow of the Splotch algorithm

Splotch: readers

Data sets contain properties of the simulation particles, such as

position, velocity, mass density, smoothing length, etc.

Formats supported are:

• Tabular binary (each row contains all properties of a single particle)

• Blocks binary (each block contains a single property for all particles)

• Gadget (format 1, format 2, hdf5) output format

• Mesh (each particle corresponds to a cell of a 3-dimensional grid)

• HDF5

Blocks format allows to enable MPI I/O reader where each

process has a different view of the file, so that simultaneous

collective writing/reading of non-contiguous interleaved data

are allowed

Splotch: MPI parallelization

Assuming Ep = Ap in the transport equation

the algorithm can be easily parallelized using a SIMD approach based

 on MPI. Critical steps are data load and interpolation (all other steps are

 embarrassingly parallel)

Two main data structures:

particles (the input dataset) – can be huge

Image – small compared to particle set but problematic for GPU

Particles are distributed between processors at reading time.

Different implementations to support several file formats and to tune the

performances (MPI-I/O, parallel streams, read-communicator…)

Image is replicated on all processors (typical 1000x1000 image is 3 MB)

Final image reduced between all processors

MPI parallel rendering process

Processor N+2

Processor N+1

Processor N

Processor N-1

Data file

Reduce

MPI benchmarks on IBM-Power6

Hardware architecture UNIX-AIX SP6 system:
– Cluster of 168 Power6 575 computing nodes

– 32 cores and 128 GBytes per node

– 2 possible schedule modes for execution:

• ST (Single Thread)

• SMT (Simultaneous Multi-Threading)

Benchmark data set:
– Millennium II simulation output containing about 10 billion

particles

Splotch: benchmark results Millennium run

Total wallclock time

minus read time

Millenium II simulation

 Read time

diamonds = ST mode

traingles = SMT mode

OpenMP

Simple parallelization, consisting in in the distribution of work of the main

loops among different threads.

This is fine in all the “preliminary” steps…

…but not for the rendering part, where images are created.

Images can be shared or private:

Shared  low memory request but race conditions

Private  wasting memory and serialized process (critical regions)

Adopted solution: split the image between threads, in chunks

1.establish which particles contribute to each chunk of the image

2.each thread renders its own portion of the image

Small chunks (number of chunks >> number of threads) lead to better load

balancing.

•No race conditions

•Can be used with MPI

OpenMP parallel rendering process

Patch 1 Patch 2

Patch 3 Patch 4

Data in memory

Process 1

Process 2

Process 3

Process 4

OpenMP performances

Scaling of the CPU time (total wallclock time) with the number of

OpenMP threads used for visualizing 100 million particles for an 800x800

pixel display

Splotch: CUDA implementation & issues

 The CUDA approach consists in:

o Have a copy of the image on each GPU

o Push chunks of particles on GPU memory

o Create a thread for each particle

Issues (for implementation and performance):

1. each particle influences different number of screen pixels, therefore

unbalanced granularity can compromise execution times during

rendering phase;

2. each particle access “ randomly ” the image, therefore possible

concurrent access to the same pixel may occur.

Solutions:

1. Split “big” particles in “smaller” influencing regions of the same size.

2. have a copy of the image on each host and use a fragment buffer

on the GPU to store the pixels associated to each particle;

Remaining major problem: memory management !!!

2

Splotch on GPU

1

Particle1  Threads 1.1 - 1.N

Particle2  Threads 2.1 - 2.M

F
ra

g
m

e
n

t
B

u
ff

e
r

Splotch: benchmark MPI+CUDA on Linux cluster

Hardware architecture IBM PLX Linux cluster:

– 274 compute nodes, each one contains 2 Nehalem quad-

core Intel Xeon X5550 processors, with a clock of 2.66GHz,

and have 24GB of memory (3GB per core).

– 12 fat nodes containing 2 Nehalem quad-core Intel Xeon

X5570 processors, with a clock of 2.66GHz and 128GB of

memory.

– 4 out of the 12 fat nodes are equipped with a graphic card

NVIDIA Quadro Plex 2200 S4 (GPUs with 4Gb of memory).

– internal Network: Infiniband with 4 QDR switches

Benchmark data set: previous 100M data set.

Splotch: benchmark CUDA on Linux cluster

Optimization: we can exploit CPU, during its latence time, to render a

subset of particles. Cuda version allows to launch parallel threads

rendering subsets of particles, one executed by the CPU host (if

enabled) and the others by different GPUs.

The percentage of particles distributed between host and devices is

important to get the best performance.

Particles distribution between CPU and GPU (Time in sec.)

Test A Test B Test C

cpu 30% gpu 70% cpu 40% gpu 60% cpu 50% gpu 50%

Range 2.05 1.45 2.69 1.24 3.39 1.03

Transform 1.28 0.73 1.70 0.62 2.13 0.52

Color 1.68 2.46 2.25 2.12 2.80 1.76

Render 5.10 4.54 6.80 3.89 8.56 3.26

Copy H-D 7.20 5.97 5.02

Tot. Compute 10.11 17.57 13.44 14.88 16.88 12.45

Splotch: benchmark MPI+CUDA on Linux cluster

MPI process type

Num of processes

Range

Transform

Color

Render

Copy H-D

Total Compute

1 2 1 2 1 2

6.89 3.89 2.07 1.04 2.69 1.47

4.60 2.35 1.04 0.52 1.70 0.87

5.45 2.80 3.52 1.79 2.25 1.13

18.42 9.33 6.51 3.20 6.80 3.40

10.24 5.85 5.97 3.12

35.36 17.7 25.08 13.64 14.88 7.57

CPU time (sec.) GPU time (sec.) GPU+CPU

• Linear scalability for all configurations.

• CUDA offers about 29% performance gain and host+device
configuartion offers about 58% performance gain with respect to
CPU.

• Considerably time spent for host-device copy operations.
Number of copies depend on the size of the dataset and the size
of the GPU memory.

• CUDA offers maximum gains when there is a large rendering
calculation involved and low data copy operation between host
and device.

Image Modes

Sorting particles by:

• Color (radiative transfer equation)

• Value (emphasize structure)

Coloring particles by:

• Scalar value (lookup table)

• Vector (direct mapping to RGB)

Timings for Magneticum Pathfinder

OpenMP active: max. 3 threads

MPI active with 8 tasks.

Total number of particles in file :

Type 0 (gas): 3428122059

Type 1 (dm): 3456649728

Type 2 (bndry): 0

Type 3 (bndry): 0

Type 4 (stars): 308093649

Type 5 (BHs): 495023

Total wall clock time for 'Splotch total time': 443.1826s

+- Input : 78.26% (346.8223s)

+- Rendering : 8.30% (36.7756s)

| +- Rendering proper : 81.88% (30.1129s)

| +- Chunk preparation : 17.64% (6.4857s)

| +- <unaccounted> : 0.48% (0.1770s)

+- Particle ranging : 7.02% (31.1301s)

+- 3D transform : 2.76% (12.2480s)

+- Particle coloring : 2.42% (10.7179s)

+- Output : 0.15% (0.6747s)

+- Post-processing : 0.08% (0.3399s)

+- Setup : 0.00% (0.0040s)

+- Particle sorting : 0.00% (0.0000s)

+- <unaccounted> : 1.01% (4.4701s)

Universe 4D

