

Leveraging visualisation for WALLABY

Russell Jurek

WALLABY Simulations Fest 2011, November 23rd 2011

WALLABY/DINGO WG5

- Baerbel Koribalski (PI)
- Lister Staveley-Smith (PI)
- Martin Meyer (PI)
- Russell Jurek (co-chair)
- Chris Fluke (co-chair)
- Amr Hassan
- Andreas Wicenec
- Gerhardt Meurer
- Fortnightly meetings starting soon

Talk Outline

- The trick to exploiting visualisation
- Visualisation uses
 - Data mining
 - Datacube quality control
 - Source finding
 - Testing parameterisation
 - Source classification
- Citizen science
- Examining weird objects
- Summary

The trick

The trick

- Visualisation is good for rapid, qualitative analysis
 - Visualisations are contextual and 'information dense'
 - Visualisations provide perspective
- Images are engaging
- Leverages human pattern recognition capabilities
- Visualisation is the key to citizen science

- 1. Data mining
- 2. Datacube quality control
- 3. Source finding
- 4. Testing parameterisation
- 5. Source classification

Data mining

- Exploit context
 - Easiest way to spot the weird and wonderful
- Exploit perspective
 - Identify large scale structure
 - Identify selection effects
- We need to be creative
 - Cluster finding?

Which of these is not like the others?

- 1. Data mining
- 2. Datacube quality control
- 3. Source finding
- 4. Testing parameterisation
- 5. Source classification

Datacube quality control

- 2 levels of datacube quality control
- Internal QC
 - Part of ASKAP pipeline
 - Automated tests with quantitative results
- External QC
 - Semi-automated and manual tests
 - Incorporates visualisation
 - Addresses weaknesses of automated tests

Internal QC

- Measure global noise level of datacube
- Test sensitivity/noise variation of datacube
 - Measure RMS in running box
 - Compare to sensitivity model and survey requirements
- Test continuum subtraction of datacube
 - Compare continuum subtracted and blank line-of-sights
 - Are the voxel flux distributions the same?
 - Apply Kolmogorov-Smirnov test
 - Compare medians and interquartile ranges
- Test for presence of known sources
- Test if source count and distribution is sensible
 - Use predicted counts and predicted variance
- Test if source parameters are sensible

The problem with automated tests

- Measured quantities describe a macroscopic state
 - Potentially large microcanonical ensemble
 - Scale dependent
- Relies on picking the right test
- Effects might be intermittent
 - Another mechanism for scale dependence

The problem with automated tests

The problem with automated tests

External QC

- Goal is to address issues with automated QC tests
- Make use of low resolution datacube
- Visualise datacubes or datacube sub-regions
- Visualise running RMS of datacubes
- Overlay catalogue, known sources and sky model on datacube visualisation
- Visualise calibration residuals
 - 1. Measure calibration residual for known sources
 - 2. Plot as a function of position in the datacube
 - 3. Look for trends/distinct regions

- 1. Data mining
- 2. Datacube quality control
- 3. Source finding
- 4. Testing parameterisation
- 5. Source classification

Source finding

- Citizen science?
- Best on low resolution datacubes?
- Procedure
 - 1. Remove sources from datacube
 - 2. Examine datacube for oddities/sources

- 1. Data mining
- 2. Datacube quality control
- 3. Source finding
- 4. Testing parameterisation
- 5. Source classification

Testing parameterisation

- Citizen science?
- Show overlap of sources and models/masks:
 - Compare TiRiFic model projection and cubelet
 - Compare velocity field and model velocity field
 - Compare rotation curve and model rotation curve
 - Compare source finding binary mask and cubelet
 - Compare integrated spectrum and cubelet integrated spectrum

- 1. Data mining
- 2. Datacube quality control
- 3. Source finding
- 4. Testing parameterisation
- 5. Source classification

Source classification

- Citizen science
- Repeat galaxy zoo with WALLABY
- Additional classifications:
 - Multi-wavelength overlaps
 - Degree of overlap
 - Degree of overlap correlation
 - Check/Find object merging

Citizen Science

The benefit of citizen science

- 1,500,000 sources = 13 FTEs (using CSIRO definition)
- 1 FTE = 8 FHRs (5 hour regulars, 5hr/week for 48 weeks)
- 1,500,000 sources = 104 FHRs

Eyeballs	FHRs
10 ⁶	70
10 ⁷	695
14.41 Million	1000
108	6945

MANY HANDS MAKE LIGHT WORK

Implementation

- Most of our operations are comparisons
 - We can easily set up fuzzy answers
 - A single tool is possible
- Server that provides HI images and a random overlay
- Overlays correspond to different comparisons
- Generate catalogue of classifications
 - Identifies the weird and wonderful

IT'S FEASIBLE -> EXCITING

Examining weird objects

WALLABY HI Analysis Tool

- What do we do with the weird stuff?
 - HI poor and HI rich galaxies
 - No obvious multi-wavelength counterpart
- Let's do the simple thing
 - Leverage citizen science to refine the list of weird things
 - Look at every object in this (hopefully) small list
- WALLABY HI Analysis Tool (WHAT)
 - Single source analysis tool
 - Single source visualisation
 - Multi-wavelength overlays
 - S'Finder mask overlay?
 - Relative position in parameter space

Image credit: WALLABY HI Analysis Tool Baerbel Koribalski

Summary

Summary

- Visualisation complements automated QC tests
- Visualisation is the key to unlocking citizen science
- We can leverage citizen science to find the weird (interesting) things, which we can analyse in detail
 - WALLABY HI Analysis Tool (WHAT)

