

A tale of two tools, Galaxia and EBF

Sanjib Sharma (Univ of Sydney)
 Joss Bland-Hawthorn

 Kathryn V Johnston
 James Binney

Will be publicly available as open source project at (Feb)
http://galaxia.sourceforge.net

sanjib.sharma@gmail.com

Motivation
● A framework to compare theoretical models of

our Galaxy with observations.

Theoretical
model

Observed
Catalog

Theory of Stellar
Evolution (Isochrones)

Galaxia
Synthetic
Catalog

Analytical N-body

Comparison

Monte Carlo Markov Chain,

Chi square, etc

(Extinction, Measurement Errors)

),,vx,,(mZf τ

Observational Space

l, b, r, μl, μb, vr, B, V, log(g)

(Age,Pos,Vel,Metallicity,Mass)

Other uses of Synthetic Catalogs

● Test capabilities of different instruments to
answer key scientific questions.

● Check for systematic errors, biases in
analyses.

● Device strategies to reduce measurement
errors

Drawbacks of current schemes

● Besancon Model- state of the art (Robin et al 2003)
● Also Trilegal, (Girardi et al, Padova group)
● Designed for simulating a particular line of sight

● at max 25 line of sights
● Discrete (l,b,r) step sizes to be supplied by user
● Not suitable for wide area surveys, or large catalog of stars

● takes too much time
● No possibility to simulate substructures or incorporate N-body

models
● Sagittarius dwarf galaxy, simulation of tidally disrupted galaxies

Theoretical Model-Analytical Models

),,vx,,(mZf τ

),x,()vx,,()(
)(

Zffm
m Zxv ττξτ

ξ

Ψ=

Star Formation Rate
SFR

Initial Mass Function
IMF

πτσ

τστ

2)(log

)(/))(log(log log

Z

ZZ Ze −−

Age Metallicity Relation
AMR

Phase space
distribution

Sampling Analytical Model
(Von Neumann rejection sampling)

Adaptive Mesh (Barnes Hut Tree)

Optimization
● To generate a patch do not need to

generate the full galaxy
● If a survey is not all sky, first check if a node

intersects with survey geometry.
● Faint stars which dominate in number

are visible only for nearby nodes.
● For far away nodes there is a minimum

mass above which stars are visible
● Sort nodes according to distance. Calculate

appropriate m’
● Generate only those stars that are visible.

r

x

y
z

mmin m’ mmax

r

Sampling an N-body model

● Number of N-body particles are finite
● fN-body(x,v)<fstars(x,v)
● Need to oversample
● Need to distribute the stars in space
● How to do this such that the stars sample

the phase space distribution of the N-
body particles

● Inverse of density estimation
● Spread the stars over a volume that

encloses k nearest neighbor.
● In phase space volume is hyper-

ellipsoidal. How to choose correct
smoothing length in different dims
(pos,vel), i.e., appropriate metric in a
multi-dimensional space?

() j
j

jd
j

i muK
h

f ∑= 1

rj

j

i

Need for a locally adaptive metric

• EnBiD-Entropy Based
Binary Decomposition in
space (Sharma & Steinmetz
2006, an improvement of
Ascasibar & Binney 2005)

● A code for multidimensional
density estimation

● Automatic calculation of the
appropriate metric or
smoothing lengths

● Metric is locally adaptive and
unique for each point in
space.

Publicly available at
http://sourceforge.net/projects/enbid

Sharma et al 2011

y

x

vx

v

y

log(s)

x

z

Computational Performance

● Run time nearly linear with mass of the galaxy
being simulated
● Due to the use of adaptive mesh or node

● Speed- 0.16 million stars per second (2.44
GHz proc)
● For shallower surveys a factor of 3 less

● V<20, 10,000 sq degrees towards NGP, 35
×106 stars, 220 secs

● V<20 GAIA like survey 4 billion stars can be
generated in 6 hours on a single CPU

>>EBF<<
An efficient and easy to use binary file

format

Motivation

● Why do we need a format?
● Otherwise only the program that wrote the data can read it. Or

custom reading routine for each data
● Difficult to share data with others.

● Why binary and not ascii?
● 700 (6) MB/s, 1800 (18) MB/s

● Need to write multiple items in same file and have random
access support?
● Organize data in one place
● If not random access then the exact sequence in which the data

was written need to be known.
● New features cannot be easily introduced.
● 100x100 grid (in age and metallicity) of isochrone tables

Problems with binary data.

● Binary data without specified data type is just 0
and 1. Hence data type information needs to be
specified.

● Not portable due to Endianness (little vs big)
● In a multi byte word the most significant byte is to

the left or right. Intel vs IBM processors.

●

b1 b2 b3 b4b1 b2 b3 b4

b4 b3 b2 b1

Why not use HDF5 or FITS?

● Fits does not support multiple items tagged by names.
● Sequential access too slow for large number of items
● HDF5 a complicated format. (460 functions)
● API not user friendly. Steep learning curve.
● Main API only C. In other languages one has to rely on

foreign language interface to call C the routines.
● Not fully type safe. Errors not detected at compile time

● (…,...,...,...,HDF5_NATIVE_INT,x)

● Writing lot of small items requires too much memory.
Per item 4KB for FITS and 2KB for HDF

EBF design goals
● Binary format for speed
● Multiple items with random access

● Like HDF5, each data item is specified by a unique
taganme, which follows unix style pathnames

● e.g., /x1 , /mydata/x1 and so on

● Ease of use
● Design APIs such that it is harder to make mistakes,

and when you do it will give compilation error.
● Support for multiple programming languages.

● No use of foreign language interface
● Pure code in all languages.

● Automatic type and endian conversion
● Support for attributes and data units.

The
Format

Header-1

Data-2

Header-1

Header-2

…..

Data-1

…..

Header-N

Data-N

Header

char Signature[8]

char version[4]

int32 endian_test
=1684234849 (abcd)

int32 header_size

int32 name_size

int32 data_type

int32 data_size

int32 rank

int32 unit_size

int32 nfields

int64 dim[rank]

char name[name_size]

char unit[unit_size]

int8 field_name_size

char field_name

int32 field_size

char field[field_size]

char extra[64]

44 bytes

Defining structures

Field name:
“sdef”

Field:
struct
{

float32 density;
float64 mass;
int32 metals 3 2;
struct {
float32 pos 3;
float32 vel 3;
}point 1;

}

Nested (recursive structures allowed)

●Only idl and python
●Byte alignment issues make it less
portable for static languages like
C/C++
●Preferably split and write each field
as separate arrays.

Supported Data types

Data Type Integer Code

undefined 0

char 1

int32 (int) 2

int64 (long) 3

float32 (float) 4

float64 (double) 5

int16 (short) 6

structure 8

Int8 (unsigned char) 9

uint8 (signed char) 10

uint16 (unsigned short) 11

uint32 (unsigned int) 12

uint64 (unsigned long) 13

The API

● double x[100];

● ebfwrite(“check.ebf”,”/x1”,”w”,&x[0],”100 km/s”,100);

● ebfwriteAs<int>(“check.ebf”,”/x2”,”a”,&x[0],”100,km/s”,10,10);

● vector<float> y;

● ebfread(“check.ebf”,”/x”,”w”,y);

● EbfDataInfo dinfo=Ebf_GetDataInfo(“check.ebf”,”/x1”);

● y.resize(dinfo.elements);

● ebfread(“check.ebf”,”/x”,&y[0],dinfo.elements);

● Float* y=ebfallocFloat32(“check.ebf”,”/x”);

● Automatic Endian conversion

● Automatic Type conversion

API contd

● Efile efile;

● efile.open(“check.ebf”,”/x”,”w”,Ebf_type(“int32”),”km/s”);

● efile.write(&x[0]);

● efile.write(&x[1],10);

● Efile.close();

●

● efile.open(“check.ebf”,”/x”);

● efile.read(&y[0]);

● efile.read(&y[1],10);

● Efile.close();

Iterating without loading the full data
 (C++ only)

● ebfarray<float> x(“check.ebf”,”/x”);

● x[i];

● x(i,j); // multidimensional index

● x(i,j,k); // multidimensional index

● Only 1000 items loaded at a time, full data never loaded.

● Useful for traversing large data sets with a small amount of
memory.

Dynamic languages
IDL,Python,Matlab

● Ebf.write(“check.ebf”,”/x”,”w”,x)

● x=Ebf.read(“check.ebf”,”/x”)

● data=Ebf.read(“check.ebf”,”/mydata1/”)

● Only objects in current path
● data[“x1”], data[“x2”]

● data=Ebf.read(“check.ebf”,”/mydata1/”,”rec”)

● All objects recursively in current path
● data[“x1”]

● data[“x1_attributes”][“mass”]

● Ebf.write(“check.ebf”,”/mydata1/”,”a”,data)

● Fully reversible read write

The ebf toolkit ebftk
$ebftk –help

NAME:
 ebftk - a toolkit for Extendend Binary Format (EBF) files (version 0.2)

USAGE:
 ebftk -diff file1 file2
 ebftk -list filename
 ebftk -stat filename "TagName1 TagName2 .."
 ebftk -copy src_file dest_file
 ebftk -copy src_file dest_file TagName
 ebftk -cat filename "TagName1 TagName2 .."
 ebftk -csv filename "TagName1 TagName2 .."

Performance
(1000 data items of size 4 bytes, array of 107 float)

Language Item write Item read Data write Data read

KOP/s KOP/s MB/s MB/s

C/C++ EBF 9 23 775 1800

C/C++ HDF5 1.5 1.5 775 1800

C/C++ FITS 0.2 0.5 344 502

C/C++ ASCII 5.6 18

Fortran90/2003 6.0 8.3 950 1120

Java 2.3 7.4 270 727

Python EBF 1.72 1.07 466 620

Python HDF5 0.95 1.0 659 1030

Python FITS 0.74 0.0012 427 1047

IDL EBF 2.7 2.6 113 772

IDL HDF5 5.0 7.4 110 94

IDL FITS 2.7 0.007 80 360

Matlab EBF 0.26 0.26 680 1175

Matlab HDF5 0.26 0.86 1000 1030

Matlab FITS 0.0004 78

Attributes and data units

● Unlike HDF or FITS, no special interface for
attributes, just write like other data items.
● /data, /data_attributes/attr1, /data_attributes/attr2

● Units are not attributes they are part of
definition of data.
● Attributes can also have units
● e.g /density1 , /density1_attributes/time

● Size of items cannot be expaned. Could be supported in future.

● No support for hyperslab selection
● HDF5 can do both of above, as it uses B-trees

● Easier to use and at the same time performance at par with
HDF.

● Galaxia a tool well suited for comparing theoretical models of
Milky Way with observations.

● For release check at
● http://galaxia.sourceforge.net
● final release of EBF probably at git-hub
● sanjib.sharma@gmail.com

Conclusions

http://galaxia.sourceforge.net/

	Galaxia: A code for synthetic modeling of the Milky Way
	Motivation
	Other uses of Synthetic Catalogs
	Drawbacks of current schemes
	Theoretical Model-Analytical Models
	Sampling Analytical Model (Von Neumann rejection sampling)
	Adaptive Mesh (Barnes Hut Tree)
	Optimization
	Sampling an N-body model
	Need for a locally adaptive metric
	Computational Performance
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

