A giant E galaxy with an old stellar population – and the closest one too!
what is your NGC 5128?

- most people see the “peculiarities”....
what I see is the stars...the old stars

archaeology in a giant E galaxy

June 29, 2009
why did it take so long to recognize that NGC 5128 is fundamentally an “E galaxy+”?

- Answer 1: it didn’t
 - e.g. Sérsic 1958 – isophotal contours: “In the profiles corresponding to the major axis of the elliptical component... it was found that the colour remained constant, except in the obscured region... This is the same as Dennison found for colours in NGC 3379 and NGC 3384.”
NGC 5128 is fundamentally a giant E galaxy

- “NGC 5128 is an unresolved E0 nebula with an unusually strong and wide central absorption band … The curvature of the outer parts of the spiral system and the irregular distribution of the absorbing clouds … clearly indicate tidal distortion by the E nebula”

 Baade and Minkowski 1954

- “It seems likely that the main radio characteristics of NGC 5128 and the energetic phenomena still going on are a consequence rather than the cause of the unusual structural features of the galaxy as a whole.”

 Graham 1974

- “Cen A has probably an undeserved reputation for being one of the most peculiar galaxies in the sky.”

 Ebneter and Balick 1983
why did it take so long to recognize that NGC 5128 is fundamentally “an E galaxy +”?

- Answer 2: lots of reasons early on
 - what distance, luminosity?
 - what galaxy type?
 - why no globular clusters?
 - other...
 - disc/dust lane
 - strong radio source
 - halo shell
 - X-ray emission

- Answer 3: people haven’t paid attention to the answers
what is the distance to NGC 5128?

- standard candles \Rightarrow $2\text{Mpc} < d < 8.5\text{Mpc}$
- i.e. $\Delta(m-M) > 3\text{mag}$!
- $M_{\text{gal}} \sim -18? -21$?
- stellar candles now consistent with:
 - $d \sim 3.8\pm0.2\ \text{Mpc}$
 - $(m-M) = 27.9$
 - $M_{\text{gal}} \sim -21$
linear, angular scale in NGC 5128

- galaxy proximity means large angular scale on the sky
 - $1^\circ \sim 70$ kpc
 - $1' \sim 1200$ pc
 - $1'' \sim 20$ pc
 - $1r_e = 5.5' \sim 6400$ pc
 - $10r_e \sim 64$ kpc
NGC 5128 – what galaxy type?

- Confusion caused by the dust lane

<table>
<thead>
<tr>
<th>Galaxy type</th>
<th>source</th>
</tr>
</thead>
<tbody>
<tr>
<td>like NGC 3379 (E1)</td>
<td>Sérsic 1958</td>
</tr>
<tr>
<td>E0p?</td>
<td>Morgan 1958</td>
</tr>
<tr>
<td>S0p</td>
<td>Freeman 1970</td>
</tr>
<tr>
<td>E0p</td>
<td>van den Bergh 1976</td>
</tr>
<tr>
<td>E + spiral</td>
<td>Dufour et al. 1979</td>
</tr>
<tr>
<td>(E0 + Sb?)</td>
<td>Sandage 1980 (Hubble Atlas)</td>
</tr>
<tr>
<td>S0</td>
<td>Sandage and Tammann 1981</td>
</tr>
<tr>
<td>S0p</td>
<td>NED database</td>
</tr>
</tbody>
</table>

"data seem to support Morgan’s suggestion that the S0 classification type is a repository of physically quite distinct sorts of objects that exhibit only superficial similarities" van den Bergh 1990
dust lane is an “extra”

- many studies conclude that the dust lane is a distorted disc affected by the underlying, more massive E galaxy - i.e...
 - “curvature of the outer parts of the spiral system ... clearly indicate tidal distortion by the E nebula” (Baade and Minkowski 1954)
 - “NGC 5128 is a giant elliptical in which is embedded an inclined and rotating disk composed partly of gas.” (Graham 1979)
 - “dust lane is found to be well understood in terms of a differentially rotating disk of gas and dust which is warped both along and perpendicular to the line of sight” (Bland et al. 1987)
 - young stars in the dust band corotate with it; no rotation of the E galaxy itself (Appenzeller and Möllenhoff 1980)
where are the GCs?

- if NGC 5128 is a giant E galaxy $\rightarrow \geq 10^3$ GCs
- they are hiding in plain sight... S/N $\sim 0.02!$
 - proximity problem: at $d = 4$Mpc, $1^\circ \sim 70$ kpc
 - wide angular extent dilutes the radial profile
 - low Galactic latitude ($b \sim +18^\circ$) means lots of foreground contamination
 - dilution also means we can see through the halo to background galaxies
 - but distance is still large enough that GCs are nonstellar at 1” seeing (1” ~ 20pc)
 - photometrically it is *quite* difficult to distinguish GCs from halo K stars and galaxies
- then came Graham and Phillips (1980)
...finally the GCs are found

- early searches found none – star counts out to 464” found 15±60 (van den Bergh 1979)
- first GC identified by Graham&Phillips (1980)
- within 10 yr number of confirmed GC ~100
- currently 605 confirmed by radial velocity (556) and/or resolved by HST imaging
- however, clusters are still hard to find on a “global” scale

NGC 5128 GCs: needles in a haystack

- typical cluster half-light radius $r_h \sim 0.4''$.
- some appear nonstellar at 1” seeing, most don’t;
- can’t reduce field contamination substantially just by image morphology

Worst possible set of conditions!

June 29, 2009

The Giant Beneath
Wide Field CMT_1 Imaging

• total photometric database: psf-fitted magnitudes and colors for 111,000 objects.

• NB innermost excluded bulge region (ellipse with a = 4.2’, b/a=0.5, parallel to dustlane)

>98 percent of the list is field contamination!

June 29, 2009

Harris, Harris, Geisler 2004; Harris et al 2004

The Giant Beneath
Density Profile and Total Population

- big reduction in background count level compared with old photographic starcounts
- strong GCS “signal” for r<12’ but curiously flat distribution at larger radii (??)
- for r < 12’, total residual population after background subtraction: \(N_t = 1200 \pm 80 \)
- represents (magnitude limits etc.) the bright half of the total old-GCS population
- whole galaxy probably contains > 2400 globular clusters

\[S_N \sim 3.8 \] (other gE’s typically in range 2 - 6)
Metallicity Distribution for NGC 5128 Clusters

CCD for 230 “known” clusters

- two main subgroups in MDF;
- favors hierarchical merging?

GC color <=> metallicity
- red = metal-rich
- blue = metal-poor

Weak or absent radial gradient

June 29, 2009
latest attempt at wide field imaging

- IMAC/Magellan images in BR
- average seeing ~0.5"
- "elongated" background galaxies can be eliminated
- many non-stellar sources remain
- improved candidate segregation

The Giant Beneath

June 29, 2009
GCs are mostly old

Woodley et al. 2009:
✓ Lick-index ages for 72 GCs at S/N > 30; all within 15 kpc of center
✓ most are old (9-11Gyr); ~ 20% are younger

Beasley et al. 2008:
✓ Lick-index ages on same system with AAT/2dF, more widely spread sample
✓ 85-90% of their sample are >8 Gy
GC profiles resolvable with HST

• view from HST/STIS
 ✓ $d \sim 4\text{Mpc}$
 ✓ $1'' \sim 20\text{pc}$
• measurable radial profile for GCs
• fit to King models
• MW GCs are virialized systems with constant M/L (McLaughlin 2000)
• degeneracy between r_C, c, μ, L, M/L => can get E_B from photometry alone

June 29, 2009

Four of our NGC 5128 Globular Clusters

The Giant Beneath
binding energy results

- results for 43 GC in NGC 5128
- MW and NGC 5128 correlations (E_B vs L) essentially identical
- reminder: E_B scale for NGC 5128 “set” by assuming same M/L as for MWGCs
- NGC 5128 data extend to more massive clusters than MW

Harris et al. 2002
The homogeneous and intensely precise data we can now work with ... have established the trend of the fundamental plane securely, showing that GCs in all these environments follow the first-order trend $E_B \sim M^2$ quite accurately."

(Barmby et al. 2007)
Central velocity dispersion vs. V-band magnitude

Solid line:
\[\log \sigma = -0.815 - 0.2 \times M_V \]
Galactic globular clusters:
(McLaughlin & van der Marel 2005)

Dashed line:
\[\log \sigma = +0.136 - 0.1 \times M_V \]
Faber-Jackson relation for bright ellipticals

References:
- MW, LMC and Fornax dSph: McLaughlin & van der Marel'05
- M33: Larsen+02
- Virgo UCDs: Hasegan+05
- dE,N nuclei: Geha+02
- \(\omega \) Cen & G1: Meylan+95, +01
- Cen A solid dots: Rejkuba+07

June 29, 2009
Rejkuba et al. 2007
planetary nebulae

- “easily” identifiable at almost any distance from galactic center via [OIII] emission line
- “relatively easy” radial velocity confirmation
- origin $\sim 1-8 M_\odot$ – wide PN age range possible
- excellent halo dynamical tracers
- # confirmed PN > # confirmed GS
Results from Original PN Survey

- By far largest PN sample
- 1.5 mag down PNLF
- PNLF distance of 3.5 Mpc
- Significant rotation
- Misaligned kinematic axis
- Dark matter halo

June 29, 2009

The Giant Beneath
PN Surveys: Version 2

- Extended survey probing outer halo
- Covers 2.9 sq deg
- Major axis: 100 kpc
- Minor axis: 40 kpc
- 1141 detected
- 780 confirmed
- 3 PNe at 80 kpc, NE
- 0 PNe > 60 kpc, SW

Peng, Ford & Freeman (2004a)

The Giant Beneath
Two-Dimensional Velocity Field

Spatial Distribution and Velocity Field for 780x2 Cen A PNe

- Potential is likely triaxial (tending toward prolate)
- Twist, then flat
NGC 5128 generally more metal-rich
no obvious outliers in [NII]/Halpha
none found younger than ~1Gr
halo stars

- at \sim4Mpc they can be resolved – mostly HST imaging data
- 4 (5) fields studied to date
- VI CMDs of stars up to 2-4 mag below the RGB tip
halo star fields

HST imaging

8 kpc WFPC2
1.4 R_e

20 kpc WFPC2
3.7 R_e

30 kpc WFPC2
5.4 R_e

40 kpc ACS/WFC
6.7 R_e

(NB: PNe extend twice this far out)
(V,I) photometry works well: high metallicity sensitivity and takes full advantage of the optical cameras

- interpolate within RGB tracks (calibrated onto Milky Way GC grid)
- a fast, efficient way to derive a first order Metallicity Distribution Function
CMD results for halo fields

Harris, Poole, & Harris 1998, AJ 116, 2866
Harris, Harris, & Poole 1999, AJ 117, 855
Harris & Harris 2002, AJ 123, 3108
Rejkuba, Harris, Greggio & Harris in progress

a unique dataset for gE's

June 29, 2009

The Giant Beneath
grid interpolation to get star-by-star metallicities

RGB stars: → broad and predominantly metal-rich MDF with little radial gradient

June 29, 2009

The Giant Beneath
halo stars and age

- various features of CMD sensitive to metallicity and/or age: RGB, RC, AGB
- at present, only the 40 kpc field has enough leverage for both age and metallicity distributions simultaneously

construct CMD simulations to narrow down age and metallicity distributions (Rejkuba)

June 29, 2009

✓ luminosity function in both I and V
✓ full distribution across CMD
Halo stars in NGC 3379

$M_V = -20.9$

field center at 33 kpc:

$10.3 \rightarrow 13.6 \, R_{ef}$

textbook standard giant elliptical!

“A walking advertisement for the deVaucouleurs law” (Statler & Smecker-Hane 1999)

DeVaucouleurs & Capaccioli 1979: “note close agreement with $r^{1/4}$ law”
a comparison: halo stars in NGC 3379

- significant metal-poor population
- metal-rich/metal-poor combo = new for large E galaxy
blue/red halo stars in NGC 3379 have different spatial distributions

Are we seeing the region of transition to the classic metal-poor halo?
where is the metal-poor halo?

✓ are we seeing the region of transition to the classic metal-poor halo?

✓ why didn’t we see it in the others?

✓ are we looking at two distinct components ?? (bulge + halo)

NGC 3379 10.3 → 13.6 R$_{\text{eff}}$

NGC 5128 1.4 → 6.7 R$_{\text{eff}}$

Should we expect to find the transition starting routinely around 12 R$_{\text{eff}}$?

Kalirai et al. 2006 &&

M31 halo Z-gradient

June 29, 2009

The Giant Beneath
summary

- distance now well known from stellar candles
- GCs consistent with “normal” E galaxy populations
- MDF “bimodal” with ~50/50 metal-rich/metal poor
- halo stars dominantly metal-rich
- both populations mainly ≥8-10Gyr
- PN show inner “twist”, flat outer rotation
- GC kinematics different; similar to group?
- % metal-poor halo stars/GC << metal-richwhy??
- NGC 5128 is providing important clues as to the history of a large E galaxy