

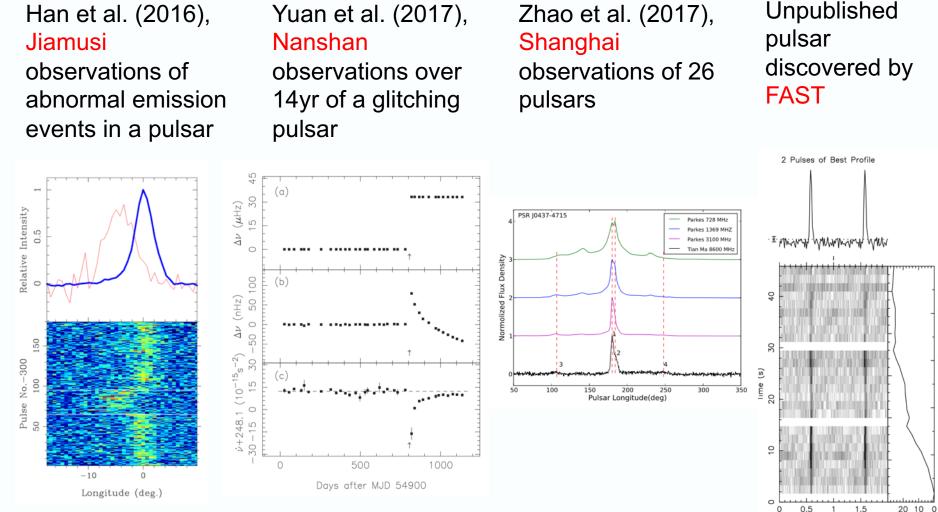
Radio telescopes in China

George Hobbs March 2018

ASTRONOMY AND SPACE SCIENCE www.csiro.au

Single dish telescopes!

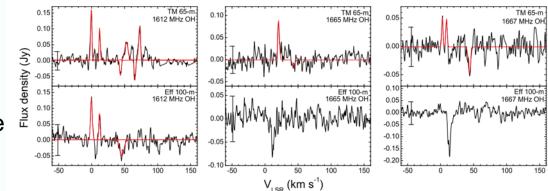
China has a large number of single dish radio telescopes


China has the largest single dish radio telescope (FAST – 500m diameter)

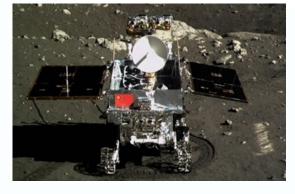
China will soon have the largest steerable single dish telescope (QTT)

Telescope	Diameter	Frequency coverage
Nanshan	25m	1.4GHz-27GHz (surface to 43GHz)
Yunnan radio telescope	40m	
Tianma/Shanghai	65m	1.4GHz-43GHz
Jiamusi	66m	2GHz
FAST	500m	270MHz-1.6GHz (surface to ~5GHz)
Qitai (QTT)	110m	150MHz-115GHz
JinLin Han's group proposal	Multiple ~120m telescopes	~1.4GHz

Enthusiasm for pulsar science



Phase Reduced χ^2



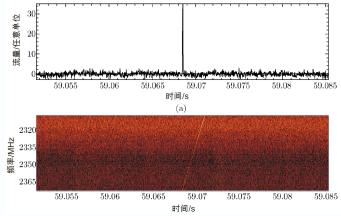
Not just pulsars

Chen et al. (2017), OH-maser studies using Shanghai telescope

Huang et al. (2016), VLBI positioning of lunar lander

FRB search: Yunnan, Shanghai and Nanshan searching for FRBs. Yunnan observing 24/7 with FRB backend since Dec 2017. No detection yet.

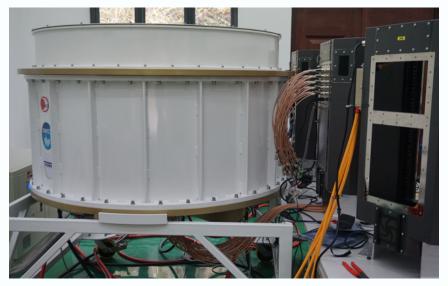
VLBI science: part of numerous networks including increasing baseline lengths in the European VLBI network


Also solar studies, Tianlai project to search for dark energy

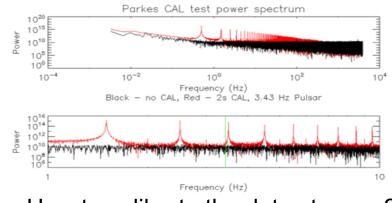
Shanghai TianMa telescope (TMRT)

- 1. 65-m, fully steerable telescope
- 2. Active surface system installed
- 3. 1-50GHz in 8 bands
- 4. Detector suite for spectroscopy, pulsar observations, continuum, VLBI
- 5. "2014-2017: on-site system testing; science observation at L/S/C/X; active surface tested; Ku, X/Ka, K and Q band commissioning; project accomplished!"
- 6. DIBAS backend is an updated combination of GUPPI and Vegas providing 800MHz of bandwidth.

FAST and the CRAFTS project



FAST and the CRAFTS project



FAST and the CRAFTS project

- 1. FAST currently using wideband receiver to observe pulsars, HI and OH.
- Now have ~40 pulsar candidates. ~10 confirmed by Parkes!
- 3. <u>http://crafts.bao.ac.cn</u> -

CRAFTS (The Commensal Radio Astronomy FAST Survey) will start soon with the 19-beam receiver

4. Drift-scan, all-sky survey for pulsars and HI.

How to calibrate the data streams?

Data volume likely 144TB/day!

- How to transfer, store and process?

Prediction for discoveries:

- More than 1000 pulsars
 (including first pulsars in M31)
 - 10s of FRBs
 - 100s of thousands of HI galaxies

Half-day (morning) workshop in Marsfield on April 23rd. Please come!

The guest house at FAST

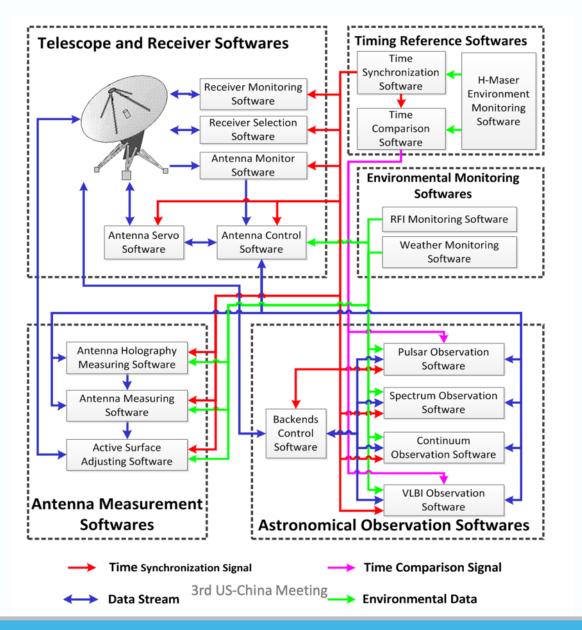
QTT

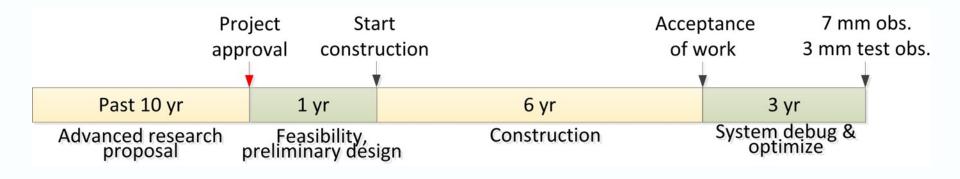
<u>Steerable 110-m Aperture Radio Telescope (SmART)</u> <u>QiTai radio Telescope (QTT)</u>

				Aperture (m)	110
Reflector Adjustment	Primary Focus receivers 100 cm Band 15 cm Band			Freq Range (GHz)	0.15~115
Reflector Adjustment System	20 cm band PAF			Main Reflector r.m.s. (mm)	Active surface
	Secondary Focus receivers 5 cm Band	_	Declared		Early stage ≤ 0.3
	2 cm Band		Backend Multi-Function Digital Backend VLBI Backend PAF Backend		Long term ≤ 0.2
	13/3.6 cm Band 3.6/0.9 cm Band			Pointing	Early stage 2.5"
	7 mm Band MB				Long term 1.5"
	3 mm Band MB			Chana	Gregorian
			Time & Frequency System Hydrogen Maser Frequency-Dividing Clock GPS Receiver	Shape	Parabolic
Az / El Encoder Az / El Servo Active Surface Servo				Focus	Primary &
					Gregorian
Safeguard System			GPS Receiver	Weight (t)	< 6000

The Qitai (QTT) 110m telescope

110m fully-steerable telescope to operate from 150MHz to 115GHz.


Land acquisition: approved Road flattening: done Power: 10kV available Water supply: build 2018 Fibre connection: done for construction period


Туре	Band (cm)	RF Freq (GHz)	Focus	Feed	Poln	Science Goals
Single Pixel	100	0.15 - 0.6	Primary	Kildal	Linear	Pulsar, RRT
	30	0.6 – 4	Primary	Horn 🌞	Linear	Pulsar, RRT, HI, OH, Galaxies
	5	2 – 12	Greg.	Horn	Linear	Molecular spectrum, Galaxies; VLBI
	1	12 – 36	Greg.	Horn	Linear	Pulsar, H2O, NH3, VLBI
	o.6	36 – 50	Greg.	Horn	Linear	Molecular spectrum, High-z CO
	0.3	72 – 115	Greg.	Horn	Linear	Molecular spectrum, Galaxies
Dual- Band	13/3.6	2.2 – 2.5 8 – 9	Greg.	Horn	Circular	VLBI, space exploration, System measurement (3.6cm)
	3.6/0.9	8 - 9 30 - 34	Greg.	Horn	Circular	VLBI, space exploration
Multi- Pixel	15	1-2	Primary	PAF 🌞	Linear	Pulsar, RRT, HI, OH, Galaxies
	0.6	36 – 50	Greg.	Horn 🗼 (multi Beam)	Linear	Molecular spectrum, Galaxies

- In-house designs for control, calibration, monitoring etc.
- 2. Any suggestions on what you'd do if you were designing an entire system from scratch? – clever calibration procedures?

Construction period

Two stages (6+3)

- 6 yr: Main part finish, 2 cm scientific observation
- 3 yr: Adjust & optimize system, 7 mm scientific observation
- Long term adjust, 3 mm scientific observation

China and Australia

Chris Christiansen (Usyd, CSIRO) visited China for the first time in 1963. Helped design and build the Miyun radio telescope.

Figure 4: The Miyun 28-antenna Meter Wave Aperture Synthesis Array.

Very strong collaborative projects in radio astronomy between China and Australia continuing ...

PULSE@Parkes – Parkes observations in China!

Very keen to develop links between local schools near FAST and schools near telescopes in Australia

Purchase of Parkes observing time

- 1. FAST team have purchased 100s of hours of Parkes time each semester for the next few years
- 2. The Parkes observations will be used to:
 - Confirm their pulsar candidates
 - Monitor their new discoveries
 - Help calibrate the FAST observing system
- 3. CSIRO has lots of further opportunities relating to the Chinese telescopes
 - New receivers (PAFs/ UWLs)
 - Data archiving and processing
 - Science, engineering and outreach collaborations
 - (Telescope scheduling, monitoring & control ...)
- 4. Similar time-zones => easy to work with the Chinese teams, simultaneous telescope observations

Thank you

CSIRO Astronomy and Space Science George Hobbs

Research Scientist

t +61 2 9372 4652

E george.hobbs@csiro.au

W

www.atnf.csiro.au/people/g

csiro9997 AND SPACE SCIENCE

