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Overview of Talk
«About me (brief)

e General Intro
 Research Intro

*The Challenges of an Astro-PhD
Student

What can we do and how??



About Me
« Born in London, Ontario, Canada X,
Lake y 4 “‘\\\‘»}Zame

»

y
Huron

/ Southwestern
i Ontario

| Kitchener-
. ) Waterloo®
US

Niagara Falls e;
Fort Erie Yo~e

Detronsl‘. -
'Windsor " Lake Erie
‘ P //

.Toledo
Cleveland

0 > 40 km
S

Arku et al. (2011)



About Me

Born in London, Ontario, Canada

Graduated London Central
Secondary School

https://en.wikipedia.org/wiki/
London_Central_Secondary_Sc
hool#/media/File:Central_Sec
ondary,_London.jpg



About Me

Born in London, Ontario, Canada

Graduated London Central
Secondary School

Undergraduate - Nagoya University i
G30 Program '

Master’'s Degree - Nagoya
University

97 Nacova University GLOBAL 30 INTERNATIONAL PROGRAMS



About Me

Born in London, Ontario, Canada

Graduated London Central

Q Lab (Laboratory of Galaxy Evolution)
Secondary School

Undergraduate - Nagoya Universityfg
G30 Program

Master’'s Degree - Nagoya
University

Double-scythe

Currently in 3" year of Doctoral
Program @ Nagoya University
Laboratory of Galaxy Evolution
(Supervisor: Tsutomu T. Takeuchi)
(JSPS DC2 Fellow) [8):::55: (0]

Research Interests: Everything 'f

about Galaxy Mergers, Galaxy
Evolution with Machine Learning E] e B




Recent Research

Galaxy Merger ldentification in
the HSC-SSP using Machine
Learning Techniques

Galaxy merger incidence and
their dependence on
environment

Current projects:

Further investigation on
machine learning architecture
— what features is our Al
sensitive to?

Mergers, AGNs, and
environment

Galaxy mergers in Subaru HSC-SSP: a deep
representation learning approach for identification and
the role of environment on merger incidence
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The Challenges of an Astro-PhD Student

What does
your research
mean for us?

So like rockets
and aliens?

That sounds
complicated!

Use our taxes
for useful
research!

Stop
leeching off
your
parents!

Is (insert Sci-Fi
title here) legit?




The Challenges of an Astro-PhD Student
y P ot ounds 8

Disconnect with non-academia

ST

and aliens? for useful
research!
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Outreach - IGNIMUS

« Founded in 2023 by Sena Matsui
(Nagoya University), with the '
motivation of providing a platform |
where students interested in
education and outreach activities e

can access useful information IGNIMUS

« Conducting activities with the goal &
of becoming a group which
motivates students interested in
conducting outreach

* Main Activities
« Sharing information related to education and
outreach
« Outreach events
« Interdisciplinary networking

Find us on twitter:
@nu_stu_outreach



IGNIMUS Act|V|t|es

BEBENDDYAIARE"
(Monthly Science
Lunch)

« Held monthly at Nagoya
University

e A student “chef”
Interested in outreach
presents their research

 Students of all
disciplines are welcome
to attend




IGNIMUS Activities

e Local events

« Workshops @ Nagoya
University and other
locations

« Booths at local events
(pictured: Toyohashi
Space Event)

 Collaborations with
other local
organizations
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A ot of items we use come from other
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IRL Applications

.A | . . . er
d/ Other disciplines—Astro \

exists...

So the opposite should be
possible
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Gini Coefficient for Galaxy First telescopes
Morphologies - Economics - Military Use




IRL Applications

Research Overview

*Galaxy Mergers in HSC-SSP
What are mergers?

*AGN Studies
« What are AGNSs?

Machine-Learning and Data Science In
Astro

* There must be something here:-:



IRL Applications

Machine-Learning/Data Science

« Galaxy merger identification using ML
« Random forests
* CNNs
« Multi-Input Neural Networks
« Al

* Big-data approaches to galaxy evolution
« Several hundred thousand ~ million data points
« Quantitative and qualitative trends



ML and DS Applications in
an Aging Soclety

Loosely based on BT —42 B4
IVTA4RMERTOTS A
Project @ Nagoya University
(limited by NDAs)




Japan - Aging

«Increase in aging
population/decrease
in youth(*F&knib)

« 40%+ over 65, projected to

INCrease

« Less than 15% under 15,
projected to decrease

» Increase in average age
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Japan - Aging

«Increase in aging
population/de_c_rease
in youth(A*F&imib)

« 40%+ over 65, projected to
Increase

« Less than 15% under 15,
projected to decrease

» Increase in average age

Many Issues Arise!
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Issues in an Aging Society
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Desolate Traffic
Cities Accidents



What can we do?
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Tourism Public
Transport
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ML/DS Approaches to aid an
Aging Society

1. Use of machine-learning in public
transport route optimization

In the current society, many regional communities are
facing a need of reform of public transport. For example,
there is a need to re-think routing that allows for easier
access between train stations, commercial facilities, and
hospitals. In addition, newer plans for tourism are
required to liven up these communities. We can use
machine-learning methods for route optimization to
tackle these issues.

o

2. Multi-input neural networks to

identify danger zones

The neural network techniques we use in our
galaxy studies are not limited to use in
astrophysics - we can combine imaging data and
numerical information (such as accidents) of
roads in a neural network to identify safe and J
dangerous zones in a city.

An example of route optimization for tourism
sites in the city of Kuwana



Take-Home Message

*Our research methodology and tools
are NOT limited to our discipline — it is
up to us to find ways to apply them

We can find and create ways for the
public to understand and apply our
research
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