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@ A Growing Curiosity for the Sky

A Journey of Curiosity: From Childhood Wonder to Exploring the Stars
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A child observing the sky with The Big Bang Theory
curiosity. *Al Generated



& First Steps into Astronomy

My Job Interview: Stars, Data Cubes, and a Bit of Confusion

Interview problem (Job 90751)

Please propose a machine/deep learning- based solution to the following problem. Note that non-ML solutions
may exist for this problem but we are asking you specifically to describe an ML/DL-based solution. You will be
given 5 minutes at the interview to pitch us your ML solution. We do not require an end-to-end working
demonstration of your solution but we would be interested in having a short discussion based on your proposed
solution.

Context: The WALLABY survey using the Australian SKA Pathfinder (ASKAP) telescope will perform a large-area
survey of the sky for atomic Hydrogen (HI) via its 21-cm hyperfine transition emission out to a distance or
lookback time of ~1 billion years.

Fig 1 provides an example of an HI data cube and the extracted spectra (flux intensity s a function of frequency or
velocity) from 2 regions within the cube. As emitting sources increase in distance, the HI emission line will
become redshifted to lower frequencies. In Fig 1, the detection of the HI emission line s clearly seen from the
region bound by the green box. On the other hand, there is no HI detection in the region bound by the red box.

To further complicate matters, the baseline spectra around the emission line may also have residual noise ripples
which can be confused with a true Hi emission line. Therefore as the signal-to-noise of the Hi emission decreases,
it becomes increasingly difficult to determine true detections from false detections.
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Figure 1: Example HI data cube from Fabello et al 2011.

We provide an example ASKAP datafile in the original FITS format (astronomer’s format)’ with this interview
problem which contain several true Hi sources as well as potential false positives. This file has also been
gzipped and so will need to be gunzipped. Please note that this is a smaller dataset than a single ASKAP
pointing but large enough to be methods for source recovery. What
would you propose as your ML/DL-based solurlan that could automatically tell apart the true from the false
detections, especially at low signal-to-noise levels?




@ From Computer Vision to Astronomy

Same Tools, Different Challenges

*Medical Imaging Approach:
*In CT/MRI, the 3D data represents physical structures (e.g., tissues or
organs) that are inherently spatially continuous.
*Slicing these volumes into 2D images retains the continuity of features
across layers, making it effective for analysis.




@ From Computer Vision to Astronomy

Same Tools, Different Challenges

*Radio Image Cube: A 3D representation of HI (neutral
hydrogen) signals capturing the spatial and velocity distribution
of gas in galaxies.




@ From Computer Vision to Astronomy

Why It Didn’t Work: The Physics Gap

«Challenges with Radio Images: “To do the useful science, you must
*High Noise Levels: Radio signals are faint and understand the instrument well.”
often buried in noise.
eIrregular Structures: The HI data cube is also 3D, - Prof. Ron Ekers

but the third dimension isn’t spatial —it
represents frequency, which correlates with the
velocity of neutral hydrogen gas through the
Doppler effect.

*Sparse Data: Hl signals can be highly scattered
across slices, with weak continuity between 2D
layers.




@ From Computer Vision to Astronomy

Building My First Working Model

(A) HI input (B) Data Preprocessing (C) Feature Map Extraction
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@ From Computer Vision to Astronomy

What | Learned: Physics Guides Al

The Core Realization: Data is Not Just Numbers

array([[0.14213333, 0.82429343, 0.51460849, 0.73955439, 0.66099584],

[@.26197975, @.48108974, 0.71687447, 0.39189053, 0.33559641]
[0.40682764, 0.89710629, 0.8468038 , 0.23186316, 0.34631472],
[0.39914504, @.94851763, 0.64665897, ©.34734862, 0.62033593]])
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Physics Can Guide Al

Physics provides the structure and
context that makes the data
meaningful.



@ Bridging the Gap Between Al and Astro

What | Learned: Aligning Al with Astronomy

1. Physics-Aware Al
*Embed physical principles into Al models to improve performance.
*Examples:
e Use continuity in frequency space to model relationships in HI cubes.

2. Understanding the Data Pipeline
*Understand how astronomers process visibility data into image data.
*Cleaning is critical



@ Bridging the Gap Between Al and Astro

What | Learned: Aligning Al with Astronomy

3. Explainable Al
e Build trust by making Al predictions more explainable:
* Use techniques like saliency maps to show what the model "sees."
* Ensure predictions align with physical intuition and scientific reasoning.
4. Collaboration is Key
* Combine the strengths of Al researchers and astronomers:
* Al contributes computational tools and scalable solutions.
e Astronomy provides domain expertise and context.
* Together, create hybrid approaches to tackle complex problems.



@ Current work: Scaling Up Al for the Universe

Applying Large Models to Astronomy

Handling Complex Generalization Enhanced
Patterns Capability Accuracy
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@ The Future Role of Al in Astronomy

What’s Next for Astronomy?

1. Al as a Core Tool in Astronomy

e Automating Repetitive Tasks
*Source finding., Denoising. Morphology.

* Real-Time Discovery:
» Detecting transient events (e.g., supernovae, fast radio bursts) as they

happen and triggering immediate follow-up observations.

* Predictive Modeling:

* Forecasting future observations or simulating cosmic events.

2. Telescope Integration with Al
* Smart Telescopes:
* Telescopes equipped with onboard Al for noise reduction, anomaly
detection, and dynamic observation adjustments.



@ Key Takeaways

Looking at Astronomy Through a Different Lens

1. Data is Not Just Numbers

Understanding the physical meaning behind data is crucial for designing effective Al
models.

2. Al is a Tool, Not a Solution:

The best results come from combining Al with scientific intuition and interpretation.
The Future of Astronomy is Al-Enhanced.

3. Collaboration is the Key to Success

Next-generation telescopes and astronomical datasets demand deeper
collaboration between Al researchers and astronomers.
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