

Can we Teach Machines Geology?

The Role of Data Science in the Geosciences

Jens Klump | Team Leader Geoscience Analytics 28 December 2019

MINERAL RESOURCES www.csiro.au

How geology presents itself

The Big Picture

- William Smith, a self-taught civil engineer, connected the dots to create the first modern geological map.
- Visualising his conclusions as a map, from the data he had collected, was a major breakthrough.

Smith, W. (1815). Delineation of the strata of England אואיייי England and Wales. London,

The Promise of Machine Learning

How one company is using artificial intelligence to develop a cure for cancer

by Cyrus Sanati @beyondblunt APRIL 16, 2015, 3:54 PM EDT

- Machine learning and data science are all the rage today.
- Machine learning is a great tool for the right problem.
- But which problems can be solved by machine learning?
- More specifically, where is the place for machine learning in geology and minerals exploration?

Sparse Data

5 | Can we teach machines geology? | Jens Klump

Sparse Data

How much data do we need?

- Thousands of examples.
- No fewer than hundreds.
- Ideally, tens or hundreds of thousands for "average" modelling problems.
- Millions or tens-of-millions for "hard" problems like those tackled by deep learning.

What exactly is machine learning?

What is Machine Learning?

- Machine learning is a field of computer science that often uses statistical techniques to give computers the ability to "learn" (i.e., progressively improve performance on a specific task) with data, without being explicitly programmed. (Wikipedia)
 - Data mining
 - Exploratory data analysis
 - Predictive analysis
 - Pattern/anomaly detection

Approaches in Machine Learning

Garbage in, garbage out

- Is the data fit for purpose?
- Is there enough statistical structure to make learning useful?
- Is there scientific reasons to believe the predictions we come up with, or is the computer just hallucinating correlations?

(a) Three samples in criminal ID photo set S_c .

(b) Three samples in non-criminal ID photo set S_n Figure 1. Sample ID photos in our data set.

From: Wu & Zhang (2016), arXiv 1611.04135

Case Study 1: Machine Learning

Classifying rock types based on hyperspectral scans of drill cores and geochemical assay data

Case Study 1: Classifying rock based on hyperspectral scans of drill core

- Data: hyperspectral scans of drill core, geochemical assay data.
- Aim: classification of rock types
- Dense dataset (large number of scan lines and point assays)
- Simple model (classification)

A Rosetta Stone for geochem estimates

Identifying alteration "geochemically" & "mineralogically"

1.1.1 Lithology

The new legend is based on granite-rich and hematite-rich end members with a continuum between the two based upon the percentage of iron or hematite. This has reduced the number of lithological units from 33 to seven main units and a further four exotic units (Figure 1). The lithological log describes the clast type, abundance, size, shape and alteration. The matrix type, abundance and distribution are also recorded

			Part States
Alias	Criteria	Description	清楚
GRN	>90% Granite; < Trace Hem	Undilated, undiluted granite. Crackle Bx or veined.	Ch T
GRNB	>90% Granite; <10% Hem	Brecciated & Unaltered granite as well as fragmental rocks consisting of unaltered granite-derived components.	
GRNH	90-70% Granite; 10-30% Hem	Most commonly breccias but can be generated by replacement.	
GRNL	70-40% Granite; 30-60% Hem	Most commonly breccias but can be generated by replacement.	
HEMH	40-10% Granite; 60-90% Hem	Most commonly breccias but can be generated by replacement.	the second
HEM	<10% Granite; >90% Hem	Textured or massive; breccias, precipitates, metasomatites.	
HEMQ	No Granite; >90% H <mark>e</mark> m	"Classic" hematite-quartz bx. Must be barren, locally vuggy, porous or silicified. Usually associated with barite. No sulphide, sericite or fluorite.	HEMQ
GRNV	Granite>Volc components	Bx containing granite + um-m volc clasts	
HEMV	Hem>Volcanic components	Bx containing Hem+um-mvolc clasts.	
KASH	Mixed ash/epiclastics	Mixed interbedded epiclastics rocks & volcanic ash	
EVD	>90% Volcanic components	Generic dyke; volcaric/sub-volcaric textures. Often chlorite or hematite altered.	

Figure 1: ODO Lithological Legend

Case Study 2: Geostats vs. Machine Learning

Estimating soil geochemistry by Kriging and by Random Forest

Case Study 2: Soil Geochemistry

- Data: soil geochemistry of southwest England (source: C. Kirkwood, BGS G-BASE)
- Elements used in this study: Al, Ba, Br, Ca, Ce, Co, Cr, Cs, Fe, Ga, Ge, Hf, K, La, Mg, Mn, Mo, Na, Nb, Nd, Ni, P, Rb, Sc, Se, Si, Sm, Sr, Ta, Th, Ti, U, V, Y, Zr
- Other elements were excluded due to their hydrothermal mobility or concentrations below detection limits.
- Auxiliary data: Gravity, geomorphology, radiometrics, IR
- Complex model (assumptions about mobility of elements, spatial autocorrelation)
- Sparse data
- Aim: geochemical exploration (outliers)

Study Area

Legend

Auxiliary Variables

Soil Geochemistry - Kriging

Soil Geochemistry – Random Forest

Prediction – Kriging vs. Random Forest

Prediction – Kriging vs. Random Forest

Error estimates

Geostatistics vs Machine Learning

Case Study 3: Landscape Classification

Classifying Landscape Types from Digital Elevation Data

Landscapes as labeled by geologist

 SRTM covers most of the globe, 1" (30 m) data freely available, many users

flatness map

unsupervised (k-means 7 classes), flatness

84% accuracy (10-fold cross-validation)

supervised (decision tree), all features

Principal component analysis

Conclusions: Lessons Learned

Can we teach geology to machines?

What is the right tool?

Can we teach machines geology?

- Machine learning is a powerful and versatile tool, but not every problem is a nail.
- Geology often is data sparse, limiting the application of machine learning methods.
- Data rich applications in geology are commonly hyperspectral and potential field methods.
- More research is needed to understand machine learning in a spatial context.
- At present, we do not understand the meaning of uncertainty reported my machine learning in a spatial context. This is problematic in decision making.
- Watch this space!

Thank you

Mineral Resources Jens Klump Team Leader Geoscience Analytics

- +61 8 6436 8828 t
- e jens.klump@csiro.auw people.csiro.au/Jens-Klump

MINERAL RESOURCES www.csiro.au

