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How geology presents itself
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The Big Picture

e William Smith, a self-taught
civil engineer, connected the
dots to create the first modern
geological map.

* Visualising his conclusions as a
map, from the data he had
collected, was a major
breakthrough.
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The Promise of Machine Learning

 Machine learning and data
science are all the rage today.

 Machine learning is a great
tool for the right problem.

e But which problems can be
solved by machine learning?

* More specifically, where is the
How one company is using place for machine learning in

artificial intelligence to developa  geology and minerals
cure for cancer exploration?
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Sparse Data
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Sparse Data
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How much data do we need?

* Thousands of examples.
* No fewer than hundreds.

* |deally, tens or hundreds of
thousands for “average”
modelling problems.

* Millions or tens-of-millions for
“hard” problems like those
tackled by deep learning.
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What exactly is machine
learning?




What is Machine Learning?

* Machine learning is a field of computer science that often uses
statistical techniques to give computers the ability to "learn" (i.e.,
progressively improve performance on a specific task) with data,
without being explicitly programmed. (Wikipedia)

e Data mining

e Exploratory data analysis

e Predictive analysis

e Pattern/anomaly detection
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Approaches in Machine Learning

Clustering
==« Unlabelled = K-Methods
Top Down * Unsupervised
— ¢ Deductive Neural
Network
* Rules .
Machine _ Predict
Learning - Category Decision
(a.k.a. Artificial Tree
Intelligence) Classification
Bottom Up - LabeIIe.d ; SVM
* Inductive Supervise |
* Learning by Bayesian
Example Predict . _
- Regression Regression

Point
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Garbage in, garbage out

* |s the data fit for purpose?

* |s there enough statistical
structure to make learning
useful?

 |s there scientific reasons to
believe the predictions we
come up with, oris the

{b) Three samples in non-criminal [D photo set S,

COm pUte r jUSt ha I I UCi nati ng Figure 1. Sample ID photos in our data set.

i ?
correlations: From: Wu & Zhang (2016),
arXiv 1611.04135
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Case Study 1:
Machine Learning

Classifying rock types based on hyperspectral scans of drill cores
and geochemical assay data
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Case Study 1: Classifying rock based on
hyperspectral scans of drill core

* Data: hyperspectral scans of
drill core, geochemical assay
data.

e Aim: classification of rock
types

* Dense dataset (large number
of scan lines and point assays)

* Simple model (classification)

13 | Can we teach machines geology? | Jens Klump

Value

1.0

0.85

Spectral Profile

0.6

0.4k

-----------------------

14{JD 1600 1E-CID 200{] 2200 24[][]
Wavelength




A Rosetta Stone for geochem estimates

Representative Characterisation Library of
samples canonical

samples + data*

*this can be different data types
(e.g. chem vs mineralogy), or
same data type at different
scales (e.g. XFM vs assay)

Add to Classify New

representative © N Aoz ellizesly mei samples/data
new sample against

Samples Are we canonical samples
happy with this

uncertainty? Estimate
-

Job done! YES

Generate unknown

value + uncertainty

Robertson, Cole, et al.
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Identifying alteration
"geochemically” & "mineralogically”

1.11  Lithology

The newlegendisbased on granite-richand hematite-rich end members with a contimmm
between thetwo based uponthe percentage ofiron orhematite. This hasreduced the number of
lithological units from 33 to sevenmain units anda further four exotic urits (Figure 1). The
lithologicallog describes the clast type, abundance, size, shape and alteration. The matnx type,
abundance and distribution are also recorded )G

a.0

Alias Criteria Description . : . s .
GRN >00% Granite: Undilated undiluted grarite. Crackle Bx [ Scope 1:96744; 94888 Points, r=0.76; Aux: GeoRck
<Trace Hem or veined.
GRNB  >90% Granite; Brecciated & Unaltered granite as well =]
<10%Hem as fragmemalrocks cormsnng of
unaltered sra v -
GRNH 90-70% Gramite; Most commmonly brecclas but canbe E't =7
10 30° o Hem cenerated byvreplacement. z
60-90“ oHem generatedbvreplacemen R e ) " .
HEM <10% Gramnite; Textured ormassive; breccias, © K_pet ' ' '
>90% Hem precipitates, metasomatites.
HEMQ No Granite; “Classic” hemafite-quartz bx. Must be Scope 1:96744; 94888 Points, r=0.76; Aux: GeoRck
>90% Hem barmren, locally vuggy. porous or o7 v
silicified. Usually associated with barite. °
No sulphide. sericite or fluorite. v g o
GRNV  Granite >Volc Bx containing granite +um-mvolc clasts
components
HEMV Hem?> Volcanic Bx containing Hem+um-mvolc clasts. g
components .Zv'
KASH Mixed Mixed interbeddedepiclasticsrocks &
ash/epiclastics volcanic ash
EVD >00% Volcanic Generic dyke: volcaric/sub-volcanic
components textures. Often chlornte orhematite
altered.

Figure 1: ODO Lithological Legend
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Case Study 2:
Geostats vs. Machine Learning

Estimating soil geochemistry by Kriging and by Random Forest




Case Study 2: Soil Geochemistry

 Data: soil geochemistry of southwest England (source: C.
Kirkwood, BGS G-BASE)

* Elements used in this study: Al, Ba, Br, Ca, Ce, Co, Cr, Cs, Fe, Ga,
Ge, Hf, K, La, Mg, Mn, Mo, Na, Nb, Nd, Ni, P, Rb, Sc, Se, Si, Sm, Sr,
Ta, Th, Ti, U, VY, Zr

* Other elements were excluded due to their hydrothermal mobility
or concentrations below detection limits.

* Auxiliary data: Gravity, geomorphology, radiometrics, IR

 Complex model (assumptions about mobility of elements, spatial
autocorrelation)

e Sparse data
* Aim: geochemical exploration (outliers)
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Study Area

Legend
Post-variscan - Cretaceous and Tertiary sediments
sediments Permo-Triassic sediments a.

::::::g:::: | - Culm Basin (Bude and Bideford Formations) - Upper Carboniferous
sediments Culm Basin (Crackington Formation) - Upper Carboniferous

Lower Carboniferous succession
- North Devon Basin - Lower Devonian

North Devon Basin - Middle to Upper Devonian

Rhenf)hercynl.an - Tavy Basin - Devonian
passive margin
sediments South Devon Basin - Devonian

Looe Basin - Devonian
- Gramscatho Basin (Parautochthon) - Devonian

Gramscatho Basin (Allochthon) - Devonian
- Minor Igneous Intrusions - Devonian to Permian
Igneous - Start Complex - Devonian
domains - Cornubian Batholith - Permian

- Lizard Complex - Devonian

40 50 Kilometers
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Auxiliary Variables
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Soil Geochemistry - Kriging

Prediction

Uncertainty
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Soil Geochemistry — Random Forest

Prediction

Uncertainty
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Prediction — Kriging vs. Random Forest

Random Forest
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Prediction — Kriging vs. Random Forest
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Error estimates

Geostatistics vs Machine Learning Geostatistics vs Machine Learning
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Case Study 3:
Landscape Classification

Classifying Landscape Types from Digital Elevation Data




Landscapes as labeled by geologist

* SRTM covers most of the globe,
1” (30 m) data freely available,
many users

’ Auntralla

flatness map

2626 Can we teach machines geology? | Jens Klump



Input data

elevation (SRTM)

ridge top flatness wind exposition index

slope classification
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84% accuracy
(10-fold cross-validation)

Albrecht, Gonzalez-Alvarez, Klump é:Smith

©
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supervised (decision tree), all features

94% accuracy
(10-fold cross-validation)
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Conclusions:
Lessons Learned

Can we teach geology to machines?




What is the right tool?

High density data Sparse data

High dimensional Low dimensional

data data
Patterns Outliers
Simple causality Complex causality
No assumptions Model driven
Engineering Analytical
solution solution
Machine
. Geostats
Learning
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Can we teach machines geology?

* Machine learning is a powerful and versatile tool, but not every
problem is a nail.

* Geology often is data sparse, limiting the application of machine
learning methods.

* Data rich applications in geology are commonly hyperspectral and
potential field methods.

* More research is needed to understand machine learning in a
spatial context.

* At present, we do not understand the meaning of uncertainty
reported my machine learning in a spatial context. This is
problematic in decision making.

* Watch this space!
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