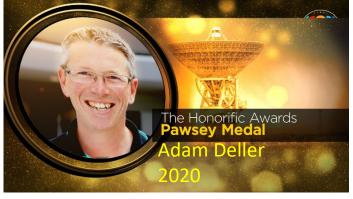
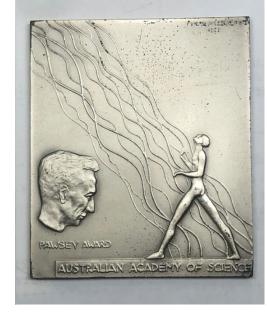


Pawsey Medal

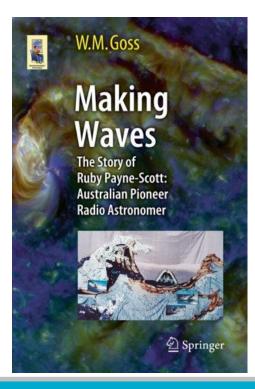
- Pawsey's early unexpected death (brain tumor)
 > 30 Nov 1962
- request to Academy of Science for a medal
- Academy demurs can't have a medal for every member that dies
 A scientists legacy is their publications, discoveries and theories
 A young Paul Wild (future CSIRO CEO) succeeds with a different approach
 A medal for a new field of research started by Pawsey in Australia
- Hence my talk title:


70 years ago Australia started a new field of research Radio Astronomy



& L Cawsey

Pawsey Medal


- Pawsey's early unexpected death (brain tumor) ≥ 30 Nov 1962
- request to Academy of Science for a medal
- Academy demurs can't have a medal for every member that dies A scientists legacy is their publications, discoveries and theories A young Paul Wild (future CSIRO CEO) succeeds with a different approach A medal for a new field of research started by Pawsey in Australia
- Hence my talk title:

70 years ago Australia started a new field of research Radio Astronomy

The people

Joe Pawsey
 > Inspiring research leader

R.H. Frater · W.M. Goss H.W. Wendt
Four Pillars of Radio Astronomy: Mills, Christiansen, Wild, Bracewell
Enter in the second second

PETER ROBERTSON RADIO ASTRONOMER John Bolton and a New Window

John Bolton and a New Window on the Universe

The Book From the Sun to the Cosmos

- How a British colony embarks on basic research
- Opening a new field of research
- The history of Joe Pawsey & Australian radio astronomy
- Supported by CSIRO and AUI
- The authors
 - ≻ Miller Goss
 - Making Waves
 - Four Pillars
 - ➤ Claire Hooker
 - Irresistible Forces:
 - Australian Women in Science → Ron Ekers

Why did Australia get into Radio?

- No significant research activity in Australia before the early 1900s
- Vaste country radio communications essential
 - ➤ 1896 Marconi (over hills and then around the globe)
 - ➤ 1905 first radio communications in Australia
 - ➢ 1908 Pawsey born in country Victoria
 - ➢ 1920 Radio Research Board formed to improve radio broadcasting
 - >1926 Pawsey Masters thesis on atmospherics
 - fading, skipping, static, ...
 - similar to Jansky but much too low in
 - frequency to see the galaxy

The Discovery of the lonosphere

- Major failure of propagation theory
 - Surface diffractive theory 1902-1925 was wrong
 - All discrepant results were ignored, skipping was not explained
- Heaviside amateur scientist
 - Invented coaxial cable
 - Simplified Maxwell's equations for practical use
 - Proposed a reflecting layer in the atmosphere in 1902 not believed!
- 1924 Appleton (UK) detects the ionosphere using frequency scanning
 > BBC would return their transmitters after the end of broadcasting
- 1925 Breit and Tuve (US) independently detect ionosphere using pulse echo
 Military equipment so classified, along with their discovery of Radar
 Considered of no practical value research (including radar) stopped
 - Considered of no practical value research (including radar) stopped
 - BBC v US military
- The Ionosphere became a major research topic in the UK
 Pawsey's PhD thesis with Ratcliffe

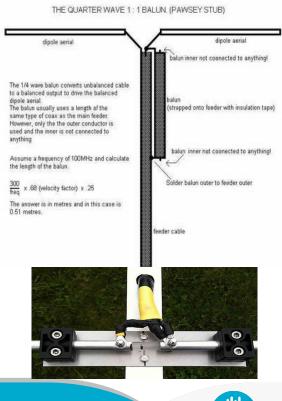
Pawsey explaining the ionosphere to his mother!

- Pawsey gets fellowship and starts PhD with Ratcliffe in Cambridge
- 26 May 1932: Pawsey writing to his mother

The wave from a station goes to the receiver by two paths, one direct and one reflected from the Heaviside layer about 60 miles high

equiside ground wave

From the Hastings Pawsey collection


1933 to 1945

 1933 Jansky detects radio emission from the Galaxy

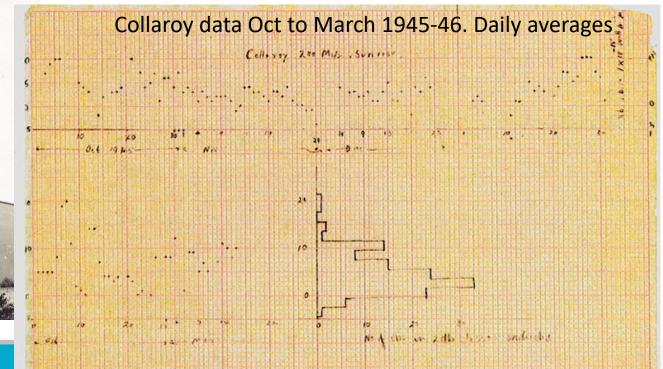
➢ No one (except Reber) pays any attention

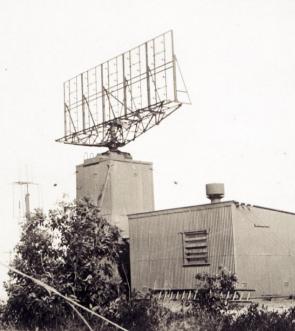
- 1934 Pawsey joins EMI in London beginning of Commercial TV
 Invents the Pawsey stub
- 1939 Pawsey returns to Australia to work on RADAR in CSIR
- CSIR gets transformed many stories
- The CSIR(O) division of Radiophysics is continued after the end of WW II
 > one project is to investigate cosmic noise
 > Solar radiation had been detected during war

First radio astronomy in Australia

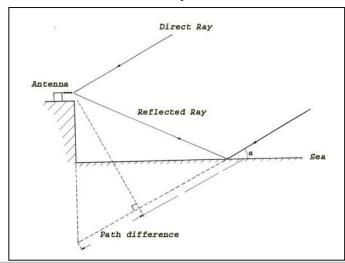
- First Solar Noise Observations at Collaroy Sydney, October 1945
- Discovery of the Million Degree Solar Corona
- 75th anniversary Oct 2020

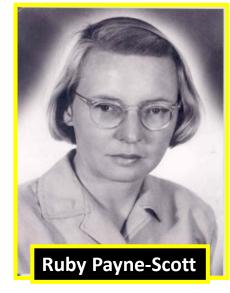
First radio astronomy in Australia


- First Solar Noise Observations at Collaroy Sydney, October 1945
- Discovery of the Million Degree Solar Corona
- 75th anniversary Oct 2020



First radio astronomy in Australia

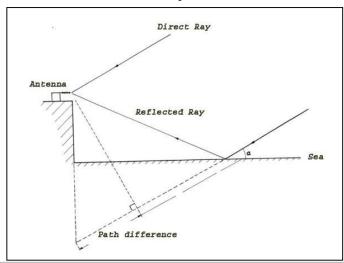

- First Solar Noise Observations at Collaroy Sydney, October 1945
- Discovery of the Million Degree Solar Corona
- 75th anniversary Oct 2020





Radio emission from sun spots Dover Heights 1946

- Fringe visibility to measure radio source size
- Fringe phase used to collocate radio burst with sunspot



70 years of Radio Astronomy 2 Ron Ekers

Radio emission from sun spots Dover Heights 1946

- Fringe visibility to measure radio source size
- Fringe phase used to collocate radio burst with sunspot

Heaviside lager ground where Trans miller

70 years of Radio Astronomy 2020

McCready, Pawsey & Payne-Scott 1947

- Proc Roy Soc, Aug 1947 received July 1946!
- They note that its possible in principal to determine the actual distribution by Fourier synthesis using the phase and amplitude at a range of height or wavelength.
- They consider using wavelength as a suitable variable as unwise since the solar bursts are likely to have frequency dependent structure.
- They note that getting a range of cliff height is clumsy and suggest a different interference method would be more practical.

Aperture Synthesis

- Developed in Sydney and Cambridge
- Australia published the first description of aperture synthesis (1947)
- Christiansen made the first aperture synthesis image (1955)
- But Ryle and the Cambridge group went on to exploit the new technology to make major advances in radio astronomy
 - ≻ Ryle Nobel prize (1974) why Cambridge?
 - ➢ Ryle used the EDSAC computer
 - Australia had CSIRAC, a comparable computer, but didn't use it for radio astronomy!

From "Cosmic Noise" to "Radio Astronomy"

- Radio bursts sunspot correlation
 Engaged solar astronomers at Mt Stromlo
 Radio included in IAU solar commission (Woolley)
- Bolton identifies 3 radio sources
 Crab nebula super novae remnant
 NGC5128 and M87 external galaxies
- 1948

Pawsey uses the term "radio astronomy"

URSI adds Radio Astronomy Commission, Martyn (Aus) is chair

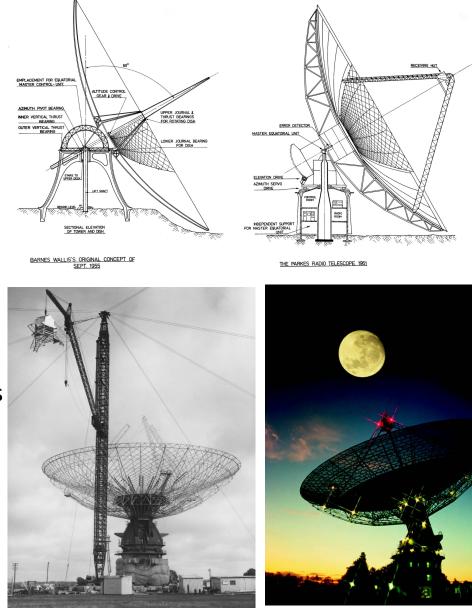
1950

► IAU Commission 40 formed Woolley (Aus) as first chair,

➤ replaced by Pawsey in 1952

From "Cosmic Noise" to "Radio Astronomy"

- 1950
 - IAU Commission 40 formed Woolley (Aus) as first chair, replaced by Pawsey in 1952
 - replaced by Pawsey in 1952


Radio Stars or Radio Galaxies

- New field many mistakes what can we learn?
- Occam doesn't deliver
 - Detect a new source of cosmic radiation
 - Assume one mechanism: the sun, the discrete sources and the galaxies are all the same
 - > The radio star model, all radio sources of radio emission are like the sun
 - Led astronomers astray for 5 years
- Serendipity plays a major role
- Progress was driven by the observations but needed a theory
 Synchrotron emission was the answer Ginzburg (1953)
- Distant Radio Galaxies meant cosmology
 Demise of the Steady State Theory!

Parkes Telescope

- Conceived 1954
 A bigger dish than Jodrell Bank
- Bowen Pawsey Bolton
 The interplay of strong characters
- Opened 1961 first results
 Faraday rotation
 3C273 occultation quasars
 - Population of flat spectrum sources
 - ➤ Magellanic stream

"Promising Fields of Radio Astronomy" Joe Pawsey, NRAO Director 1962

- HII regions in absorption at low frequencies
 - ➤ 20MHz observations
- Magnetic fields in inter-stellar space
 - \succ linear polarization \mathbf{V}
 - ➤ Zeeman splitting
 - Made possible by the Weinreb digital correlator
- Counting radio sources
 - \succ resolve the violent disagreements \mathbf{V}
- High angular resolution of solar flares
 ✓ Paul Wild's solar heliograph

"Promising Fields of Radio Astronomy" Joe Pawsey, NRAO Director 1962

- HII regions in absorption at low frequencies
 - ➤ 20MHz observations
- Magnetic fields in inter-stellar space
 - \succ linear polarization \mathbf{V}
 - ➤Zeeman splitting
 - Made possible by the Weinreb digital correlator
- Counting radio sources
 - \succ resolve the violent disagreements \mathbf{V}
- High angular resolution of solar flares
 ✓ Paul Wild's solar heliograph
- Quasars, CMB, Masers, Pulsars

But look what was missed in the next 10 years!

