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Motivation: surpassing Rayleigh's criterion

N-source generalisation

Quantum hypothesis testing for exoplanet detection
Networks

To the future: Large Baseline Quantum-Enhanced Imaging
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Task: estimate 65
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Figure: [1] Tsang et al., Phys. Rev. X 6, 031033 (2016)
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Cramer-Rao bound:

A%0 = () — (0)* >

Fisher information:

Quantum state:
P =D Nl
J
Quantum Fisher information
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Model: two incoherent, quasi-monochromatic point sources
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[1] Tsang et al., Phys. Rev. X 6, 031033 (2016)
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Optimal measurement: FI = QFI
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[1] Tsang et al., Phys. Rev. X 6, 031033 (2016)
also F. Tamburini, PRL 97, 163903 (2006)
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N-source generalisation
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C Lupo, Z Huang, P Kok, Phys. Rev. Lett. 124, 080503 (2020)
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Coordinates of the sources: = (X1, 1,21, ..., XN, YNe» ZN. )
A unit vector with 3N components: 3= (a1, a2, ...a3n,)
A generalised coordinate § = 3 7,

Ns

p=>_p(s)tb(rs)) (1(rs)|

s

Quantum Fisher information
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C Lupo, Z Huang, P Kok, Phys. Rev. Lett. 124, 080503 (2020)
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» QFI for 0 reduces down to a matrix trace norm
[|M]|1 = Tr(VMtM), M depends on p(s) and the optical

paths
» QFI can be achived with linear optical unitary 4+ photon
counting.
li(rs)) = IR ()
Define

U(I’s) = exp [_i(gxxs + gy}/s + gzzs)]
[1h(rs)) = U(rs) [4(0))

8x, 8y, 8z x the positions of the collectors
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» We solve the problem of determining a 3D position of an
arbitrary number of sources

» Linear interferometry and photon counting are optimal

v

Explicit construction of the interferometer

» We provide insight into why coherent detection overcomes the
Rayleigh curse by recasting imaging as interferometry at the
outset.

C Lupo, Z Huang, P Kok, Phys. Rev. Lett. 124, 080503 (2020)
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Quantum hypothesis testing for exoplanet detection
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Figure: taken from Wright et al., arXiv:1210.2471 [astro-ph.EP]
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Two hypotheses H,, Hp
Classical: pa(x), pp(x), quantum: pa, pp
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Figure: (a) The scenario where the there is only 1 source. (b) There are
two near-by sources present.

arXiv:2106.00488
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1. Symmetric discrimination: trace distance - quantum Chernoff
bound [8], Pe ~ exp[—N f(T)]

Te(pas ) = 1/2 [ o [palx) = po()

TQ(paapb) = 1/2||pa - pb”l

2. Asymmetric: relative entropy - quantum Stein lemma [9],
P. ~ exp[—NS + O(¢ "%, In N)]

Sc(pallpe) = [ o pa(x)(10g: palx) ~ lo8; po(x)

Sq(pallpp) = Tr[pa(logy pa — logy pb)]

[8] Audenaert et al., Phys. Rev. Lett. 98, 160501 (2007)
[9] F. Hiai, D. Petz, Commun. Math. Phys. 143, 99 (1991)
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Classical relative entropy:
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arXiv:2106.00488
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» We compute the type-Il error probability exponent of
discriminating between 1 or two sources with arbitrary
intensity.

P in the limit that ¢ < 1, the quantum relative entropy is larger
than that of direct imaging by a factor of 1/e.

arXiv:2106.00488
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MS87* April 11, 2017

—< entangled photons = shared entanglement

» Long-distance optical coherence, entanglement-assisted network
» Quantum error correction to combat to loss to decoherence

» Current collaborations: Bristol, Heriot-Watt, Erlangen
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Large Baseline Quantum-Enhanced Imaging Networks
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Thank you for your attention.

Figure: (Left) my hamster; (right) one of my Indian ringneck parakeets
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