Sub-wavelength quantum imaging for astronomy and LIDAR detection

Zixin Huang^{1,2}, Cosmo Lupo², Pieter Kok²

- 1. Center for Engineered Quantum Systems, Department of Physics and Astronomy, Macquarie University
 - 2. Department of Physics & Astronomy, University of Sheffield, UK

Outline

Outline

Motivation: surpassing Rayleigh's criterion

N-source generalisation

Quantum hypothesis testing for exoplanet detection

To the future: Large Baseline Quantum-Enhanced Imaging Networks

The Rayleigh Criterion

Figure: taken from www.globalsino.com

Minimum resolvable angular separation

$$\theta \approx 1.22 \frac{\lambda}{D}$$

The Rayleigh Criterion

Task: estimate θ_2

Figure: [1] Tsang et al., Phys. Rev. X 6, 031033 (2016)

Quantum metrology

Cramer-Rao bound:

$$\Delta^2 heta = \langle heta^2
angle - \langle heta
angle^2 \geq rac{1}{
u I(heta)}$$

Fisher information:

$$I(\theta) = \sum_{i} p(i|\theta) \left(\frac{\partial \log[p(i|\theta)]}{\partial \theta}\right)^{2}$$

Quantum state:

$$\rho_{\varphi} = \sum_{j} \lambda_{j} \left| j \right\rangle \left\langle j \right|$$

Quantum Fisher information

$$F(
ho_{ heta}) = \sum_{\lambda_j + \lambda_k
eq 0} 2 rac{|\langle j| rac{\partial
ho}{\partial heta} | k
angle|^2}{\lambda_j + \lambda_k},$$

Superresolution of two sources

Model: two incoherent, quasi-monochromatic point sources

[1] Tsang et al., Phys. Rev. X 6, 031033 (2016)

Optimal measurement

Optimal measurement: FI = QFI

[1] Tsang et al., Phys. Rev. X 6, 031033 (2016) also F. Tamburini, PRL 97, 163903 (2006)

Quantum metrology for superresolution

PRL 117, 190802 (2016) PHYSICAL REVIEW LETTERS

week ending 4 NOVEMBER 2016

Ś

Ultimate Precision Bound of Quantum and Subwavelength Imaging

Cosmo Lupo¹ and Stefano Pirandola¹² ¹York Centre for Quantum Technologies (YCQT), University of York, York YO10 5GH, United Kingdom ²Computer Science, University of York, York YO10 5GH, United Kingdom (Received 6 July 2016; published 4 November 2016)

PRL 118, 070801 (2017) PHYSICAL REVIEW LETTERS 17 FEBRUARY 2017

Beating Rayleigh's Curse by Imaging Using Phase Information

Weng-Kian Tham,¹ Hugo Ferretti,¹ and Aephraim M. Steinberg^{1,2}
¹Centre for Quantum Information & Quantum Control and Institute for Optical Sciences, Department of Physics, University of Toronto, 00 St. George St. Toronto, Ontario, Canada, MSS 1A7
²Canadian Institute For Advanced Research, 180 Dandas St. W., Toronto, Ontario, Canada, MSG 128 (Received 21 July 2016), publical 15 February 2017)

PHYSICAL REVIEW LETTERS 122, 140505 (2019)

Towards Superresolution Surface Metrology: Quantum Estimation of Angular and Axial Separations

Carmine Napoli,^{12,*} Samanta Piano,²¹ Richard Leach,²² Gerardo Adesso,¹⁴ and Tommaso Tufarelli¹⁴ School of Muntennatical Science and Centre for the Muntennatics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Notiophysics, University Burk Company, Sontinghum NY 2020, United Ranghom ¹Manufacturing Metrology Teom, Yaculty of Expirering, University of Notiophum, Jabiet Campus, Notiophysics NGS BB, United Kingdom

PHYSICAL REVIEW LETTERS 121, 180504 (2018)

Quantum Limited Superresolution of an Incoherent Source Pair in Three Dimensions

Zhixian Yu and Sudhakar Prasad^{*} Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA

(Received 26 May 2018; published 31 October 2018)

Outline

Motivation: surpassing Rayleigh's criterion

N-source generalisation

Quantum hypothesis testing for exoplanet detection

To the future: Large Baseline Quantum-Enhanced Imaging Networks

Arbitrary number of sources

 N_s incoherent sources, quasi-monochromatic, coordinate $\vec{r_s}$. N_c collectors, position $\vec{\omega_j}$. Photon impinging $\rightarrow |j\rangle$

$$egin{aligned} |\psi(r_{s})
angle &=rac{1}{\sqrt{N_{c}}}\sum_{j}^{N_{c}}e^{i\phi(ec{r_{s}},ec{\omega}_{j})}\left|j
ight
angle,\ &
ho &=\sum_{s}^{N_{s}}p(s)\left|\psi(r_{s})
ight
angle\left\langle\psi(r_{s})
ight
angle \end{aligned}$$

C Lupo, Z Huang, P Kok, Phys. Rev. Lett. 124, 080503 (2020)

イロン スロン イヨン

Coordinates of the sources: $\vec{r} = (x_1, y_1, z_1, ..., x_{N_s}, y_{N_s}, z_{N_s})$ A unit vector with $3N_s$ components: $\vec{a} = (a_1, a_2, ..., a_{3N_s})$ A generalised coordinate $\theta = \vec{a} \cdot \vec{r}$,

$$\rho = \sum_{s}^{N_{s}} p(s) \ket{\psi(r_{s})} \langle \psi(r_{s}) |$$

Quantum Fisher information

$$F(
ho_{ heta}) = \sum_{\lambda_j + \lambda_k
eq 0} 2 rac{|\langle j| rac{\partial
ho}{\partial heta} |k
angle|^2}{\lambda_j + \lambda_k}, \qquad
ho_{ heta} = \sum_j \lambda_j \ket{j} raket{j}$$

Arbitrary number of sources

Purification: $ho o |\Psi(\vec{r_s})
angle = \sum_{j,s} \sqrt{p(s)} e^{i\phi(\vec{r_s},\vec{\omega_j})} \ket{j} \ket{s}$

$$\vec{a} = (a_1, a_2, \dots a_{3N_s}), \quad \vec{r} = (x_1, y_1, z_1, \dots, x_{N_s}, y_{N_s}, z_{N_s})$$
$$\theta = \vec{a} \cdot \vec{r}, \quad \delta\theta = \vec{a} \cdot (r' - r)$$
$$\mathsf{QFI}(\theta) = \lim_{\delta\theta \to 0} \frac{8(1 - f_{r,r'})}{\delta\theta^2}$$
$$f_{r,r'} = \max_{V} |\langle \Psi(r) | I \otimes V | \Psi(r') \rangle |$$

C Lupo, Z Huang, P Kok, Phys. Rev. Lett. 124, 080503 (2020)

Achieving the QFI

- ▶ QFI for θ reduces down to a matrix trace norm $||M||_1 = \text{Tr}(\sqrt{M^{\dagger}M})$, *M* depends on p(s) and the optical paths
- QFI can be achived with linear optical unitary + photon counting.

$$|\psi(\mathbf{r}_{s})\rangle = rac{1}{\sqrt{N_{c}}}\sum_{j}^{N_{c}}e^{i\phi(\vec{r_{s}},\vec{\omega}_{j})}|j
angle$$

Define

$$U(r_s) = \exp\left[-i(\hat{g}_x x_s + \hat{g}_y y_s + \hat{g}_z z_s)\right]$$
$$|\psi(r_s)\rangle = U(r_s) |\psi(0)\rangle$$

 $\hat{g}_x, \hat{g}_y, \hat{g}_z \propto$ the positions of the collectors

An example: two sources

To estimate Δx , $u = (u_1 - u_2)$

$$F\left(rac{\Delta x}{z_0}
ight) \propto \left(\langle g_x^2
angle - \langle g_x
angle^2
ight) = rac{1}{4} \left(\langle u^2
angle - \langle u
angle^2
ight)$$
 (1)

Precision is characterized by the variance of the spatial distribution of the collectors.

Conclusions

- We solve the problem of determining a 3D position of an arbitrary number of sources
- Linear interferometry and photon counting are optimal
- Explicit construction of the interferometer
- We provide insight into why coherent detection overcomes the Rayleigh curse by recasting imaging as interferometry at the outset.

C Lupo, Z Huang, P Kok, Phys. Rev. Lett. 124, 080503 (2020)

Outline

Motivation: surpassing Rayleigh's criterion

N-source generalisation

Quantum hypothesis testing for exoplanet detection

To the future: Large Baseline Quantum-Enhanced Imaging Networks

Different methods

Figure: taken from Wright et al., arXiv:1210.2471 [astro-ph.EP]

1 or 2 sources?

Two hypotheses H_a , H_b Classical: $p_a(x)$, $p_b(x)$, quantum: ρ_a , ρ_b

Figure: (a) The scenario where the there is only 1 source. (b) There are two near-by sources present.

arXiv:2106.00488

- 1. Symmetric discrimination: trace distance quantum Chernoff bound [8], $P_e \sim \exp[-N f(T)]$ $T_c(p_a, p_b) = 1/2 \int dx |p_a(x) - p_b(x)|$ $T_Q(\rho_a, \rho_b) = 1/2||\rho_a - \rho_b||_1$
- 2. Asymmetric: relative entropy quantum Stein lemma [9], $P_{e} \sim \exp[-NS + O(\epsilon^{-1}, \ln N)]$ $S_{c}(p_{a}||p_{b}) = \int dx \ p_{a}(x)(\log_{2} p_{a}(x) - \log_{2} p_{b}(x))$ $S_{Q}(\rho_{a}||\rho_{b}) = \operatorname{Tr}[\rho_{a}(\log_{2} \rho_{a} - \log_{2} \rho_{b})]$

[8] Audenaert et al., Phys. Rev. Lett. 98, 160501 (2007)
[9] F. Hiai, D. Petz, Commun. Math. Phys. 143, 99 (1991)

Classical probability distributions

Classical relative entropy:

$$S_c(p_a||p_b) \approx \frac{2\theta^2 \epsilon^2}{\sigma^2 \log(16)} + \frac{\theta^4 \epsilon^2}{\sigma^4 \log(16)} - \frac{4\theta^4 \epsilon^3}{\sigma^4 \log(16)}$$

arXiv:2106.00488

Classical vs Quantum

Classical relative entropy:

$$S_c(p_a||p_b) pprox rac{2 heta^2\epsilon^2}{\sigma^2\log(16)}$$

Quantum relative entropy;

$$D(\rho_{a}||\rho_{b}) \approx rac{\theta^{2}\epsilon}{4\sigma^{2}\log(2)} + O(\epsilon^{2}\theta^{2}).$$

Optimal measurement and conclusions

- We compute the type-II error probability exponent of discriminating between 1 or two sources with arbitrary intensity.
- ▶ in the limit that $\epsilon \ll 1$, the quantum relative entropy is larger than that of direct imaging by a factor of $1/\epsilon$.

arXiv:2106.00488

To the future

- Long-distance optical coherence, entanglement-assisted network
- Quantum error correction to combat to loss to decoherence
- Current collaborations: Bristol, Heriot-Watt, Erlangen

To the future

Large Baseline Quantum-Enhanced Imaging Networks \pounds 359,993 (\approx \$650,000 AUD) grant from the EPSRC Two postdoc positions available

EPSRC Pioneering research and skills		Engineering a	GoW Search nd Physical So	Go Ciences Re
Home GoW H	Home Back	Research Areas	Topic Sector	Scheme
		Region Theme	Organisation	Partners
Details of Grant				
EPSRC Reference:	EP/V021303/1			
Title:	Large Baseline Quantum-Enhanced Imaging Networks			
Principal Investigator:	Kok, Professor P			
Other Investigators:				
Researcher Co- Investigators:				
Project Partners:				
Department:	Physics and Astronomy			
Organisation:	University of Sheffield			
Scheme:	Standard Research			
Starts:	01 April 2021	Ends: 31 March 2	2024 Value (£):	359,993

Questions?

Thank you for your attention.

Figure: (Left) my hamster; (right) one of my Indian ringneck parakeets