
Keith Bannister - Co-learnium - 17 June 2021

Digital design: The hardest thing
I’ve ever done

Or

The ASKAP/CRAFT
Coherent upgrade

FRB2020

Keith Bannister - keith.bannister@csiro.au

@pleasefftme

With: Xinping Deng, Li Bang

On behalf of the CRAFT collaboration

mailto:keith.bannister@csiro.au

Or

Localising an FRB/day by
shoving 2 million Youtube

viewers into a fridge
FRB2020

Keith Bannister - keith.bannister@csiro.au

@pleasefftme

With: Xinping Deng, Li Bang

On behalf of the CRAFT collaboration

mailto:keith.bannister@csiro.au

ASKAP
• 36 x 12m antennas

• Each antenna: 188 receivers

• Each: 36 beams = ~ 30 deg2 per antenna

• Total: 1296 beams = 1000 deg2 in Flyseye

• Tuning: 0.7-1.8 GHz

• 336 x 1 MHz channels

• Autocorrelations with ~1ms time resolution

• 6km max baseline = 6” synthesised beam at 1.4 GHz

• 7000 Receivers

• 20 000 Lasers

• 15 500km of fibre: Sydney to LA.

• 72 Tbits/sec off samplers = 10% of the internet

• 1.6 MW PV Solar Array - enough to power a small village

• 2.5 MWhr Lithium ion battery

But: It isn’t fully armed an operational

• Current processing: Incoherent sum sensitivity

• Proposed method - Fast imaging of visibilities: Fully coherent sensitivity

• i.e. 5x more sensitive than current method (don’t process outer 6 antennas)

• ~0.5-2 FRBs/day each with with ~arc second localisation (dependant on
logN-logS)

∝ N1/2

∝ N

Shannon+17 Supplementary

ASKAP Fast Imaging
• Typically we’ll use 30 antennas within 2 km diameter - each

with 288 channels, 1ms integrations.

• Discrete sampling of UV plane = Npix x Npix = 256x256
cell grid.

• The positions of the baselines are essentially static for ~30
seconds (Earth rotates slowly).

• Every millisecond we get visibilities for 30 antennas = 436
baselines x 288 channels ~ 130k measurements

• Many of the channels fall in the same cell in the grid. We’ll
average those (in a preprocessing step - the FDMT) by a
factor of ~25x

• There are only ~6500 non-zero points in the UV plane i.e.
the UV plane is 90% zeros (!)

Gridded UV plane - coloured by number of channels per cell

22 antennas in 1km radius.

ASKAP array configuration = circle has radius=1km ~ 30 antennas

Fast imaging: In a nutshell Existing hardware

GPU tasks

CPU tasks

New Hardware

ASKAP Correlator

12x7 = 84
Cards

Ethernet Switch

18 node
processing cluster

= 1Rack
= 1 “Fridge”

Visibilities Visibilities FRBs

Happy
astronomers

Each card: 4MHz, all
beams, 2 pols, all

baselines

864us samples

84 x 10 GbE

4Gbps/card

Total: 334 Gbps

(long haul->Perth)

Each Accelerator: 1
beam, 2 pols, 288 MHz,

all baselines

Packaging:

2 GPUs per node

9 Gbps per beam

18 Gbps per node

18 Nodes

Processing Steps

ASKAP
Beamformer

ASKAP
Correlator

Ethernet
Switch

Ingest Calibrate
Subtract

continuum

De-disperse
Baselines

(FDMT)
Grid Boxcar

Trigger
managementASKAPSoft

calibrator

To existing CRAFT
ICS pipeline To imaging pipelines

1ms integrations

1 MHz channels

Existing hardware

GPU tasks

CPU tasks

Candidates

VO Events

Voltage Dumps

0.25s averages Solutions

5s integrations

18 kHz channels

1ms autocorrelations

& voltage capture

Processing node
Processes 2 beams
On 2 accelerators

Sky Model

Existing hardware

Inflates data by 
 60x

Inflates data by  
10x

FFT2D
Threshold &

Group
candidates

Inflates data by  
16x

Data rate inflated by 2500 
to 20 Tbyte/sec

2 GByte/sec

GPU vs FPGA Smackdown

NVIDIA V100 GPU Xilinx Alveo U280 Xilinx Alveo U50

Cost ~$15k AUD ~$10k AUD $3k AUD

Memory 16/32 GB 8GB HBM + 32GB DDR 8GB HBM
“Memory

Bandwidth”
900 GB/sec 460 GB/Sec 316 GB/sec

“Computing” “100 TFlops” 24.5 Tops (int8) (less than U280)
L1 Cache 96KB x 84 = 8MB 41 MB(!) 28 MB

L1 cache rate 24 TB/sec 30 TB/sec 24 TB/sec

Power 300W 225 W 75W

Programming CUDA :-) HLS :-(HLS :-(

Designing hardware
• Usually done in VHDL/Verilog - which is thought to be difficult

• New Thing: HLS - you can write in a software-language = EASY!

• BUT: You’re still designing hardware - it turns out, that’s the thing that’s hard. The language is
secondary.

• Things you have to think about:

• Consumption of different types of on-chip resource: LUTs, BRAM, URAM, SRL

• Way in which off-chip memory is accessed: Data width, burst sizes, read vs write,
outstanding reads/writes

• Routing: How different functions are connected - both the data path and the control path
(in HLS the control path can be hidden from you a bit).

• Timing issues - how the architecture is implemented on the chip affects how fast it will run.

Challenges we’ve had

• Not being digital engineers and not realising it’s a problem

• Massive learning curve

• First project and pushing the limits of what’s possible.

• Bugs/limitations in the tools

• Working around bugs/limitations in the hardware

Block diagram when I draw it

Block diagram generated by the tool

Placement on the actual chip

FDMT

GRID 2

GRID 1

GRID 4

FFT1FFT 2

FFT 3

FFT 4
BOXCAR

GRID
reader

GRID 3

|0|1|2|3|4|5|6|7|8|9|10|11|12|13|14|15| |16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31|

Debugging waveforms
• -m_axi_latency=64 (HLS default)

• ARVALID to RVALID is 65.5 clks.

• Want back-to-back bursts of 4 samples, so we use a pipeline
read() function with II=4 in a DATAFLOW

• Function achieves II=4. HLS gives it latency=74

• But with II warning: WARNING: [SCHED 204-63] Unable to
schedule bus read on port 'gmem0' (grid_reader/
grid_reader.cpp:21->grid_reader/grid_reader.cpp:95) within
the first 4 cycles (II = 4) Please consider increasing the target
initiation interval of the pipeline.

• But II/latency=74/4=18.5 - so we can 18.5 transactions in
flight.

• COSIM warning: WARNING: [HLS 200-626] This design is
unable to schedule all read ports in the first II cycle. The RTL
testbench may treat the design as non-pipelined

• But we get bubbles (see right) after 18 transactions (see right)

• Will we only get bubbles in simulation? Should it work better
in hardware?

• See git 8b4136a3c6b501384f72a622b251b4692820f234

Trying to meet timing of grid kernel
Control logic in large Vitis kernels is slowing design. Might change to smaller kernels

Example code - and hardware block

FIFOS are marked as STABLE in code But in the synthesis report the FIFOS are ap_memory (unlike the configuration table)

If I do a different build with a different top function

Synthesis report

Depth of modules

Dataflow View

Design rationale
Imaging pipeline

• Original goal: 1 Million FFTs/second

• Xilinx-supplied FFTs

• Block floating point FFT2D (March 2020) SSR=8.

• Fixed-point FFT2D: (Oct 2020)

• Fmax=400 MHz, SSR=16, 16%/SLR LUTS

• Requirement can be achieved with 6 CU @ 350 MHz.

• At 3 CU/SLR, it leaves 50% of the SLR0 and SLR1 for
grid/boxcar kernels.

• FDMT is by itself on SLR2

NCU
LUTs
(% of
SLR)

Fmax at 100%
efficiency

(MHz)

1 16 2048
2 32 1024
3 48 682
4 64 512
5 80 410
6 96 341
8 128 256
10 160 204

FFT Compute units required to achieve 1 M FFTs/sec

More block diagrams we tried

FDMT pipeline will TBD fs=200 MHz - SLR2

Imaging pipeline fs=350 MHz - SLR0 & SLR1

Current Kernel and Pipeline Design
FDMT HBM HBM

512b 512b

FDMT HBM HBM
512b 512b

256bHBM

256bHBM

256bHBM 256b HBM

256b HBM

256b HBM

512b 512b

512b 512b

512b 512b

512b 512b

512b

Grid Boxcar

512b
FFT2D

512b

FFT2D

FFT2D

FFT2D

FFT2D

FFT2D
512b

Dataflow
Process

Port

Kernel

UV 0..15

UV 16..31

UV 32..48

Grid kernel

Pad and merge data flow

Original grid - slow (250 MHz)

Read &
Transpose

256bHBM

256bHBM

256bHBM

512b
FFT

512b
FFT

512b
FFT

512b
FFT

512b
FFT

512b
FFT

Dataflow
Process

Port

Kernel

1536b
Upper

Hermetian
buffer

Upper
Hermetian

buffer

1536b

SplitPad and
merge

1536b

1536b

3072b

Unroll the NFFT in the data path. Makes very wide busses. (Looking at it now, I’m a bit embarrassed we tried this)

Grid kernel

Pad and merge data flow

Unroll NFFT as 6 independent Dataflow processes. They are independent after the buffers. fs=340 MHz
Speed now limited by the control path - (i.e. ap_start from he whole kernel needs to get to all the
buffers in 1 clk). Produces all FFT inputs in one kernel.

Read &
Transpose

256bHBM

256bHBM

256bHBM

Buffer

512bx256 FIFO

Pad
512b

FFT

Buffer

512bx256 FIFO

Pad
512b

FFT

Buffer

512bx256 FIFO

Pad
512b

FFT

Buffer

512bx256 FIFO

Pad
512b

FFT

Buffer

512bx256 FIFO

Pad
512b

FFT

Buffer

512bx256 FIFO

Pad
512b

FFT

Dataflow
Process

Port

128b

128b

128b

128b

128b

128b

Kernel

Proposed: Subdivided grid kernel - improved timing through duplicating
control path?

256bHBM

256bHBM

256bHBM

Buffer

512bx256 FIFO

Pad
512b

FFT

Buffer

512bx256 FIFO

Pad
512b

FFT

Buffer

512bx256 FIFO

Pad
512b

FFT

Buffer

512bx256 FIFO

Pad
512b

FFT

Buffer

512bx256 FIFO

Pad
512b

FFT

Buffer

512bx256 FIFO

Pad
512b

FFT

Dataflow
Process

Port

128b

128b

128b

128b

128b

128b

Kernel

Read &
transpose

Have one read & transpose kernel that feeds 6 buffer and pad kernels.

The tricky bit is you have to split the metadata too. But maybe this is a faster way to do things than a big data flow.

