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What is a Radio Galaxy? 3

Figure 1: A Radio Galaxy Figure 2: Compact vs Extended Sources
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Labelling Extended Radio Sources

Peaks

Component

Figure 3: Labelling a Radio Source as 1C_3P Figure 4: Sample of Unique Morphologies
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RadioTalk Dataset

▪ Radio Galaxy Zoo (RGZ) utilised citizen science to 

build a catalogue of over 170,000 radio sources.

▪ Volunteers were asked to locate and label any radio 

sources present in a Radio Subject. 

▪ RadioTalk is a platform for keen volunteers to 

provide more descriptive labels in the form of tags 

and comments.

▪ Additional descriptions for >30,000 Radio Subjects 

are available via RadioTalk and currently not 

present in the catalogue.
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Radio Subject Threads

Figure 6: An example Radio Subject thread from RadioTalk. Radio Image shown in-place of Infrared Image
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Research Problems

Problem: Volunteers could generate new tags freely → lack of tag coherence

Question: Can we identify the relationships between tags by learning embeddings?

Problem: Assigning tags was optional → tagging could be incomplete

Question: Can we use the subject comments to perform tag recommendation?

Overall Goal: Maximise Science Output from Radio Galaxy Zoo Project

7



Discovery of Missing Subjects

▪ Discovered 10,810 new subjects that were present 

in forum but not in the catalogue

▪ It would take an astronomer 8.7yrs at 40hrs/week 

to label this many subjects!

▪ Overall these subjects were complex, extended and 

difficult to classify

Figure 7: Discovery of Missing Subjects
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Research Aim – Learn Tag Embeddings

Can we learn Tag Embeddings from Co-Occurrence Information? 

• Are these embeddings interpretable? 

• Do these embeddings uncover relationships or form clusters?  
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Method – Learn Tag Embeddings

▪ Construct Subject-Tag Co-Occurrence Matrix X

• Xi,j denotes how many times the tag j appeared in 

the comments for subject i.

▪ Perform Non-Negative Matrix Factorisation (NMF)

• Technique that has demonstrated success in 

generating interpretable embeddings

▪ Probe at Embeddings

• Explore Feature Axes 

• Use t-SNE to visualise relationships

• Use k-means to cluster tags
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Non-Negative Matrix Factorisation (NMF)

▪ Decomposes a Non-Negative Matrix into the 

product of two non-negative matrices W and H

▪ Non-Negative constraint helps interpretability

▪ Rows of W are subject embeddings 

▪ Rows of H are tag embeddings

▪ Chose k=53 after accepting a reconstruction error 

of 20%

Figure 9: Non-Negative Matrix Factorisation
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Results – Tag Embeddings

Figure 10: Sample of Top Tags along Feature Axes Figure 11: K-Means and t-SNE visualisation of tag embeddings
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Research Challenges

▪ Positive-Unlabelled Data (PU-Data)

• The dataset contains only positive labels. 

The absence of a tag in the RadioTalk forum 

does not imply it is not applicable.

▪ Lack of Data

• The co-occurrence matrix is highly sparse. 

~99.4% of entries are zero. 
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Research Aim – Tag Recommendation

How well can we predict the tags of a radio subject given user text descriptions? 

• Can we leverage a pre-trained language model? 

• Can we recommend tags to subjects that previously had none? 
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Methods – Tag Recommendation Pipeline

Figure 12: Tag Recommendation Pipeline
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BERT (Bidirectional Encoder Representations from Transformers)

▪ State-of-the-art language model based on bi-directional transformer architecture.

▪ Many variants, we used BERT-base-uncased (110M parameters)

▪ Model is pre-trained on over 3 billion words from the English Wikipedia and BooksCorpus datasets. 
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Figure 13: Feature Extraction Pipeline



Multi-Label Classification

▪ Multi-Label Classification implies more than one label can be assigned to each instance

▪ Binary Relevance

▪ Train an independent Binary Classifier for each label to be predicted

▪ Common approach to multi-label classification

▪ Cannot capture dependencies between labels 
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Results – Multi-Label Classification

Table 1: 5-Fold Nested Cross-Validation (Macro-Averaged)

Precision Recall F1-Score

0.64 ± 0.02 0.66 ± 0.01 0.65 ± 0.01

Table 2: Best and Worst Performing Tags

Tag Precision Recall F1-Score

nooptical 0.92 ± 0.01 0.95 ± 0.01 0.93 ± 0.01 

hourglass 0.88 ± 0.02 0.92 ± 0.01 0.90 ± 0.01 

compact 0.88 ± 0.02 0.92 ± 0.02 0.90 ± 0.00 

… … … …

star 0.38 ± 0.06 0.47 ± 0.09 0.41 ± 0.05 

spiral 0.40 ± 0.08 0.37 ± 0.10 0.37 ± 0.05 

qso 0.33 ± 0.06 0.34 ± 0.05 0.33 ± 0.04 
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Astrotag Explorer

Figure 14: Astrotag Explorer Web Tool
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Case 1: Tag Appears Verbatim 

Volunteer Assigned Tags: 

#triple

BERT Classifier Predicted Tags: 

#asymmetric (0.9724)

#triple (0.9017)

#merger (0.6133)

Figure 15: Example of good recommendation
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Case 1: Tag Appears Verbatim 

Volunteer Assigned Tags: 

None

BERT Classifier Predicted Tags: 

#hybrid (1.0000) 

#hymor (0.7483)

Missed Tags: 

#asymmetrical, #triple

Figure 16: Example of poor recommendation
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Case 2: Descriptions Only

Volunteer Assigned Tags: 

None

BERT Classifier Predicted Tags: 

#bijet (0.8363)

#hourglass (0.5581)

Figure 17: Example of good recommendation
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Case 2: Descriptions Only

Volunteer Assigned Tags: 

None

BERT Classifier Predicted Tags: 

#hourglass (0.7725)

Figure 18: Example of good recommendation
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Case 2: Descriptions Only

Volunteer Assigned Tags: 

#mouse (Not included in our recommendation system)

BERT Classifier Predicted Tags: 

None

Figure 19: Example of poor recommendation
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Classifier Improvements

Before Astrotag : 4892 subjects without tag

After Astrotag : 2816 subjects without tag

Problem: 

Text descriptions are insufficient

▪ URLs

▪ Astronomical Co-Ordinates

▪ Non-English Text

▪ Not descriptive enough

▪ No text at all (Cold Start Problem)

Improvement:

Include additional features from the image and/or 

catalogue data 

Figure 20: Sample of poor input
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Research Conclusions

Problem: Volunteers could generate new tags freely → Lack of tag coherence

Question: Can we identify the relationships between tags by learning embeddings?

Our Findings: There is a lack of co-occurrence data to learn from. However our results may assist a manual 

approach to increase tag coherence. 

Problem: Assigning tags was optional → tagging could be incomplete

Question: Can we use the subject comments to perform tag recommendation?

Our Findings: Our classifier demonstrates the potential to utilise the text data but a hybrid approach utilising 

additional features may perform better. 
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Any Questions? 28


