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Supervised Learning in Astronomy Examples
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04 Evaluation Galaxy redshift surveys are among the main observational tools to probe cosmological models. The
leading methods measure the distance scale imprinted in the large-scale distribution of galaxies by
0.2 oscillations in the primordial baryon-photon plasma. This baryonic acoustic oscillation (BAO) sound
horizon can be used as a standard ruler to characterize the expansion rate of the Universe at different
0.9° = - o~ — = =0 times, thereby providing constraints on cosmological parameters such as the total matter and dark

Lt Ll energy densities. A precise measurement of the redshifts of galaxies is fundamental to extract this

Henghes et al. 2021
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Supervised Learning in Astronomy Examples
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Supervised Learning in Astronomy Examples

Making simulations fast
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Y. Li et al. 2021
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Un-supervised Learning in Astronomy Examples

(1) feature extraction, (2) clustering, (3) visual representation
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Un-supervised Learning in Astronomy Examples

(1) feature extraction, (2) clustering, (3) visual representation
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Semi-supervised Learning in Astronomy Examples

(1) feature extraction, (2) clustering/classification (few labels), (3) visual representation
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Slijepcevic et al. 2021
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Reinforcement Learning in Astronomy Examples

Deep reinforcement learning for smart calibration of radio

telescopes

Sarod Yatawatta!* and Ian M. Avruch¥

LASTRON, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands

13 May 2021

ABSTRACT

Modern radio telescopes produce unprecedented amounts of data, which are passed through
many processing pipelines before the delivery of scientific results. Hyperparameters of these
pipelines need to be tuned by hand to produce optimal results. Because many thousands of
observations are taken during a lifetime ol a telescope and because each observation will
have its unique settings, the fine tuning of pipelines 1s a tedious task. In order to automate
this process of hyperparameter selection in data calibration pipelines, we introduce the use
of reinforcement learning. We test two reinforcement learning techniques, twin delayed deep
deterministic policy gradient (TD3) and soft actor-critic (SAC), to train an autonomous agent
o perform this [ine (uning. For the sake of generalization, we consider the pipeline to be a
black-box system where the summarized state of the performance of the pipeline is used by the
autonomous agent. The autonomous agent trained in this manner is able to determine optimal
settings for diverse observations and is therefore able to perform smart calibration, minimizing
the need for human intervention.

Key words: Tnstrumentation: interferometers; Methods: numerical; Techniques: interferomet-
ric
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New Networks other than Convolutional Neural Network

Vision Transformers with Attention Layers instead of Convolutional Layers
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Astronomy papers that include machine learning methods
In the abstract or title!
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