CANBERRA

d
ShE
{

Southern Hemisphere Asteroid
Radar Program (SHARP)

Dr. Ed Kruzins (UNSW/CSIRO), Dr. Edwin Peters (UNSW) and Dr. Shinji
Horiuchi (CSIRO)



Introduction

e SHARP uses bi-static radar to observe
Near Earth Asteroids

* Seeks to explore their properties

e Capable of providing information on
their origins and history

* This research utilised large antennas
at the Canberra Deep Space
Communication Complex (CDSCC)

e Still a developing capability

Image: CDSCC showing DSS-43 (Centre) and DSS-35 and 36 (Background) Source: NASA



Bistatic Radar

Source: C. Whisky

Image: DSS-43



Rad

ar Echo Data

* Baseband data is transformed into the frequency domain

* Different processing intervals yield different resolutions

e Spectra is accumulated incoherently to produce a stronger SNR

* Plots contain two quantities OC and SC, related to Tx polarisation

 OC - Opposite Sense — Left circularly polarised (LCP)
e SC—-Same Sense — Right circularly polarised (RCP)
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Polarimetric Decomposition

* Think of this as taking a complex system with
multiple properties and describing it with
four distinct values

 Calculate the four-element Stokes vector (S)
which describes the complete polarisation
state of electromagnetic radiation

* Based off research in [1 — 4] but has always
been applied exclusively to SAR, our system
does not use SAR

* Analyzing these values provides advanced
insights on asteroid properties

<SSO ~

I= |El|2 + |Er|2
Q =2Re(E[E,)
U= -2Im(E/E,)
V=|E | - |Ef




View point

Polarimetric Decomposition (=
* These values allow us to calculate: w |
* Degree of Polarisation (m)
* Percentage of single, double and randomly
polarised backscattering [5]
¢ EII|pt|C|ty (Chl) X Horizontal polarization ~~----.----
* Circular Polarisation Ratio (CPR) pi verealpotarization
* Indicator of surface roughness
* Degree of Linear Polarisation (DLP) m;
* Fraction of Rx power that is linearly
polarised
e Data provides insights on surface topography and
composition

. Ellipticity angle

_+ Tiltangle




So what?

 We know what we send to the asteroid and
we know what we receive back

* Therefore we can figure out how these

values change to learn about the asteroids
composition

 Studying the effect the surface has on the
radar waves

* Has turned a process which gives us four
pieces of information into a process which
gives us twelve pieces of information
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Processing Procedure

Data Rx at ATCA in Narribri

Real time during measurement a program is used to plot .rdr files which give

low resolution images

Higher resolution data is loaded onto UNSW workstation for post-processing

1min data = 1 GB

Stokes decomposition and calculation of
degrees of polarisation done in a separate
script

This is our m, chi, CPR and DLP
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Results from a few asteroids observed this
year

* 2003 SD220
* 2008 AG33

e 1989 JA

¢ 2022 LV

e Space debris



(138971) 2003 SD220

* D=153 —2.61km

% = 0.31 £ 0.07 nearly identical to [6] and [7]

* Change in bandwidth over two days of observation suggest an elongated
shape, this analysis corresponds with images produced by NASA [8]
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(138971) 2003 SD220 continued

Inorm 213
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m = (0.588
x =-—0.118
uc = —0.764

m; = 0.00386

* m suggests return signal is majority polarised
* Decent degree of diffuse scattering
e y = —0.15 radians
* Aspuc < 1and yissmall depolarizing mechanisms such
as double-bounces can be ruled out
* uc (CPR) indicates a highly left circularly polarised signal.
* Indicates a moderate amount of surface roughness
relative to the radar wavelength (deci to centimeters)
* Deviations in OC with corresponding peaks in SC suggest
the presence of larger boulders on the scale of meters
* m,isincredibly small
* Structural complexities which may have caused linear
polarisation are minimal

Deductions

2003 SD220 is a siliceous asteroid with surface
variation in the order of centimeters

Highly unlikely it contains any ice

Relatively smooth with the presence of few large
boulders and protruding features

Is an elongated sausage shaped asteroid

2003 SD220 is an S-type asteroid




(418135) 2008 AG33

D =629+ 137m
SC

o= 0.336 + 0.041

Presence of regolith with a moderate depth in order of meters with
minimal subsurface bouldering

Significant diffuse scattering suggests a smooth outer surface layer
Spike in SC return attributed to two dominant features causing
multiple bounces of EM signal

2088 AG33 is an S-type, high density and sedimentary

Shape lends itself to the potential it was formed due to accretion
Similar shape to asteroids Kleopatra and Itokawa, that of a dumbbell

or peanut
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(7335) 1989 JA

DOY148 UTC0341 to 1047 CPl1lsec IPI425min

° =
?C 624+ 78m UTC 03:41: oc

e —=10.154+0.18 > 10
ocC @ --=- SC

©
2
* Surface is smooth on the wavelength scale = <L
 Surface material has a lower transmission coefficient 2
. oy o O
meaning it is more dense than other targets = ‘ ! RN § oA
. L1 A
* Lack of double bounce scattering S OF 7 ‘\\,' ‘ A M- A URWUAVATYAY :'\,‘ A A ,'
. . . . . (NN ’ \ / \ v \

* Depolarization in the Rx signal is not caused by CBE W VT | !

° 1 1 1 | 1 1 1 1
1989.JA is a strong reflector with a high surface bulk _no 0 : A A
density Doppler Frequency [Hz]

e 1989 JAis an M-type asteroid Center Frequency: 2.45 MHz

1989JA
5 — 0OC
. UTC 03:41 I
3 3
B 24 ' F 4
03:14:28 UTC 03:19:44 UTC 03:25:00 UTC 03:30:15 UTC 03:35:30 UTC % } :‘\‘ ! ) :'.!l ,'l'| :‘\". \ | ‘ ,"\ ,:",
g 1 P Lt X [ a " v
s '_':':, ;r: S i § . ,'|| l, ‘\\‘ ) - :'. n l‘|‘ " "”l||' |‘ [ ‘,' “‘;“ "1“: » /\\/a\\ ,| '4 ‘\ ] \\\J,' ‘\II l'.|
& BT AR N R ALY I AR A AR AR ViUV AY i\
Y A SV Y Vi AW A Y !
I" v \] 'l \ v/ ‘|I A ||
-2 lf 1 “l’ v ]
1 v {




2022 LV

D =19.84+ 1.8m

SC

e —=10.12510.043
oc

e 2022LV was observed on 25t and 26 June 2022 for 6hrs using
the SHARP DSS-43 to ATCA configuration.

* Echo spectra were found to be relatively constant over the
observing period.

* There was a substantial difference in the degree of polarisation
and degree of linear polarisation in comparison to the three
previous targets

* Hesitant to trust this data or make any major conclusions

Echo Power (std. dev.)

Echo Power [std dev]

2022 LV

, 25 June 2022, 03:30-09:00, DAS1

—-10F
-100 =75 =50 =25 0 25 50 75 100
Doppler Frequency (Hz)
DOY176 UTC0330 to 0830 CPI1sec IPI300min
>} UTC 03:30: oC
! | g .
i ! Y- i \ q ;
O l' 1 l'| ] nt <! I' ‘I ‘\ 1 \‘
N Nl .j\,’ R I A 1 R
1\ I VAR SHTAR \ AR R \|/ !
AN IRAAVIV IR IR \ v o 1
- I
‘\él o ','\: A ||'l ' !
-2 : I’ “Ill “ v
y
1 T 1 T T 1 T T 1
-40 -30 =20 -10 0 10 20 30 40

Doppler Frequency [Hz]
Center Frequency: 2.45 MHz



Satellites: HALCA, ATLAS 5 and LCS-1
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Errors

* ATCA generates a cross-coupling error in the range of 0.1 < leakage < 2%
which averages out to 1%

* Echoes are dominated by LCP reflections, measuring the ratio of the two
polarisations gives an upper limit on the errors.

* This error is effectively directly proportional to receive power
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Conclusions

 The SHARP is critical to NASA’s planetary
defense initiative

* Using polarimetry is new and requires more
data and testing to confirm its effectiveness

* More ‘antenna time’ to conduct these tests
will assist in advancing this field of science

* Removing the Tx power limit on DSS-43 for
these experiments to assist with ‘weak’
targets
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