

ASKAP 2016 Sydney 6 June 2016

Ron Ekers, CSIRO Clancy James, ECAP Justin Bray, U. Manchester

Overview

- Why UHE cosmic rays have become very interesting
- We can detect the radio emission from air-showers with Radio Telesopes
 - It might even be the best way!
- Using ASKAP as a particle detector

Centaurus A the closest AGN

- Distance 3.4 Mpc
- Next closest comparable AGN M87 at 17 Mpc !
- Luminosity = 10^{42} ergs/sec
- Total Energy = 10^{60} ergs
 - in relativistic particles!
- Giant radio galaxy 0.5 Mpc in size
- Subtends a large angular size (8°)
- Auger detects 13 >55 EeV cosmic rays
 - (2 expected)!

Auger Cosmic Rays

CSIRO

HIPASS Radio continuum

Karlsruhe Institute of Technology

- Searching for molecular bremsstrahlung.
 - Recombination time 10-100 nsec
- Array of three 3m fixed dishes
 - 3x3 multi-beam receivers
 - 3-4 GHz

- CROME have found the distribution over the ground is a ring so they are seeing some kind of anisotropic emission and not molecular bremsstrahlung.
 - Smida et al 2013

Crome

Why Radio

- Fluorescence detectors have too low a duty cycle to see rare events (10%)
- Radio detectors have 100% duty cycle
- Need radio detection to measure composition etc above the GZK threshold at 10¹⁹ eV
- Need to calibrate the radio detection method
 - Existing arrays are too small to reach 10¹⁹ eV but modeling can be validated at lower energy
- Extraction of information from air-shower emission will require radio pulse detection

Detecting the CR Cerenkof ring

- Radio distribution on ground depends only on geometry Cherenkov cone
 - 200m diameter ring, 10-20m thick
- Radio detection dependence on energy is linear
- Event rate goes as E^{-2.7} and proportional to FoV
 - Scaling from Crome we have:
 - one event per day at $3x10^{16}$ eV in ASKAP FoV
 - At 10^{16} eV then rate is x $3^{2.7} = 20$ per day
 - At 10^{17} eV rate is 1/20 per day
 - To go to higher energies we need SKA survey

ASKAP inner km

Cherenkof ring

ASKAP & CR detection

ASKAP inner km

- Cherenkof ring
- Particle detector(s)
 - Only trigger on detectable events
 - Dump 1 μ sec data at η sec resolution

Signal processing

- raw ADC time-series data capture
- production ASKAP hardware
- Trigger synchronization!
 - » John Tuthill

The Parkes variation

Need the PAF

- large FoV for rate
- Can measure the voltage distribution over the aperture!
- Circle the antenna with detectors
 - All radio detectable showers will trigger one of the detectors

The Parkes variation

Need the PAF

- large FoV for rate
- Can measure the voltage distribution over the aperture!
- Circle the antenna with detectors
 - All radio detectable showers will trigger one of the detectors