Characterizing Radio Quiet AGNs

The Role of EMU

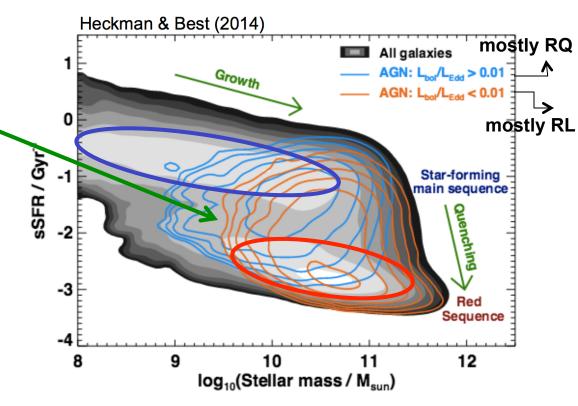
Isabella Prandoni IRA-INAF, Bologna

I – Current Picture of AGN Feedback (at z~0)

Clear bimodality in galaxy population

- Blue galaxies/Star Forming MS
- Red Galaxies/Red Sequence
- Green Valley/AGN

a) QSO-mode feedback:

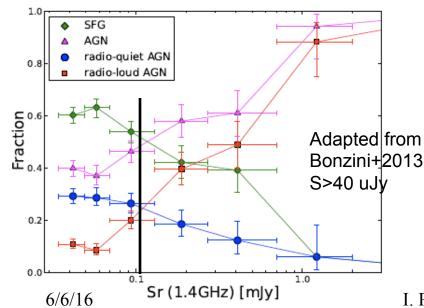

SF quenching: vigorous BH growth \rightarrow QSO winds expel gas from galaxy centers

b) Radio-mode feedback: maintain galaxies "red and dead": radio outflows heat surrounding gas truncating further stellar mass growth

SDSS:

Colour Bimodality: Kauffmann et al. 2003; Blanton et al. 2003; Baldry et al. 2004

SFR/M $_{\star} \rightarrow$ Brinchmann et al. 2004; Schiminovich et al. 2007



It appears to hold up to $z\sim 2$, Whitaker et al. (2012)

II - The promise of next-generation radio surveys

Open Issues: •

- Wext-generation (radio) surveys Any significant QSO-mode feedback as RQ-AGN?
- What is the incidence of galaxyde AGN/feedback in the RQ population? \succ
- Can we better constrain \geq
- How AGN feed evolves with look-back time? \geq

uJy-level RC surveys can trace SFG, RL and **RQ AGNs**

 $RQ-AGN \sim 860/deg^2$!

 \rightarrow complete view of SF and AGN activity & feedback to high-z and down to RQ regime

Not affected by dust extinction/gas obscuration

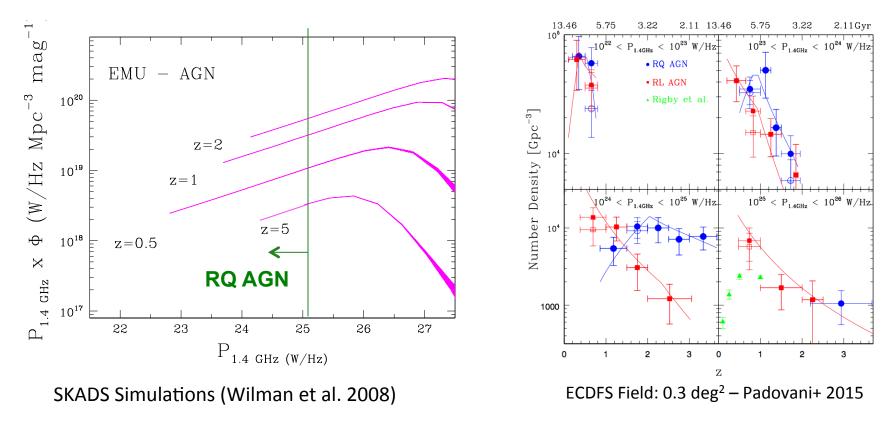
I. Prandoni

II – Characterizing the Radio AGN Population

Fine characterization of RQ AGN and their hosts across look-back time \rightarrow panchromatic approach is key

- Source redshifts: spectroscopy + multiband photometry
- AGN/SFG & RL/RQ AGN separation mid/far IR colors (WISE+Herschel) + X-ray (eROSITA)
- AGN classification: HEG (Seyfert/QSO) vs LEG (Liners, ETS) High S/N optical spectra (BPT diagnostic, TAIPAN, GAMA)
- Host galaxy properties (mass, bulg/disk, color, stellar population, dust, gas, etc.)
- Environment

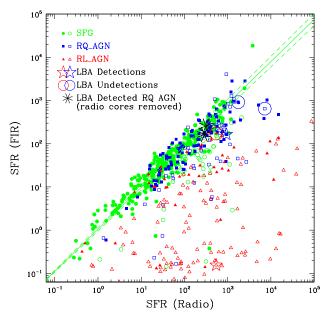
Multi-band Information - 2020

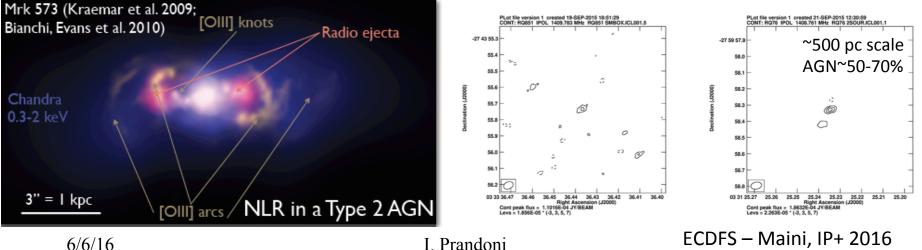

SKA	Observatory	Area	Wavelength	Limiting	Data
Tier	/Survey	(deg ²)	Bands	Mag.	Release
	Name			or flux ^a	Date
All-sky	ALLWISE ^a	42,195	3.4, 4.6, 12, 22 μm	70 µJy	2013
All-sky	PanSTARRS ^b	31k	g, r, i, z, y	r < 24.0	2020 ^b
All-sky	LSST ^c	20k	u, g, r, i, z, y	<i>r</i> < 27.5	2020
All-sky	VISTA-VHS ^d	20	Y, J, H, K	K < 20.0	2011+
All-sky	eROSITA ^e	$\sim 42k$	$0.5-10\mathrm{keV}$	$\sim 10^{-14} \mathrm{erg cm}^{-2} \mathrm{s}^{-1}$	2018
All-sky	$EUCLID^{\mathrm{f}}$	15k	$0.55 - 2.0 \mu$ m+spec.	YJH < 24	2020+
All-sky	TAIPAN ^g	20k	$0.37 - 0.87 \mu m$ spec.	R < 17.5	2015
All-sky	4MOST ^h	15-20k	$0.39 - 1.05 \mu m$ spec.	r < 22	2019+
All-sky	MOONS ⁱ	15k	$0.8 - 1.8 \mu m$ spec.	(TBD)	2019+
Wide	H-ATLAS ^j	570	$70 - 500 \mu m$	$S_{250\mu m} > 44.5 \mathrm{mJy}$	2015
Wide	DES ^k	5000	g, r, i, z, y	r < 25	2017
Wide	VISTA-Viking ^d	1500	Y, J, H, K_s	$K_{s} < 21.2$	2012
Wide	VST-ATLAS ^d	4500	u', g', r', i', z'	r' < 22.2	2016
Wide	VST-KIDS ^d	1500	u', g', r', i'	r' < 24.2	2016
Wide	PanSTARRS Deep ^b	1200	0.5 - 0.8, g, r, i, z, y	g < 27.0	2020
Deep	SCUBA2 ¹	1/6	450/850µm	$S_{850\mu m} > 3.5 mJy$????
Deep	HerMES ^m	1270	$70 - 500 \mu m$	$S_{250\mu m} > 3.864 \mathrm{mJy}$	2016
Deep	SERVS ⁿ	18	$3.4, 4.6 \mu m$	$\sim 2\mu { m Jy}$	2013
Deep	VISTA-VIDEO ^d	12	Z, J, H, K_s	$K_{s} < 23.5$	2016
Deep	LSST (deep drilling) ^o	38.4	(some of) <i>u</i> , <i>g</i> , <i>r</i> , <i>i</i> , <i>z</i> , <i>y</i>	r < 30	2020
Deep	UltraVISTA ^d	0.73	Y, J, H, K_s, NB	$K_{s} < 25.6$	2016
Deep	DES ^k				

Prandoni & Seymour 2015

II - Radio-AGN Evolution – EMU Perspectives

ASKAP/EMU: all-sky survey to similar sensitivity as current deep fields → huge statistics at all epochs: RL AGN ~ 18x10⁶ RQ AGN ~ 13x10⁶


→ Evolution of low-L AGNs (incl. RQ AGN) poorly constrained
 → high-L tail of (RQ/RL) LF vs z & all environments



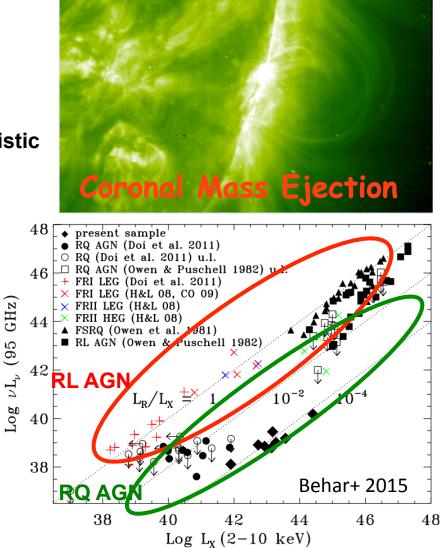
II - Origin of Radio Emission in RQ AGNs

•What triggers radio emission in RQ AGNs?

- pure SF in the host galaxy?
- SF and AGN related emission do co-exist?
- AGN Contribution fraction?
- Synchrotron radiation from mildly relativistic mini-jets?
- magnetic coronal activity (analogy with XRBs)?
- What is the incidence of jet-induced feedback?

II - Origin of Radio Emission in RQ AGNs

L Pr


•What triggers radio emission in RQ AGNs?

- pure SF in the host galaxy?
- SF and AGN related emission do co-exist?
- AGN Contribution fraction?
- Synchrotron radiation from mildly relativistic mini-jets?
- magnetic coronal activity (likewise CMEs in stars (XRBs)?

BH fundamental plane (Wong et al. 2016) $L_{radio} - L_{x}$ correlation if there is fundamental connection between accretion and radio activity

can be used to test underlying physics:

- $L_{radio} / L_x \sim 1$ for RLAGN
- L_{radio} / $L_x \sim 10^{-5}$ for coronal emission
- Is there a RL/RQ AGN dichotomy?

II - Origin of Radio Emission in RQ AGNs

The role of EMU:

- L_{radio} L_x relation and AGN fundamental plane: location of different classes of RQ AGN (Seyfert, QSO, radio luminosity, etc) on L_{radio} – L_x relation, and redshift dependence → underlying physics of AGN-related radio emission; dichotomy?
 - For a local sub-sample: BH masses can derived from e.g. broad line (H_{beta}) fitting → study AGN fundamental plane on statistical grounds
- Disentangling AGN from SF contribution in RQ AGNs: ~20000 RQ AGN @ z<0.01 (10" = 2 kpc) allows first systematic statistical studies + selection of sub-samples for higher resolution follow-up (higher frequency or VLBI)

Summary

Deep radio surveys → valuable dust-extinction/gas-obscuration-free tool to study AGN activity and related feedback up to high redshifts and down to RQ regime

Deep All-sky surveys like EMU → ample statistics at *all* redshifts & wide-area/ extensive multi-band information will allow to fully exploit EMU

- z~0: allows detailed multivariate studies: SDSS-like but including radio properties among the parameters under study (NVSS and FIRST too limited)
 - → crucial for issues that arise mainly at radio-band, like e.g. RL/RQ dichotomy, the origin of radio emission in RQ AGN, etc.
 - → crucial when radio-band provide essential information, like e.g. AGN fundamental plane
- z>>0: allows to probe evolution of AGN activity and feedback at low radio luminosities, still poorly constrained in both its two modes.

Early Science \rightarrow exploratory study in the GAMA fields:

~5000 RQ AGN expected with S>500 uJy ~3000 at z<0.4 (spectroscopy completeness) bulge/disk decomposition BPT diagnostics star, gas, dust components

THANKS!