
Extracting science from massive data sets:  
Experience from the Murchison Widefield Array (MWA)  
and the Very Large Array (VLA)

Andreas Wicenec

&

the Data Intensive Astronomy team at ICRAR

&

others

Context

2

3

1 TB/s
1 GB/s

T2=12 mth

T2= 6 mth

1 Exabyte/yr

The deluge continues

MWA

4

Who should build:
• Dishes?
• Receivers?
• Beam formers?
• Correlators??
• Operational Software???
• Astronomy software????

Questions

Lessons Learnt

5

6

Don’t let Astronomers write
software if your requirements
include:

• performance,
• parallelism,
• optimal use of network,
• optimal use of storage,
• optimal use of computers… there are exceptions

7

• Everybody is talking about
them

• New ones are ‘invented’ for
almost every single project.

• Very often based on hacking
CASA tasks, Miriad tasks,
AIPS tasks and homegrown
modules pulled together into a
unmaintainable monster, that
only a few people understand.

• Other scientists are adding
more modules or replacing
existing ones with ‘better’
ones.

Pipelines

8

Separation of
Concerns

9

Let astronomers think about and do
astronomy:

• Astronomical algorithms
• Pipeline logic
• Novel ways of extracting science
• New science
• Interpretation of extracted information
• Training of AI methods
• ….

Separation of concerns

10

Let software engineers think about and
write software:

• Optimised code using the most appropriate
language

• Novel ways of using latest hardware
• Using modern I/O techniques.
• Using advanced DB technologies
• Parallel code (even only a few software

engineers can do this well!)
• HPC coding (even less people can do this

well!)
• ….

Separation of concerns

Astronomer

Component Parameters 
default parameter values of components

Pipeline Logic  
reduction components and sequence

Data Parallelisation 
hints about the potential of parallelism

Algorithms  
what’s the best algorithm to get the desired answer

Parallel Execution  
what is executed where

Parallel Coding  
writing parallel code

Code Optimisation  
optimise parallel code

I/O Optimisation 
optimise I/O on hardware

OS and hardware co-design  
optimise hardware for code to be run

HPC	Software	Engineer

OS	level	S/W	Engineer

Computer	H/W	Engineer

Hardware

System-Level	I/O

Application-Level	I/O

Data	Formats	(Physical)

Data	Models	(Logical)

Data	Object	Management

Data	Flow	Management

User	Application

CASA	

Casapy

Casacore	
Table	
Data	
System

FITS,	
HDF5,	
NetCDF,	
ADIOS,	
etc.

Lustre

Hadoop	

Storage	Hierarchies

HDFS

Map-reduce	
Framework

SequenceFile,	
RCFile,	
etc.

Ceph

Databases	

Storage	
Engines

Tables,	
Collections,	

etc.

Query	
Interfaces

SKA	SDP	
Dataflow	

Management	
System	

SHORE	

Plugins	
for	
All	

Layers	
Using	
These	
Existing	

Techniques	

courtesy Ruonan Wang

13

SKA and Precursors
require even more

attention…

14

SKA and ASKAP
• are producing very high data volumes at very

high rates
• are a challenge for currently available compute

infrastructures (at least at affordable costs)
that means

• just throwing more hardware at the problem
won’t do the trick anymore.

• we need to use existing hardware more
efficiently.

• at least the SKA requires significant innovation
in order to approach the science potential of
the arrays.

We are at the limit!

15

… a tiny bit of
innovation

16

Data Triggered
Processing 
enabled by

 Daliuge!

Data activated liu graph engineflow

…think about deluge!

Logical	Graph	Template

Component Parameters 
default parameter values of components

Pipeline Logic  
reduction components and sequence

Data Parallelisation 
hints about the potential of parallelism

Algorithms  
what’s the best algorithm to get the desired answer

Parallel Execution  
what is executed where

Parallel Coding  
writing parallel code

Code Optimisation  
optimise parallel code

I/O Optimisation 
optimise I/O on hardware

OS and hardware co-design  
optimise hardware for code to be run

Physical	Graph	Template

Physical	Graph

Logical	Graph

Real World Examples

20

•Dailuge has been verified using CHILES data on
AWS, in-house cluster, Magnus and Galaxy.

•The current code version of the code creates 40+
Node managers all running on separate
heterogeneous AWS instances; with a single Data
Island Manager controlling them.

•The graphs contain 7,000 ~ 18,000 Drops
•The graph generator knows the AWS instance types
and can deploy more CPU/IO intensive tasks to
more powerful nodes.

•The CasaPy tasks are all run from within Docker
containers controlled by the Dailuge

CHILES

•CHILES is a small version of the DINGO survey
(mainly larger field of view).

• If we can deal with CHILES, DINGO is not too far
off.

•We are currently wrapping ASKAPsoft into Daliuge
Drops.

•Drops are software objects and the enabling core
elements of Daliuge.

•The various nodes on the graphs are all
implemented as Drops in Daliuge.

…and ASKAP?

•we have ported the MWA GLEAM pipeline to
Daliuge.

•ASTRON is working to port and run the LOFAR
pipeline.

•Fudan University wants to run a movie encoding
and analysis pipeline.

•we are also integrating OSKAR2 and can simulate
and reduce MWA and ASKAP data.

•code is available on SKA SDP github.
•documented and fully tested code (continuous
integration with loads of test code)

•Graph translation and scheduling is a really hard
problem…

…and more

Visualisation of TB and
PB data cubes

26

Raw	data	from	
antennas	

	Channeliza3on	
(PFB)	 Beam-forming	 Correla3on	 Calibra3on	 Imaging	 Cleaning	

Spectral-imaging	
data-cube	

Polariza3on	Map	

Con3nuum	Map	

Catalogues	

Process	#1	

940	–	944	
MHz	

MS	

FITS	

JPX	

Processes	
#2…119	

4MHz	
chunks	

MS	

FITS	

JPX	

Process	
#120	

1416-1420	
MHz	

MS	

FITS	

JPX	

Cube.jpx	

Cluster/Cloud	

JPEG2000 and JPIP

courtesy Slava Kitaeff and JT Malarecki

•Commercial standard backed by many
companies and OSs already.

•Highly optimised implementations.
•Multi-dimensional encoding.
•Distributed client-server infrastructure for
interactive low-bandwidth adaptive visualisation.

•Multi-component transforms built-in.
•Very rich and flexible metadata (keep all of FITS,
plus a lot more…)

•Region of interests built-in with support for
quality variation, i.e. rather than overlays,
catalogues can be built-in.

Advanced Features

•Large and very large scale deployments:
•Magnus@Pawsey ✔
•Tianhe2 (almost there)

•More real-world use cases (logical graphs of your
pipeline).

•Profiling of existing code (e.g. ASKAPsoft).
•Work on better parallelisation.
•Work on optimisation of key algorithms.
•Collaboration with other organisations and
companies.

 Next Steps

Conclusions

31

32

Who should build:
• Dishes?
• Receivers?
• Beam formers?
• Correlators??
• Operational Software???
• Astronomy software????

Questions

