

The indefatigable power-law of radio sources? Ron Ekers curving the trend

Joe Callingham

The University of Sydney / CASS Innovation and discovery in radio astronomy Queenstown, New Zealand

The spectral revolution has (re-)started!

- Sampling the spectra above and below the turnover at an unprecedented level.
- New wide bandwidth backbends on the ATCA and VLA.
- MWA and LOFAR becoming operational.

The resilient power law

- > Energy distribution of electrons is a power-law
- > Some hints of it breaking down: Blundell et al. 1999, Marvil et al. 2014 etc
- Vital to understand for calculating energy density and magnetic field strength

Klamer, Ekers et al. 2006

Absorption mechanisms

Bicknell et al. 1997

Kellermann 1966

Hate to break it to you

Adiabatic losses

Adiabatic	Synchrotron	Compton

- Single power-law spectra of relativistic spectra is just a zero-order approximation
- > Energy distribution of electrons is curved (Blundell & Rawlings 2000)

What are CSS/GPS sources?

- Originally empirical classification:
 - Powerful AGN with concave spectra
 - GPS turnover ~ 1 GHz, CSS turnover 150 MHz (?)
 - Small physical sizes. GPS < 1 kpc, CSS ~ 1 – 10 kpc
 - Hosts vary quasars, radio galaxies and Seyferts

Bremss $S \propto \nu^2$

> SSA $S\propto\nu^{2.5}$

> > MWA Bandpass

 $10^{\overline{2}}$

 10^{2}

Flux Density S (mJy)

 10^{-10}

10

Acronym Spaghetti

Kunert-Bajraszewska et al. 2010

CAASTRO ARC CENTRE OF EXCELLENCE FOR ALL-SKY ASTROPHYSICS

Why Study CSS/GPS Sources?

- Unique view of early stages of AGN activity. Probe of environment to tens pc scale.
- How many sources go from birth to A team sources (Cyg A, Her A etc)?
- Are they confined to small spatial scales due to 'youth' or 'frustrated' or both?
- Cause of the turnover in spectrum?
 Vital for accurate evolutionary models

See Peck et al. 1999; Kameno et al. 2000; Marr et al. 2001; Orienti & Dallacasa 2008; Tremblay et al. 2008, Marr et al. 2014; Tingay et al. 2015, Callingham et al. 2015

NASA, ESA, S. Baum and C. O'Dea (RIT), R. Perley and W. Cotton (NRAO/AUI/NSF), and the Hubble Heritage Team

New Extreme GPS Source PKS B0008-421

Number of sources

- > 1,471 GPS candidates
- > ~230 have spectroscopic redshifts
- ~430 have VLBI information

Redshift Distribution

High Redshift Candidates

Nick Seymour

- Spectra become very interesting when you add well-sampled low radio frequency data.
- Appears the GPS/CSS population is defined by two distinct populations.
- About to triple the number of known GPS/CSS candidates

My time with Ron

- Question everything
 - Thousands of questions
- Know when you have asked a good question
- Know the people that can possibly answer those questions (or at least help!)
- Make predictions
- > Have a good coffee habit
- > Have a nap when necessary ;)

Geoff's plots

