ASKAP and its phased array feeds

Innovation and Discovery in Radio Astronomy, 13-17th September, Queenstown, NZ

DAVID MCCONNELL, CSIRO www.csiro.au 2016 SEPT 13

History - pre 2004

- SKA search for technology
 - to get cheap collecting area
 - more specifically, to optimise survey speed/dollar

$$SS \propto {
m FoV}({A_{
m eff}\over T_{sys}})^2$$

- within CSIRO, a number of technologies were explored

Luneburg Lenses

Cylindrical reflectors

Phased arrays at the focal plane of paraboloids

and the winner was ...

Phased arrays at the focal plane of paraboloids

John O'Sullivan with prototype chequerboard

History - names!

ASKAP

Antennas : Longest baseline : Frequency range : Instantaneous bandwidth: Spectral channels :

36 x 12m diameter 6440 m 700 - 1800 MHz 300 MHz 16416

Phased array feed

PAF

Chequerboard array of 188 sensors Two interleaved sets of 94 X and 94Y polarised elements

Field of view : $5.5 \times 5.5 = 30$ square degrees

ASKAP

	BETA	ASKAP-12	ASKAP
	-		
Antennas :	6	12	36
Longest baseline :	916 m	2304 m	6440 m
PAF :	Mark I	Mark II	Mark II
Beams :	9 x 2	36 x 2	36 x 2

BETA (Boolardy Engineering Test Array) operated from 2014 March - 2016 February

ASKAP-12 is currently operating over a fixed 48MHz band.

What determines survey speed, image sensitivity?

 $\frac{\mathrm{SS}}{\sigma^2} = Bn_p N_a^2 F(\frac{A_{\mathrm{eff}}}{2kT_{\mathrm{sys}}})^2$ $= Bn_p N_a^2 \int_{\text{FoV}} (\frac{A_{\text{eff}}}{2kT_{\text{sys}}})^2 d\Omega$ $= Bn_p N_i^{\dagger}$ $^{2}d\Omega$

Footprint sensitivity

 Primary beam shape (variability/knowledge of)

Interferometer calibration

■RFI

etc

Primary beam shapes

Maximum Sensitivity Beamforming

• The output of a beamformer is:

$$y_k[i] = \mathbf{w}_k^T \mathbf{x}[i] - PAF element outputs at time i$$

Beam *k* output at time *i*
Weight vector for beam *k*

• We determine weights that define the "maximum sensitivity" beam (Applebaum (1976):

$$\mathbf{w}_k = \widehat{\mathbf{R}}_n^{-1} \widehat{\mathbf{v}}_k$$

Steering vector (response of PAF elements to a point source in the direction of interest for beam k)

Noise covariance matrix

Primary beam shapes: measurement

by Aidan Hotan

Primary beam shapes: variation

Research continues on shape-constrained beamforming. There remains much to be learnt about beamforming.

CSIRO

2

Footprint sensitivity

- Noise in adjacent beams is not independent, they share PAF elements
- This affects the noise amplitude in the mosaiced image
- We can measure and model the effect

Footprint sensitivity

- Noise in adjacent beams is not independent, they share PAF elements
- This affects the noise amplitude in the mosaiced image
- Find the sweet spot
- and interleave for uniformity

-3 -2 -1

0 1

dearees

2

3

Wide Fields Fast!

- 150 deg²
- 12 hours per observation
- noise $1\sigma < 1$ mJy
- 2,000 sources > 5σ
- 3 × 12 hr observations in RGB

This demonstration with:

- Just 6 of 36 antennas
- Just 9 of 36 beams

Credit: Keith Bannister (observations), Ian Heywood (calibration & Imaging), ACES/ASKAP team.

David McConnell

Imaging by Wasim Raja using ASKAPsoft

Realising the innovation

Hardware Software "Greyware"

Publications of the Astronomical Science of Assimilia (PANA) (2) Astronomical Society of Asstrolla 2010; published by Cambridge University Press doi: 10.1007/par.2016.Xx.

The Australian Square Kilometre Array Pathfinder: Performance of the Boolardy Engineering Test Array

D. McConnell⁴, J.R. Allison⁷, K. Bannister¹, M.E. Bell⁷, B.E. Bignall^{1,3}, A.P. Chippendale³, P.G. Edwards³, I. Barvey-Smith¹, S. Begarty⁴, I. Heywood^{1,5}, A.W. Botan⁹, B.T. Indermandel^{1,3}, E. Lene^{A,7}, J. Marvil³, A. Pupping⁶, W. Raja¹, J.E. Bryonids¹, R.J. Sauh^{1,9}, P. Serra³, M.A. Vorenkov¹, M. Whiting¹, S.W. Amy¹, P. Astron^{1,10}, L. Bal², T.J. Baroman¹, D.C.-J. Bock¹, R. Bohon¹, D. Brodrick^{1,1,11}, M. Boothern¹, A.J. Brown¹, J.D. Bunton¹, W. Cheng¹, T. Cornwell^{1,13}, D. DeBoer^{1,14}, I. Funi^{1,13}, R. Gough¹, N. Gupta^{1,14}, J.C. Guanna⁴, G.A. Hampan¹, S. Hay¹⁷, D.B. Bayman¹, S. Borle¹⁸, B. Humphreys¹, C. Jacka¹, C.A. Jackaon^{1,3}, S. Jackaon¹⁹, K. Joganathan¹, J. Joseph¹¹, B.S. Kaethaldel¹, M. Leuth¹, E.S. Lemenn¹, A. MacLood¹, S. Mackay¹, M. Marquarding¹, N.M. McChen-Gröffethe^{1,20}, P. Metschin¹⁰, D. Mitchell¹, S. Neuhold¹, A. Ng¹, R. Norria^{1,21}, S. Penere¹, R.Y. Qiao^{17,22}, A.E.T. Schiocker¹, M. Shielda¹, T.W. Shimosell^{1,20}, M. Storry¹, E. Troup¹, B. Taraer^{10,14}, J. Tuthill¹, A. Taisram¹, R.M. Wark¹, T. Westmeist^{1,30}, C. Wilson^{1,7}, T. Wilson¹⁹

Realising the Innovation

Realising the Innovation

RON

Thanks

ACES | David McConnell |

Thank you

www.csiro.au

