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Pulsar electrodynamics: an unsolved problem
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Pulsar electrodynamics is reviewed emphasizing the role of the inductive electric
field in an oblique rotator and the incomplete screening of its parallel component
by charges, leaving ‘gaps’ with E;, # 0. The response of the plasma leads to a
self-consistent electric field that complements the inductive electric field with a
potential field leading to an electric drift and a polarization current associated with
the total field. The electrodynamic models determine the charge density, p, and
the current density, J; charge starvation refers to situations where the plasma cannot
supply p, resulting in a gap and associated particle acceleration and pair creation. It is
pointed out that a form of current starvation also occurs implying a new class of gaps.
The properties of gaps are discussed, emphasizing that static models are unstable, the
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In CP 1133 the polarization structure in the preceding subpulse seems to be the result
of the addition of two linearly polarized components with angle differing by about 90°.
One component at approximately 10° lasts throughout the subpulse, but near the center
of the subpulse it is dominated by a stronger component at 90°. A similar phenomenon
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Birefringement material
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Extraordinary ray

Ordinary ray

Melrose & Stoneham (1977); Melrose (1979); Allen & Melrose (1982)
Barnard & Arons (1986); McKinnon (1997); Kennett & Melrose
(1998); Petrova & Lyubarskii (2000); Wang, Lai & Han (2010);
Beskin & Philippov (2012)



Birefringence in Pulsar
Magnetosphere

* Natural modes are linearly polarized
— X-mode travels along straight ray path
— O-mode “ducted” along magnetic field lines

« separated by many beam widths
— modes are mutually exclusive (disjoint)

* beams overlap (superposed)
— “generalized Faraday rotation”
— “Cotton—Mouton birefringence”



Figure 3—Representative point for radiation in an anisotropic
medium rotates about the diagonal joining the points for
the two natural modes.
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Disjoint or Superposed?
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Cordes, Rankin & Backer (1978)



Statistical Models
* McKinnon & Stinebring (1998)

— Disjoint or superposed?
* McKinnon & Stinebring (2000)

— Covariant? Mode-separated profiles

* McKinnon (2002)

— Model circular polarization of modes

* McKinnon (2003)

— directional statistics (spherical)

* McKinnon (2004)

— 3D covariance analysis (Cartesian)
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Intensity (Jy)
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Table 1

Eigenvalue Analysis from McKinnon (2004)

p So (Jy) 00 op ol

PSR B2020+28

0.45 5.5 2.48 1.14 0.59

0.19 2.8 0.54 0.33 0.30

0.56 3.1 1.74 0.91 0.71
PSR B1929+10

0.55 0.68 0.38 0.32 0.09

0.68 1.35 0.92 0.63 0.13

0.65 1.00 0.65 0.46 0.10

Gy = PSy > 0y

NoO excess polarization dispersion



Covariances between
Stokes Parameters

Cij — n-l (SI Sj_ Y5 7/]” 82)
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Brosseau & Barakat (1992)
van Straten (2009)
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Covariant Mode Intensities

Coo = S| AII* + ¢l BII* + 205458 A0 By

Cii = ¢2||A? + 3l B|I> — 20cack|AllB)

McKinnon & Stinebring (1998)
van Straten (2009)



Two Problems

1. 6,> o, even when no OPM

2. Incomplete statistical model
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Disjoint or Superposed?
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(I + 15)*

dp?> =

(superposition) (5)

Cordes, Rankin & Backer (1978)



Valid only for instantaneous
Stokes parameters

<dL2> =

Cordes, Rankin & Backer (1978)



Three Regimes

. Disjoint / \/ \
. Composite / \/ \/ \/ \
. Superposed / \

— < lgmp (NYyQuist)

M1 o Stokes Sample
T

int



Cdisjoint =FCs+(1—F)Cs+ F(1—F)(A— B)%?

Ccomposite — fCA + (1 — f)CB

Cauperposed = Ca +Cp+n ' (A B+ B® A—nA- B)

van Straten & Tiburzi (submitted)



Composite samples

A. Satisfy previously proposed arguments in
favour of superposed modes:

*Depolarization (Stinebring et al. 1984)
*Eq. 5 of Cordes, Rankin & Backer (1978)

B. Depend on instrumental resolution

I.e. distinction between “superposed” and
disjoint modes Is blurred by resolution
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Two Problems

2. Incomplete statistical model

Therefore, cannot be explained
by covariant mode intensities
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Valid only for normally
distributed electric field

Brosseau & Barakat (1992)
van Straten (2009)



P(log4oE)

Oslowski et al. (2014)

0.293
0.480
0.484
0.488
0.492
0.496
0.508

V\l
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2
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2.1

2.2



Amplitude Modulation
C'=(;+1)C+¢s.5® S

Valid only for instantaneous Stokes parameters.
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Conclusions

* The sample mean Stokes parameters
admit three idealized regimes:

— disjoint (mutually exclusive and resolved)
— composite (unresolved mutual exclusivity)

— superposed (classical wave superposition)



Conclusions

* The 4x4 matrix of covariances between the
Stokes parameters provides new insight
— “modal broadening” explained by self noise

— no need for additional randomly polarized
component

— potential to differentiate between regimes



Conclusions

« Amplitude modulation must be considered

— Including temporal correlations / structure of
amplitude modulating function



Conclusions

» Ekers & Moffet (1969) discussion

— observed emission may originate
In different regions of pulsar magnetosphere

— observed polarisation variations could be due
to emission mechanism or propagation



Conclusions

 Statistical approach
— e.g. McKinnon (2004); Edwards (2004)
— can be applied to weaker pulsars
— may enable broader studies of population

— more than one process involved
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ABSTRACT

A statistical model is presented for the study of the orthogonally polarized modes of radio pulsar
emission via the covariances between the Stokes parameters. Particular consideration is given to the
effects of integration over finite intervals appropriate to the analysis of single-pulse observations. If
the interval over which the polarization state is estimated is longer than the timescale for switching
between disjoint modes, then the resulting composition of modes exhibits properties that have been
attributed to mode superposition; in fact, composite modes satisfy all of the statistical tests of su-
perposed modes that have been proposed to date. Because the distinction between composite and
disjoint modes depends on the temporal resolution of the observing instrumentation, the evidence
in favour of superposed modes of pulsar emission is revisited. First, to accommodate the typically
heavy-tailed distributions of single-pulse radio flux density, the fourth-order joint cumulants of the
electric field are used to derive the covariances between the Stokes parameters when two sources with



