Parkes and pulsars: globular clusters, supernova remnants, and magnetars

Fernando Camilo

People: S Ransom, J Halpern, J Reynolds, J Sarkissian, D Lorimer, B Gaensler, S Johnston, R Manchester, M Kerr

Telescopes: Arecibo, GBT, Nançay, IRAM, ATCA, LBA, VLA, VLBA, Gemini, HST, Chandra, Swift, XMM, Fermi, HESS
“We’re proud to be a part of the operation of [the Parkes] telescope; we’ll do it for nothing.” (SKF Bearings on replacing bearings for elevation gearboxes, quoted by Jon Ables on the 30th anniversary)
“Parkes has played an important role in pulsar astronomy, making many interesting discoveries. I am sure that the next 30 years will be just as interesting.” (Dick Manchester, Parkes 30th anniversary)
Globular clusters

- First millisecond pulsar (Backer et al 1982)
- LMXBs thought to lead to MSPs
- High LMXB incidence in GCs
- Searches in GCs: MSP in M28 (Lyne et al 1987)
Globular clusters

- First millisecond pulsar (Backer et al 1982)
- LMXBs thought to lead to MSPs
- High LMXB incidence in GCs
- Searches in GCs: MSP in M28 (Lyne et al 1987)

![Image of globular cluster with MSP at Parkes](attachment:image1.png)

MSP at Parkes (Lyne et al 1990)

![Image of VLA observation](attachment:image2.png)

VLA (Fruchter & Goss 2000)

Manchester et al 1990, 91

nature

INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

MSPs in 47 Tucanae

A BREEDING GROUND FOR MILLISECOND PULSARS
1997: 20cm multibeam receiver
1997: 20cm multibeam receiver

9 new MSPs
1997: 20cm multibeam receiver

9 new MSPs

47 Tuc C
47 Tuc D
47 Tuc E
47 Tuc F
47 Tuc G
47 Tuc H
47 Tuc I
47 Tuc J
47 Tuc N
47 Tuc O
47 Tuc R
47 Tuc S
47 Tuc V
47 Tuc W

47 Tuc R

Signal-to-noise ratio

Acceleration (m s$^{-2}$)
$n_e = 0.07 \text{ cm}^{-3}$

(Freire et al 2001)
47 Tuc

(Freire et al. 2001)
47 Tuc Chandra (Heinke et al 2005)
HST: 47 Tuc W (Edmonds et al 2002)
Supernova remnants and pulsar wind nebulae

The Crab: nebula powered by pulsar rotational energy; a prototype?
Supernova remnants and pulsar wind nebulae

The Crab: nebula powered by pulsar rotational energy; a prototype?

Little evidence of SN ejecta; uncommonly good calorimeter; largest spin-down luminosity; radio pulses detectable at \(~\text{Mpc}(!)\)...
Supernova remnants and pulsar wind nebulae

The Crab: nebula powered by pulsar rotational energy; a prototype?

Little evidence of SN ejecta; uncommonly good calorimeter; largest spin-down luminosity; radio pulses detectable at ~Mpc (!)...

Not a prototype! Exceptional (if enormously important)
First pulsars discovered in SNRs/PWNes at Parkes

“...that many Galactic SNRs could contain... pulsars detectable in a more sensitive search.”
Slow going with pulsar/SNR discoveries...

- None found in Galactic plane 20cm survey (Johnston et al 1992)
- None found in directed PKS, AO, JB surveys of 88 SNRs in 1990s
Slow going with pulsar/SNR discoveries...

- None found in Galactic plane 20cm survey (Johnston et al. 1992)
- None found in directed PKS, AO, JB surveys of 88 SNRs in 1990s
- 800 pulsars found in Parkes multibeam Galactic plane survey, but...
Slow going with pulsar/SNR discoveries...

- None found in Galactic plane 20cm survey (Johnston et al 1992)
- None found in directed PKS, AO, JB surveys of 88 SNRs in 1990s
- 800 pulsars found in Parkes multibeam Galactic plane survey, but...

PSR J1119-6127/SNR G292.0-0.5

ATCA (Crawford et al 2001)
SNR G292.0+1.8

Chandra (Hughes et al 2001, Park et al 2007)
10 hr Parkes search on Sep 5, 2001:

\[P = 135 \text{ ms}, \quad \dot{E} = 10^{37} \text{ erg s}^{-1} \]

\[S_{1.4} = 70 \mu\text{Jy} \]
SNR G21.5-0.9

Chandra

1 arcmin Matheson & Safi-Harb 2005

Gaensler & Slane 2006

Interstellar Material

Supernova Blast Wave and Swept-up Shell

Reverse Shock

Pulsar and Nebula

Ejecta

hot

cold

R_w

R_{PWN}
Deep searches at GMRT (Gupta et al. 2005) and Parkes:

\[P = 61 \text{ ms}, \dot{E} \approx 10^{37} \text{ erg s}^{-1} \]
Deep searches at GMRT (Gupta et al 2005) and Parkes:

\[P = 61 \text{ ms}, \dot{E} \approx 10^{37} \text{ erg s}^{-1} \]
Deep searches at GMRT (Gupta et al. 2005) and Parkes:

- $P = 61$ ms
- $\dot{E} \approx 10^{37}$ erg s$^{-1}$
The Mouse nebula
(bow-shock PWN)
The Mouse nebula
(bow-shock PWN)

\[P = 98 \text{ ms}, \quad \dot{E} \approx 10^{36} \text{ erg s}^{-1} \]

\[M \sim 60 \]

Gaensler et al 2004
The Mouse pulsar

Discovered at Parkes
Timed at GBT
GeV pulsations with Fermi

1 deg from Galactic centre: “remove” pulsar to map central region
SNR G315.9-0.0: the Frying Pan

MOST

ATCA:
SNR G315.9-0.0: the Frying Pan

MOST

ATCA:

$P = 61 \text{ ms}, \dot{E} \approx 10^{36} \text{ erg s}^{-1}$

$\mathcal{M} \sim 200$

Ng et al 2011
3C58 (Chandra; GBT)

G0.9+0.1 (VLA/XMM; GBT)

G106.6+2.9 (Chandra; Lovell)

G54.1+0.3 (Chandra; Arecibo)

G76.9+1.0 (VLA/Chandra; GBT)

Arzoumanian et al 2011
As of 2011

1.4 GHz luminosity (mJy kpc²)

Characteristic age (yr)

3C58 (Chandra; GBT) G0.9+0.1 (VLA/XMM; GBT)

G54.1+0.3 (Chandra; Arecibo) G76.9+1.0 (VLA/Chandra; GBT)

Arzoumanian et al 2011
Magnetars (AXPs/SGRs)

- Occasional gigantic X-ray/gamma-ray flares
- Long periods (5-12 sec), spinning down rapidly (huge inferred B)
- Persistent and variable very large X-ray luminosity (> spin-down)
Magnetars (AXPs/SGRs)

- Occasional gigantic X-ray/gamma-ray flares
- Long periods (5-12 sec), spinning down rapidly (huge inferred B)
- Persistent and variable very large X-ray luminosity (> spin-down)

- Powered by decay of wound-up internal B field
- Deep crustal heating, drift of B, stress, crustal deformation
- Ejection of helicity, external B twisted, currents, torque changes, heating
Magnetars (AXPs/SGRs)

- Occasional gigantic X-ray/gamma-ray flares
- Long periods (5-12 sec), spinning down rapidly (huge inferred B)
- Persistent and variable very large X-ray luminosity (> spin-down)

- Powered by decay of wound-up internal B field
- Deep crustal heating, drift of B, stress, crustal deformation
- Ejection of helicity, external B twisted, currents, torque changes, heating

No radio emission

Duncan & Thompson 1992
RXTE (Ibrahim et al 2004)

XTE J1810-197

VLA (Halpern et al 2005)
Radio pulsar!
(Parkes on 17 March 2006)
John & John, on site at Parkes, go to work making an audio magnetar detector on the fly.
John & John, on site at Parkes, go to work making an audio magnetar detector on the fly.
XTE J1810-197 has flat spectrum
XTE J1810-197 has flat spectrum

Clouds in West Virginia...
XTE J1810-197 has flat spectrum

Clouds in West Virginia...
Gotthelf & Halpern 2007

XTE J1810-197

VLT

Gemini

Ks=21.9
Continued variability of radio flux...
... and then it just vanished

Torque
Nançay
GBT
Parkes
1E1547.0-5408: magnetar candidate

(Gelfand & Gaensler, astro-ph 7 Jun 07)
1E1547.0-5408: magnetar candidate

(Gelfand & Gaensler, astro-ph 7 Jun 07)

P=2 sec pulsations discovered at Parkes on 8 Jun
IE1547.0-5408/PSR J1550-5418

Flat spectrum: first published results from ATCA 7mm system

Also, detected at Parkes at 22 GHz
IE1547.0-5408/PSR J1550-5418

Flat spectrum: first published results from ATCA 7mm system

Proper motion: measured with LBA (Deller et al 2012)

\[\mu_\alpha = 3.1 \pm 0.5 \text{ mas yr}^{-1} \]
\[\mu_\delta = -7.1 \pm 0.4 \text{ mas yr}^{-1} \]

Magnetar scatter-broadened to \(~7\) mas (even at 8 GHz!), so and contribute little: Mopra essential
NASA’s Swift observes X-ray echoes around SGR J1550–5418

Credit: NASA/Swift/Jules Halpern (Columbia Univ.)
NASA’s Swift observes X-ray flux increase!

PSR J1550-5418

4000x flux increase!
Thank you to all the staff (including receiver group in Marsfield)!

CSIRO ATNF Parkes Observatory Staff – May 2011

Brett Armstrong Receivers
Scott Brady Site Services
Etore Carretti Project Scientist
Daniel Craig Computing
Jon Crocker Technical Services
Andrew Dean Visitors Centre
Anne Evans Quarters
Ilana Feain ASKAP Scientist

Julia Hockings Administrative Services
Chris Holingdrake Visitors Centre Manager
Simon Hoyle Computing
Andrew Hunt Electronics and Servo Systems
Shirley Ingram Quarters
Alan Laing Electronics
Tom Loes Site Services
Erik Lensson Head of Engineering Operations

Matt McFarland – Electrician Site Services Coordinator
Ian McRobert RF Engineer
Stacy Mader Operations Scientist
Margaret Marshall Quarters
Lyn Milgate Visitors Centre
Brett Preisig – Electronics Technical Coordinator
Ken Reeves Receivers
John Reynolds ASKAP Project Scientist

Tim Ruckley Electronics
John Sarkissian Operations Scientist
Mal Smith RF Systems – Site Manager
Gina Spratt Computing
Tricia Trim Visitors Centre
Karin Unger Visitors Centre
Bev Wilson Visitors Centre

Thank you to all the staff (including receiver group in Marsfield)!