The Rise of Multibeam Astronomy

Lister Staveley-Smith, ICRAR
Outline

- Single beam v. multibeam
 - Survey speed and sensitivity
- History of the Multibeam
 - Galileo and Canares
- Innovations, discoveries and science
 - HIPASS and legacy
- The present and future
 - ASKAP and Parkes as an SKA Pathfinder
Parkes single-beam HI spectra – c.1980’s
Sensitivity comparison

Relative Speed

- Parkes
- Lovell
- Effelsberg
- Arecibo

Sensitivity Speed
Are multiple beams useful?

- Highly optimized single pixel feeds will always outperform multibeam arrays (R. Fisher et al. circa 1995)
- Correlation expensive
Why multibeam?

– A journey from one of the world’s least-sensitive large single-dish telescopes to the world’s fastest
Why multibeam?

- A journey from one of the world’s least-sensitive large single-dish telescopes to the world’s fastest
Sensitivity v. survey speed

- Time taken to reach a given sensitivity:

\[\tau = \left(\frac{A}{T} \right)^{-2} \propto D^{-4} \]
Sensitivity v. survey speed

- Time taken to survey an area of sky to a given sensitivity

 - Ekers & Rots (1979):
 \[\tau \propto n_{RX}^{-1} \]

 - Staveley-Smith et al. (1996) – multibeam concept paper:
 \[\tau \propto (N_b A_t N_a \Delta \nu)^{-1} \]

 - ASKAP (Johnston et al. 2007); SKA (Schilizzi et al. 2007):
 \[\tau = \left(\frac{A}{T} \right)^{-2} \Omega^{-1} \]
We need a new focus cabin!

The Galileo connection

Galileo with non-deployable X-band antenna

100 b/s
The transition to a multiple feed cluster

Trevor Bird (feeds)

Warwick Wilson (correlator & project leader)

Mal Sinclair (receiver)
NASA/Canares chip

- Cheap, fast correlator ASIC
- 64 MHz (14,000 km/s); suitable for Disney’s crouching giants
How do you tile the sky with 13 beams?
On-the-fly mapping: a better way to cover the sky

Mike Kesteven
Innovation – hardware and operational

• Unprecedented number of beams
 – First cm-wave multibeam spectroscopic receiver

• Excellent T_{sys} and Efficiency
 – 21K/60% efficiency bettered most existing single pixel receivers

• Reasonable bandwidth
 – 300 MHz enabled pulsar survey sensitivity

• Fast/stable calibration noise diode
 – 100 Hz cal avoided interference problems
 – Stable over ~decade

• On-the-fly mapping
 – Allowed fast and redundant and robust coverage of sky

• Realtime data reduction and data archiving
 – Quality control and data security
A few technology spin-offs from the Parkes multibeam project

- LBA correlator capacity
- Areccibo multibeam
- Lovell multibeam
- TCS/on-the-fly mapping
- SEST correlator
- First PSR 1 GHz correlator
- Methanol multibeam
A Parkes HI data cube

- Galactic Emission
- HI Recombination Line @ $V \sim 4600$ km/s
- $V \sim 5000$ km/s
- $V \sim -1200$ km/s
- NGC 6744
- ESO 141-G042
- R.A.
- Decl.
Extragalactic multibeam surveys (1997-2002)

• Instrument, Calibration and Survey
 – Staveley-Smith et al (1996); Barnes et al. (2001)

• Discoveries
 – Leading Arm (Putman et al. 1998)
 – Tidal debris around galaxies (Ryder et al. 2001, Kilborn et al. 2000)

• Surveys
 – HIPASS bright galaxies (Koribalski et al. 2004)
 – HOPCAT (Doyle et al. 2005)
 – ZOA (Henning et al. 2000; Donley et al.; Staveley-Smith et al. 1998)
 – Gas around nearby galaxies (Pisano et al.)

• Cosmology
 – HI mass function (Zwaan et al. 2003, 2005)
 – Clustering, Tully-Fisher (Meyer et al. 2007, 2008)
THE 1000 BRIGHTEST HIPASS GALAXIES: H I PROPERTIES

The HIPASS catalogue – I. Data presentation

The HIPASS catalogue – II. Completeness, reliability and parameter accuracy

1 School of Physics, University of Melbourne, VIC 3010, Australia
2 European Southern Observatory, Karl-Schwarzschild-St. 2, 85748 Garching bei München, Germany
3 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
4 Australia Telescope National Facility, CSIRO, PO Box 76, Epping, NSW 1710, Australia
5 Department of Physics, University of Queensland, Qld 4072, Australia
6 Department of Physics, University of Western Sydney Macarthur, PO Box 553, Campbelltown, NSW 2560, Australia
7 Department of Physics and Astronomy, University of Western Sydney, PO Box 913, Cardiff CF2 3TB
8 Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Cotter Road, Weston, ACT 2611, Australia
9 Centre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia
10 University of Technology Sydney, Broadway, NSW 2007, Australia
11 Institute for Astrophysics, University of New Mexico, 800 Yate Blvd NE, Albuquerque, NM 87131, USA
12 Jodrell Bank Observatory, University of Manchester, Macclesfield, Cheshire SK10 6DQ, UK
13 NRAO Inc., 950 North Cherry Avenue, Tucson, Arizona, USA
14 ASTRON, PO Box 2, 7990 AA Dwingeloo, the Netherlands
15 CSIRO, University of Colorado, Boulder, CO 80309-0399, USA
16 Anglo-Australian Observatory, PO Box 296, Epping, NSW 1710, Australia
17 School of Physics, University of Sydney, NSW 2006, Australia
18 Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH
Technology, science and software partnership
HIPASS data server – a legacy

Downloads

Multibeam astronomy beyond HIPASS: ASKAP/SKA

Phased Array Feed @ PKS 12-m
ASKAP/Wallaby simulated lightcone

500k galaxies

Alan R. Duffy1, Martin J. Meyer1, Lister Staveley-Smith1, Max Bernyk2, Darren J. Croton2, Baerbel Koribalski3, Stefan Westerlund1
Gas Evolution: GMRT stack at $z=0.24$

Lah et al. (2007)

$$M_{HI} = (2.26 \pm 0.90) \times 10^9 M_\odot$$

$$0.36 \pm 0.14 M^*$$
A stacked HI signal at $z=0.1$ with Parkes (GAMA9 field; Delhaize)
An intensity map of hydrogen 21-cm emission at redshift $z \approx 0.8$

Tzu-Ching Chang1,2, Ue-Li Pen2, Kevin Bandura3 & Jeffrey B. Peterson3

Figure 2 | The cross-correlation between the DEEP2 density field and GBT H\textsc{i} brightness temperature. Crosses, measured cross-correlation
Parkes@60: possible upgrade path?
HIPSR: new unified Pks backend

- 16x2 beams
- 400 MHz bandwidth
- 8192 channels
- 20 Tflops Tesla GPU compute power
HIPSR first light: 2011 Oct 6
Summary

• **PKS@40 paved way for multibeam astronomy**
 - high survey speed for HI and pulsars
 - pipeline data reduction
 - large collaborations
 - ASKAP

• **PKS@50 will pave the way for SKA techniques**
 - intermediate redshift galaxy stacking
 - intermediate redshift intensity mapping
 - RFI excision