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Polarimetry – Why Do It?

• EM radiation is a transverse wave, with two independent components.  

• Polarimetry refers to the characteristics of these two components. 

– Their amplitudes, and the phase relation between them.   

• Why do we care about polarization?  

• Because various physical processes emit radiation which is partially 

polarized.  

• Measuring the polarization gives us additional information into the 

physical processes at play.  

• Examples:

– Synchrotron radiation – orientation and strength of magnetic fields.

– Zeeman splitting – strength of fields.  

– Electron scattering

– Faraday rotation (of linear polarization due to magnetic fields)

– Polarization of radiation from thermal bodies – measures the 

material refractive index.

CSIRO Polarization Primer



Interferometric Polarimetry

• The description of polarization usually begins with utilizing the  ‘quasi-

monochromatic approximation’.  

• Here we imagine analysis of radiation passed through a very narrow 

filter – say 1 Hz wide.  

• The characteristics of the field are then quasi-stable for ~1 second.

• Maxwell’s equations then tell us the electric field describes an ellipse.  
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In general, three parameters are 

needed to describe  the ellipse.
• Ax – X-axis amplitude max

• Ay – Y-axis amplitude max

• a = atan(Ay/Ax) – an angle describing 

the orientation

If the E vector is rotating (as seen by the 

observer):  

• Clockwise, the wave is Left Elliptically 

Polarized:

• Anti-clockwise, the wave is Right 

Elliptically Polarized.  



Linear and Circular Bases

• It is easy to conceptualize an elliptically polarized propagating wave 

as the sum of two orthogonal linear components:  Ex and Ey.  

– There are three factors:  the two amplitudes, and the phase 

between them.  

• But we can also describe the elliptical wave in terms of two 

oppositely rotating circular components.

• Again – three factors:  Er , El , and the phase between them.  

• This is sufficient for the monochromatic case, but in general, 

radiation is broad-band, originating from an uncountably large 

number of electrons.

• This results in partial polarization, for which we need a fourth 

parameter.  
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Circular Basis Example
• The polarization ellipse 

(black) can be decomposed 

into an X-component of 

amplitude 2, and a Y-

component of amplitude 1 

which lags by ¼ turn.  

• It can alternatively be 

decomposed into a 

counterclockwise (RCP) 

rotating vector of length 1.5 

(red), and a clockwise 

rotating (LCP) vector of 

length 0.5 (blue).   
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• Elliptical Wave, decomposed into orthogonal 

linear components.
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• The same wave, decomposed into orthogonal 

circular components
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• Both decompositions, for a horizontal ellipse
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• Both decompositions, for a tilted ellipse.  



Antennas are Polarized!  

• The choice of basis for the description is useful, since 
antenna/receiver systems are themselves naturally polarized.  

• They are designed to output signals (voltages) proportional to the 
amplitude and phase of either the linear, or circular, components.  

• They provide two simultaneous voltage signals whose values are 
(ideally) representations of the electric field components – either in a 
circular or linear basis.  

• We have two antennas, each with two polarized outputs.  

• We can then form four complex correlations.  

Polarizer RCP or HorizontalLCP or Vertical

Our Generic Sensor
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Four Complex Correlations per Pair of Antennas

• Two antennas, each with 

two differently polarized 

outputs, produce four 

complex correlations.  

• The ‘RR’ and ‘LL’ (or VV 

and HH) correlations are 

called the ‘parallel hands’.

• The ‘RL’ and ‘LR’(or VH 

and HV) correlations are 

called ‘cross-hands’.  

L1R1

X X X X

L2R2

Antenna 1 Antenna 2

RR1R2 RR1L2 RL1R2 RL1L2

(feeds)

(polarizer)

(signal

transmission)

(complex 

correlators)

CSIRO Polarization Primer

What is the relation between these correlations and polarimetry?



Stokes Parameters -- Definition
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• The Stokes Parameters (named for George 

Stokes, 1842) are now commonly used to 

describe astronomical signal polarization.  

• They have units of spectral power, or 

brightness.  

• I describes the brightness (‘total power’).  

• Q and U describe the linear polarization:

+Q => vertical EVPA, -Q => horizontal EVPA

+U => EVPA at 45deg, -U => EVPA at -45 deg

EVPA:

• V describes circular polarization:  

• +V => Right CP,  -V => Left CP

• In general, the signal is a mixture of Q, U, and V.

• Always, 

0.5arctan( / )U Q =

I

Q U



Stokes Parameters
• Three parameters are sufficient to describe the monochromatic EM 

wave properties.  

• It is most convenient to have the three parameters share the same 
units, and have easily grasped physical meanings.

• It is standard in radio astronomy to utilize the parameters defined by 
George Stokes (1852), and introduced to astronomy by Chandrasekhar 
(1946):

• Note that  

• But, wideband signals are partially polarized:                

CSIRO Polarization Primer

Linear Basis             Circular Basis

Q and U 

describe 

linear poln

V describes 

circular poln

I describes the 

total flux



Stokes Visibilities for Interferometry

• You will all know that the Visibility Function, V(u,v), is related to the sky 

brightness by Fourier Transform:

V (u,v) I (l,m) (a Fourier Transform Pair)

• In basic derivations, ‘I’ referred to a single polarization (like ‘H’ of ‘V’).  

• We will now be more formal, and consider the Stokes brightness 

distributions for I, Q, U, and V.  

• Define the Stokes Visibilities I, Q, U, and V, to be the Fourier 

Transforms of these brightness distributions.  

• Then, the relations between these are:

• I  I,     Q Q,     U U,     V V

• Stokes Visibilities are complex functions of (u,v), while the Stokes Images 

are real functions of (l,m).  

• All Stokes visibilities are Hermitian  (V(u,v) = V*(-u,-v))

• Our task is now to measure these Stokes visibilities.
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Stokes Visibilities – Special Case

• For simplicity, I omit (for this slide) the orientation of the dipoles, and 

presume they are aligned with the (a,d) sky coordinates.  

• This applies to equatorial-mounted antennas.  
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• All quantities here are complex valued.  

• For both systems, Stokes ‘I’ is the sum of the parallel-hands.  

• Stokes ‘V’ is the difference of the crossed hand responses for linear, (good) 

and is the difference of the parallel-hand responses for circular (bad).

• Stokes ‘Q’ involves only cross-hand correlations in the circular system (good), 

but involves all four correlations in the linear (bad).  

Perfect Circular                           Perfect  Linear
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Stokes Visibilities – General Case

• The more general form, which includes the orientation of the antenna 

w.r.t. the celestial coordinate frame (described by the ‘parallactic angle’ 

looks like these:
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• Note that in the circular system, the linear components (Q and U) are 

uniquely found in the cross-hand components, while in the linear system, they 

require all four correlations.  

• This is a major advantage to circular systems (if linear polarization is what 

you’re interested in).  

Circular                                      Linear
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I and QVisibilities for Mars at 23 GHz
VLA, 23 GHz, ‘D’ Configuration, January 2006

I                                 Q

Amplitude
• |I| is close to a J0

Bessel function. 

• Zero crossing at 20kl

tells us Mars diameter ~ 

10 arcsec.
• |Q|amplitude ~0 at zero 

baseline.
• |Q| zero at 30 kl means 

polarization structures ~ 

8 arcsec scale.

Phase
• I phase alternates 

between 0 and p.
• Q phase = both 0 and p

in the ‘main lobe’ – this 

tells us there are both 

positive and negative 

structures, at different 

PA.
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Imaging – Polarization of the Moon

• Shown here are the total intensity (I), 

polarized intensity (P), and Q and U 

images at 1040 MHz.

• The apparent elliptical brightness 

shape (in both I and P) is real –

observations were taken in June (sun 

at high dec, moon was low) 

• The edge-brightened polarization 

maximum is exactly as expected.  See 

Perley & Butler, ApJSupl, 206, 16 

(2013) for details.  

• The Q and U images tell us right 

away that the EVPAs are very nearly 

radial (as expected).  

I

Q U

P
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Example Images:  Moon, Venus, Mars

Moon at 1.02 GHz                                      Venus at 3.24 GHz                           Mars at 8.49 GHz

30 arcmin diameter                                        30 arcsec                                       5 arcsec

Limb darkening due to primary beam         Cold regions are elevated terrain

attenuation.                                    (Ovda and Thetis Regio)

• Theory tells us that thermal radiation emitted from underneath the surface of a 

solid planet must be radially polarized, reaching about 30% near the limb.   

• The maximum polarization depends on the dielectric constant of the material.

• We can use the observed position angle to calibrate our instruments.  
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Not as Simple as it Seems …

• From this, you may be led to think this is easy.  

– Add polarizers, cross-multiply, calibrate, image, and done!

• Sadly, the reality is a bit more complex.

– The polarizers are not perfect.  

– Real electronics ‘leak’ signals from one polarization to the other.

• And – to heap insult upon insult

– Real antennas are differentially spatially polarized – their 

polarization is a function of angle on the sky.    

• Bottom line here is that the antenna output labelled (say) ‘R’ is not 

wholly ‘R’, but contains a little bit of ‘L’.  

• This is an issue of design, and of the software needed to correct for the 

contamination.  
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VLA’s Polarized Beams at 3 GHz.

• The VLA’s primary antenna 

response is significantly 

polarized.

• This is due primarily to 

asymmetries in the optical 

design.

• V polarization due to offset of 

the feed from axis of symmetry.

• Q, U polarizations due to 

parabolic reflector.  

• These antenna-imposed signals 

must be removed from data to 

enable wide-field astronomical 

polarimetry.  

CSIRO Polarization Primer

I

U
Q

V



VLA’s I and V beams – all 8 bands

• I and V beam patterns for all 

eight JVLA bands.

• I beams (scaled) are all very 

similar.

• V beams rotate according to 

the position angle of the offset 

feed.  

• V>0 => Red = RCP

• V< 0 => Purple = LCP
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L             S             C            X

1.5 GHz        3.0 GHz       6 GHz           10 GHz

U            K             A            Q

15 GHz          23 GHz          34 GHz        45 GHz

I

V

I
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Jones Matrix Algebra

• The analysis of how a real interferometer, comprising real antennas 

and real electronics, is greatly facilitated through use of Jones matrices.  

• In this, we break up our general system into a series of 4-port 

components, each of which is presumed to be linear.

• Chain them all together, and represent the telescope as:

• And write:

• Or, in shorthand           V’ = JV

• The four G components of the Jones matrix describe the linkages 

within the ‘grey box’.  
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The Generalized Formulation (circular basis)
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• The D’s are (unimaginatively) called the ‘D-terms’, and describe the 

amplitude and phase of the cross-over signals from R to L, and L to R. 

• Main Point:  The effect of an impure polarizer is to couple all four of 

the Stokes visibilities to all four cross-products.  

• If the ‘D’ terms are known in advance, this matrix equation can be 

easily inverted, to solve for the Stokes visibilities in terms of the 

measured Rs, and the known Ds.  

• For an array with the same parallactic angle for each 

element, ignoring the gains, an alternate form can be written:



Calibration of Polarimetric Data

• While it’s easy to write down these equations, it’s not so simple to 

determine the necessary calibration constants.  

• For ‘perfect’ polarizers, we have a number of calibration parameters to 

determine:

– The parallel-hand gain amplitudes

– The parallel-hand phases (w.r.t. a reference antenna).  

– The parallel-hand delays (w.r.t. a reference antenna).  

– The cross-hand phases.  
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Parallel-Hand Gains
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• For perfect circular or linear systems, the four correlations are related 

to the Stokes visibilities by:

• By far the simplest approach is to utilize unpolarized calibrators!  

• But, most calibrators are polarized, so we must deal …

• In fact, circular polarization is very low for most calibrators, (<< 1%), so 

circular systems have a decided edge!  

• For linearly polarized systems, must know, or be able to derive, the 

linear polarization of the calibrators as part of the calibration regimen.  
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Crossed-Hand Phase

• Parallel-hand calibration treats each polarization independently.  

• For amplitudes, this is appropriate.  

• But for phases, there remains one unknown variable – the cross-hand 

phase of the reference antenna.  

– This is because phases are not absolute – interferometers measure 

the phase difference between antenna signals, so an arbitrary phase 

offset between the parallel hand channels will remain.  

• This offset has interesting implications in polarimetry:

• For Circular systems, the effect is to rotate the EVPA of the observed 

linearly polarization by twice the phase offset – the rotation is about the V 

axis in the Poincare sphere.  

• For Linear systems, the effect is rotate Q, U, and V about an axis in the 

(Q,U) plane.  For an equatorial antenna, the rotation is about the Q axis in 

the Poincare sphere.  
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Calibrating the cross-hand phase

• The best way is to design the electronics so that the phase differential 

between the signal channels (R-L, or V-H) is continuously measured.  

• These values can then be fed to the software, which makes the 

necessary adjustments.  

• Sadly, the VLA has no such on-board calibration system.  So, for VLA 

polarimetry, one must solve for the residual cross-hand phase by 

observation of a polarized calibrator source with known EVPA.  

• For linear systems, without functioning monitoring, the procedure is a 

bit more difficult.  One can show that, (see EVLA Memo 219) in the 

presence of a cross-hand phase, the apparent Stokes’ visibilities are:
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Cross-hand phase for Linears

• The apparent U and V visibilities then give the required phase:

– Provided that the calibrator has no actual V polarization.  

• This works well if you have enough polarized signal.  

• Also note that this method fails when the actual Q and U 

signals meet the following criterion:  

• For equatorial mounts, this becomes U = 0.  

• For alt-az mounts, and long observations, this condition will 

only occur twice per day.  
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' 'tan /V U =

cos 2 sin 2 0P PU Q −  =



Feed Handedness Issues -- Circulars 

• I finish up with an amusing side topic.  

• What happens if the engineers/technicians incorrectly connect 

the feeds.  

• For circulars, only one error can be made:  R L.  

– If only one antenna is ‘wired backwards’, the diagnosis is simple – the 

high parallel-hand power will show up in the cross-hand channels for 

the baseline connecting the backwards wired antenna to a correct one. 

• More interesting is when ALL the antennas are reversed-wired.

• Examination of the fundamental equations show that:
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Linear Mis-Assignments

• For Linear systems, the situation is more interesting … (and 

confusing).  

• There are two errors possible:

– The ‘H’ and ‘V’ dipoles are interchanged, or/and

– One of the two is ‘backwards’ phased (rotated by 180 degrees).  

• The effect of connecting a dipole ‘backwards’ is to invert the 

phase by 180 degrees.  A ‘truth’ table is useful:
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H,V Correct H,V Reversed H,V Correct H,V Reversed

Phase Correct Phase Correct Phase Reversed Phase Reversed

I I I I

V -V -V V

Q -Q Q -Q

U U -U -U



A picture is worth 1000 words …

• So, what does these errors do to a polarimetric image?  

• Use the Moon as an example.  (MeerKAT data at 867 MHz)
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Why is this important?  

• Because mistakes happen!

• On the VLA, nobody knew which dipole fed which channel.  

• To further complicate matters, new software reversed the 

assignments.  

• On MeerKAT, nobody told the engineers that the IAU/IEEE 

standard was for ‘X’ to be vertical, and ‘Y’ horizontal.  

• Investigations showed that indeed, the signal channel 

assignments were indeed reversed.  

• (And in addition, it seems the S-band receiver has the phase 

inverted as well).  
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