The Hypergiant Masers: Episodic Mass Loss, Convective Activity and Magnetic Fields

Roberta M Humphreys
University of Minnesota

VY CMa
NML Cyg
IRC +10420
The Cool Hypergiants -- lie just below the upper luminosity envelope with spectral types A to M, high mass loss rates, photometric and spectroscopic variability, large infrared excess, and some with extended circumstellar ejecta.

Point sources:
- \(\mu \) Cep
- \(\rho \) Cas
- HR5171a
- HR8752

Extended sources + complex ejecta:
- VX Sgr
- S Per
- IRC +10420
- NML Cyg
- VY CMa
The Post Red Supergiant -- IRC +10420

Strong IR excess
$L \sim 5 \times 10^5 \ L_{\text{sun}}$
High mass loss rate $3-6 \times 10^{-4}$
One of warmest maser sources
Spectroscopic variation late F \rightarrow mid A

Complex CS Environment
One or more distant reflection shells
Within 2 “ – jet-like structures, rays, small nearly spherical shells or arcs
Evidence for high mass loss ejections in the past few hundred years

1” = 5300 AU
OH maser emission peculiar, varying intensity, distributed 1.3 – 1.5” from star
NML Cyg – Interacting with Its Environment

Optically obscured star embedded in a small asymmetric bean-shaped nebula, strong OH/IR source
mass loss rate 6×10^{-5}
$L \sim 5 \times 10^5$ L_{sun}

Similar in shape to HII contours (30” away) due to interaction of RSG wind with ionizing photons hot stars in Cyg OB2

$0''.25 = 500$ AU

Schuster, Humphreys & Marengo (2006) showed this is the molecular photodissociation boundary
VY CMa -- the extreme red supergiant, powerful OH/IR source

Mass loss rate 4×10^{-4}
$L \sim 5 \times 10^5 \, L_{\text{sun}}$

Famous asymmetric red nebula, > 10" across, visible in small ground-based telescopes.

HST/WFPC2 images revealed complex environment – numerous knots, filamentary arcs, prominent nebulous arc

Due to multiple, asymmetric ejection episodes possibly from large-scale convective regions on the star.
A strong velocity gradient from reflected absorption lines across the NW arc.

Expanding relative to star ~ 50 km/s

~ 500 year ago
2D spectra of strong K I emission lines across the arcs

NW Arc

Arens 1 and 2
Geometry of the Ejecta -- Comparison with Maser Maps

OH maser peaks
Bowers et al 1983

H2O masers
Richards et al 1998
Comparison with Maser maps

SiO emission appears bipolar but masers are N/S

Recent (Muller et al 2007) CO map is bipolar but with a very large opening angle

Masers and CO emission do not present a consistent image of the geometry and do not align with the optical features.
Asymmetric Mass Loss Events and the Origin of the Discrete Ejecta

Images + Doppler Velocities of VY CMa →

Arcts and Knots are spatially and kinematically distinct; ejected in different directions at different times; not aligned with any axis of symmetry.

They represent localized, relatively massive (few x 10^{-3} M_{\text{sun}}) ejections

Large-scale convective activity

Magnetic Fields

VY CMa -- circular polarization of H_{2}O (Vlemmings et al 2002, 2004),
-- circular polarization of SiO (Barvainis et al 1987, Kemball & Diamond (1997),
-- Zeeman splitting of OH (Szymczak & Cohen 1997, Masheder et al 1999)

→ ~ 8 x 10^{3} G at the star (extrapolating from OH masers at several 1000 AU)

IRC +10420 -- circular polarization of OH (Nedoluha & Bowers 1992)

→ ~ 3 x 10^{3} G at the star
Collaborators

Kris Davidson
Robert Gehrz
Andrew Helton
George Herbig
Terry J. Jones
Gerald Ruch
Nathan Smith
George Wallerstein

Kris Davidson
Robert Gehrz
Terry J. Jones
Nathan Smith

Michael Schuster
Massimo Marengo