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Polarization – What is it?

• EM radiation is a transverse wave (in the far field), comprising 

propagating electric and magnetic fields.

• The E and B fields are orthogonal, and directly connected, so we 

normally think of the E-field.  

• Being a transverse wave, the E-field comprises two orthogonal 

components (‘X’ and ‘Y’, or ‘V’ and ‘H’).  

• These components propagate independently.  

• Polarimetry refers to the characteristics of these two components. 

– Their amplitudes, and the phase relation between them.  
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Polarimetry – Why Do It?

• Measuring the polarization gives us additional information into the 

physical processes at play.  

• Examples:

– Synchrotron radiation – orientation and strength of magnetic fields.

– Zeeman splitting – strength of fields.  

– Electron scattering

– Faraday rotation (of linear polarization due to magnetic fields)

– Polarization of radiation from thermal bodies – measures the 

material refractive index.
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My ‘magic screen’

• It helps to be able to visualize the incoming electric/magnetic fields.

• Imagine a ‘magic screen’, which you hold up to intercept incoming 

radiation.  

• The magic screen has ‘visible electrons’, which are reacting to the 

electric fields passing through.  

• What will you see?  

• For wideband data – it’s a mess, with random motions .  

– But if you watch closely, you may note that the motions are not 

completely random, but may prefer certain position angles.  

• For mathematical analysis, it is again useful to consider a minutely 

narrow bandwidth, for which the magic electron motion becomes 

quite simple.  
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The General Case -- Elliptical

• The description of polarization usually begins with utilizing the  ‘quasi-

monochromatic approximation’.  

• Here we imagine analysis of radiation passed through a very narrow 

filter – say 1 Hz wide.  

• The characteristics of the field are then quasi-stable for ~1 second.

• Maxwell’s equations then tell us the electric field describes an ellipse.  
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In general, three parameters are 

needed to describe  the ellipse.
• Ax – X-axis amplitude max

• Ay – Y-axis amplitude max

• a = atan(Ay/Ax) – an angle describing 

the orientation

If the E vector is rotating (as seen by the 

observer):  

• Clockwise, the wave is Left Elliptically 

Polarized:

• Anti-clockwise, the wave is Right 

Elliptically Polarized.  



Linear Basis –Various polarization 

states.

• This nice animation (from 

Wikipedia) shows how linear and 

circularly polarized waves can be 

decomposed into orthogonal 

linear components.  
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Linear and Circular Bases

• It is easy to conceptualize an elliptically polarized propagating wave 

as the sum of two orthogonal linear components:  Ex and Ey.  

– There are three factors:  the two amplitudes, and the phase 

difference fxy between them.  

– This phase difference describes how far ‘behind’ the ‘Y’ 

component sinusoid is behind the ‘X’ component.  

• But we can also describe the elliptical wave in terms of two 

oppositely rotating circular components.

• Again – three factors:  Er , El , and the phase frl between them.  

• This is sufficient for the monochromatic case, but in general, 

radiation is broad-band, originating from an uncountably large 

number of electrons.

• This results in partial polarization, for which we need a fourth 

parameter.  
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Circular Basis Example
• The polarization ellipse 

(black) can be decomposed 

into an X-component of 

amplitude 2, and a Y-

component of amplitude 1 

which lags by ¼ turn.  

• It can alternatively be 

decomposed into a 

counterclockwise (RCP) 

rotating vector of length 1.5 

(red), and a clockwise 

rotating (LCP) vector of 

length 0.5 (blue).   
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• Elliptical Wave, decomposed into orthogonal 

linear components.
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• The same wave, decomposed into orthogonal 

circular components



Intro to Interferometric Polarization

• Both decompositions, for a horizontal ellipse
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• Both decompositions, for a tilted ellipse.  



Stokes Parameters – Definition

• Perfectly monochromatic EM waves have an E-vector which traces a 
perfect ellipse in a fixed plane.  

• We utilize in radio astronomy the parameters defined by George 
Stokes (1852), and introduced to astronomy by Chandrasekhar 
(1946):

where AX and AY are the cartesian amplitude components of the E-field, 
and dXY is the phase lag between them, and

AR and AL are the opposite circular amplitude components of the E-field, 
and dRL the phase lag between them.  

• By (IAU) convention, the ‘X’ axis points to the NCP, the ‘Y’ axis to 
the east.  

• Also by IAU convention, LCP has the E-vector rotating clockwise 
for approaching radiation. 

• Monochromatic radiation is 100% polarized:            

13

Units of power:

Jy, or Jy/beam

CASS School on Radio Astronomy, Narrabri



Stokes Parameters -- Definition
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• The Stokes Parameters (named for George 

Stokes, 1842) are now commonly used to 

describe astronomical signal polarization.  

• They have units of spectral power, or 

brightness.  

• I describes the brightness (‘total power’).  

• Q and U describe the linear polarization:

+Q => vertical EVPA, -Q => horizontal EVPA

+U => EVPA at 45deg, -U => EVPA at -45 deg

EVPA:

• V describes circular polarization:  

• +V => Right CP,  -V => Left CP

• In general, the signal is a mixture of Q, U, and V.

• Always, 

0.5arctan( / )U Q =

I

Q U



Stokes Parameters, cont.

• To help visualize the meaning of the Stokes parameters, it’s useful to 

use a ‘Stokes wheel’.  
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Linear Polarization Position Angle
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0.5arctan( / )U Q =

• The Stokes parameters are real 

numbers, with units of Jy, of 

Jy/beam.  

• If both Q and U are positive, 

then we know the EVPA 

(electric vector position angle) is 

between 0 and 45 degrees.  

• The formal definition is:

• Note that the 0.5 factor arises 

because the EVPA is not a 

vector – it is an orientation.  

• Rotation by 180 degrees results 

in the same orientation.  

45 -45

135 -135



Stokes Visibilities for Interferometry

• You will all know that the Visibility Function, V(u,v), is related to the sky 

brightness by Fourier Transform:

V (u,v) I (l,m) (a Fourier Transform Pair)

• In basic derivations, ‘I’ referred to a single polarization (like ‘H’ of ‘V’).  

• We will now be more formal, and consider the Stokes brightness 

distributions for I, Q, U, and V.  

• Define the Stokes Visibilities I, Q, U, and V, to be the Fourier 

Transforms of these brightness distributions.  

• Then, the relations between these are:

• I  I,     Q Q,     U U,     V V

• Stokes Visibilities are complex functions of (u,v), while the Stokes Images 

are real functions of (l,m).  

• All Stokes visibilities are Hermitian  (V(u,v) = V*(-u,-v))

• Our task is now to measure these Stokes visibilities.

Intro to Interferometric Polarization



Stokes Parameters and Stokes Visibilities

• So (you might say to yourself), that’s all very nice, but how do 

we actually measure these Stokes Visibilities?  

• Interesting fact (probably a theorem, but I don’t actually know 

if there is one):

• You cannot build an interferometer which directly produces 

Stokes visibilities.  

• So we need a little more background.  

• Although it may seem an oxymoron, in order to measure 

source polarization, we need to have polarized antennas.  

Intro to Interferometric Polarization



Antennas are Polarized!  

• The choice of basis for the description is useful, since 
antenna/receiver systems are themselves naturally polarized.  

• They are designed to output signals (voltages) proportional to the 
amplitude and phase of either the linear, or circular, components.  

• They provide two simultaneous voltage signals whose values are 
(ideally) representations of the electric field components – either in a 
circular or linear basis.  

• We have two antennas, each with two polarized outputs.  

• We can then form four complex correlations.  

Polarizer RCP or HorizontalLCP or Vertical

Our Generic Sensor
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Four Complex Correlations per Pair of Antennas

• Two antennas, each with 

two differently polarized 

outputs, produce four 

complex correlations.  

• The ‘RR’ and ‘LL’ (or VV 

and HH) correlations are 

called the ‘parallel hands’.

• The ‘RL’ and ‘LR’(or VH 

and HV) correlations are 

called ‘cross-hands’.  

L1R1

X X X X

L2R2

Antenna 1 Antenna 2

RR1R2 RR1L2 RL1R2 RL1L2

(feeds)

(polarizer)

(signal

transmission)

(complex 

correlators)
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What is the relation between these correlations and polarimetry?



Antenna Polarization Characteristics

• Consider an antenna with two ports labelled ‘R’ and ‘L’ (or ‘V’ and ‘H’).  

• Connect a monochromatic oscillator to this port, and go ‘far far away’ to 

measure the polarization properties of the radiated field.  

• You will find, in general, and elliptical response, characterized by three 

parameters:  An amplitude A, an ellipticity , and a position angle Y of the 

major axis.  
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• From analytic geometry, with:

• We find

• And  

tan /b a =

tan /y xA Aa =

tan 2 tan 2 cos ya dY =

sin 2 sin 2 sin y a d= −



The response of one of the four 

correlations:

Rpq is the complex output from the interferometer, for polarizations

p and q from antennas 1 and 2, respectively.

Y and  are the antenna polarization major axis and ellipticity for 

polarizations p and q.  

I,Q, U, and V are the Stokes Visibilities 

Gpq is a complex gain, including the effects of transmission and electronics 

This is the remarkable expression derived by Morris, Radhakrishnan and Seielstad

(1964), relating the output of a single complex correlator to the complex Stokes 

visibilities, where the antenna effects are described in terms of the polarization 

ellipses of the two antennas.
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For pure systems, it’s easy!

• Before giving up in despair, note that this interesting expression 

becomes very simple for antennas which are perfectly polarized.  

• For pure linearly polarized antennas, the ellipticity is zero:   = 0.  

Then, for the two linearly polarized channels, 

– Yv = 0, Yh = p/2.   (presuming equatorial feeds).  

• While for perfectly circularly polarized antennas, we have:  r = -p/4, 

l = p/4.  (For perfectly circular feeds, Y has no meaning).  

• Then, (exercise for the student), that wondrous expression from 

Morris et al. provides remarkably simple results:
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For Pure Linearly Polarized Antennas

• Here are the expressions, assuming equatorial mounts (zero 

parallactic angle):

• For which the solutions for the Stokes Visibilities is dead-easy:

*

1 2 1 2

*

1 2 1 2

*

1 2 1 2

*

1 2 1 2

( ) / 2

( ) / 2

( ) / 2

( ) / 2

V V V V

H H H H

V H V H

H V H V

R V V

R V V

R V V

R V V

= = +

= = −

= = +

= = −

I Q

I Q

U iV

U iV
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While for Pure Circular …
• Again the reduction is simple (again assuming zero parallactic angle):

• Giving for the visibilities:
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Stokes Visibilities – Comparing Bases

• For simplicity, I omit (for this slide) the orientation of the dipoles, and 

presume they are aligned with the (a,d) sky coordinates.  

• This applies to equatorial-mounted antennas.  

( )
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+

I
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Q
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• All quantities here are complex valued.  

• For both systems, Stokes ‘I’ is the sum of the parallel-hands.  

• Stokes ‘V’ is the difference of the crossed hand responses for linear, (good) 

and is the difference of the parallel-hand responses for circular (bad).

• Stokes ‘Q’ involves only cross-hand correlations in the circular system (good), 

but involves all four correlations in the linear (bad).  

Perfect Circular                           Perfect  Linear
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Stokes Visibilities – General Case

• The more general form, which includes the orientation of the antenna 

w.r.t. the celestial coordinate frame (described by the ‘parallactic angle’ 

looks like these: (easily derived from that same expression):
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• Note that in the circular system, the linear components (Q and U) are 

uniquely found in the cross-hand components, while in the linear system, they 

require all four correlations.  

• This is a major advantage to circular systems (if linear polarization is what 

you’re interested in).  

Circular                                      Linear
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Circular vs. Linear?

• Both systems provide straightforward derivation of the Stokes’ 

visibilities from the four correlations.  

• Deriving useable information from differences of large values requires 

both good stability and good calibration.  Hence  

– To do good circular polarization using circular system, or good linear polarization 

with linear system, we need special care and special methods to ensure good 

calibration.  

• There are practical reasons to use linear:

– Antenna polarizers are natively linear – extra components are needed to produce  

circular. This hurts performance.  Linear is simpler, more sensitive, and purer.  

– These extra components are also generally of narrower bandwidth – it’s harder to 

build circular systems with really wide bandwidth.

– At mm wavelengths, the needed phase shifters are not available. 

• One important practical reason favoring circular:  

– Calibrator sources are often significantly linearly polarized, but have imperceptible 

circular polarization.  

– Gain calibration is much simpler with circular feeds, especially for ‘snapshot’ style 

observations.  (More on this, later).
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Calibration Troubles …

• To understand this last point, note that for the linear system:

2/)2sin2cos(
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*

2121

*

2121
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PPVVVV
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• To calibrate means to solve for the GV and GH terms.

• To do so requires knowledge of both Q and U.  

• Virtually all calibrators have notable, and variable, linear pol.  

• Meanwhile, for circular:
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+=

LLLL
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GGR

GGR

• Now we have *no* sensitivity to Q or U (good!).  Instead, we have a 
sensitivity to V.

• But as it turns out – V is nearly always negligible for the 1000-odd 
sources that we use as standard calibrators.  
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I and QVisibilities for Mars at 23 GHz
VLA, 23 GHz, ‘D’ Configuration, January 2006

I                                 Q

Amplitude
• |I| is close to a J0

Bessel function. 

• Zero crossing at 20kl

tells us Mars diameter ~ 

10 arcsec.
• |Q|amplitude ~0 at zero 

baseline.
• |Q| zero at 30 kl means 

polarization structures ~ 

8 arcsec scale.

Phase
• I phase alternates 

between 0 and p.
• Q phase = both 0 and p

in the ‘main lobe’ – this 

tells us there are both 

positive and negative 

structures, at different 

PA.
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Imaging – Polarization of the Moon

• Shown here are the total intensity (I), 

polarized intensity (P), and Q and U 

images at 1040 MHz.

• The apparent elliptical brightness 

shape (in both I and P) is real –

observations were taken in June (sun 

at high dec, moon was low) 

• The edge-brightened polarization 

maximum is exactly as expected.  See 

Perley & Butler, ApJSupl, 206, 16 

(2013) for details.  

• The Q and U images tell us right 

away that the EVPAs are very nearly 

radial (as expected).  

I

Q U

P
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Example Images:  Moon, Venus, Mars

Moon at 1.02 GHz                                      Venus at 3.24 GHz                           Mars at 8.49 GHz

30 arcmin diameter                                        30 arcsec                                       5 arcsec

Limb darkening due to primary beam         Cold regions are elevated terrain

attenuation.                                    (Ovda and Thetis Regio)

• Theory tells us that thermal radiation emitted from underneath the surface of a 

solid planet must be radially polarized, reaching about 30% near the limb.   

• The maximum polarization depends on the dielectric constant of the material.

• We can use the observed position angle to calibrate our instruments.  
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Cygnus A at 17.2 GHz

I                                 Q                                             

Pol I
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U

• Cygnus A is a 

luminous radio 

galaxy, one of 

the strongest 

sources in the 

sky.  

• It is highly 

polarized at 

high (> 5 GHz) 

frequencies.  

• Shown here are 

some D-

configuration 

data, at 17.2 

GHz.



A more traditional representation.
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Not as Simple as it Seems …

• From this, you may be led to think this is easy.  

– Add polarizers, cross-multiply, calibrate, image, and done!

• Sadly, the reality is a bit more complex.

– The polarizers are not perfect.  

– Real electronics ‘leak’ signals from one polarization to the other.

• And – to heap insult upon insult

– Real antennas are differentially spatially polarized – their 

polarization is a function of angle on the sky.    

• Bottom line here is that the antenna output labelled (say) ‘R’ is not 

wholly ‘R’, but contains a little bit of ‘L’.  

• This is an issue of design, and of the software needed to correct for the 

contamination.  
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Managing Impure Polarizers

• Sadly, despite the best efforts of our skilled engineers, antennas are not 

purely polarized.  

• This means that the port labelled ‘R’, has a bit of ‘L’ in it, and vice versa. 

• The analysis of such systems is commonly done via ‘Jones Matrices’.  The 

concept is simple

•
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Jones Matrix Algebra

• The analysis of how a real interferometer, comprising real antennas 

and real electronics, is greatly facilitated through use of Jones matrices.  

• In this, we break up our general system into a series of 4-port 

components, each of which is presumed to be linear.

• Chain them all together, and represent the telescope as:

• And write:

• Or, in shorthand           V’ = JV

• The four G components of the Jones matrix describe the linkages 

within the ‘grey box’.  

'

'

'

RR LR RR

RL LL LL

G G EV

G G EV

    
=    
   

ER

EL

V’R

V’L
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The Generalized Formulation (circular basis)
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• The D’s are (unimaginatively) called the ‘D-terms’, and describe the 

amplitude and phase of the cross-over signals from R to L, and L to R. 

• Main Point:  The effect of an impure polarizer is to couple all four of 

the Stokes visibilities to all four cross-products.  

• If the ‘D’ terms are known in advance, this matrix equation can be 

easily inverted, to solve for the Stokes visibilities in terms of the 

measured Rs, and the known Ds.  

• For an array with the same parallactic angle for each 

element, ignoring the gains, an alternate form can be written:



Approximations for Good Polarizers
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• Considerable simplification occurs if the polarizers are good.

• Typically circular polarizers have |D| < 0.05.  

• If |D|<<1, we can then ignore D*D products.

• Furthermore, if  |Q| and |U| << |I|, we can ignore products between 

them and the Ds.  (OK for point sources --- not always ok for 

extended sources).

• And V can be safely assumed to be zero.

• These approximations then allow us write:



‘Nearly’ Circular Feeds 

(small D approximation)

• We get:

• The cross-hand responses are contaminated by a term 
proportional to ‘I’.  

• |D| ~ 0.05 ~ |Q|/|I| => the two terms are of comparable 
magnitude.  

• To recover the linear polarization, we must determine these D-
terms, and remove their contribution.  
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Nearly Perfectly Linear Feeds

• In this case, assume that the ellipticity is very small ( << 1), and that the 

two feeds (‘dipoles’) are nearly perfectly orthogonal.  

• We then define a *different* set of D-terms:

• The angles jV and jH are the angular offsets from the exact horizontal 

and vertical orientations, w.r.t. the antenna.  
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• The situation is the same as for the circular system.  
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Measuring Cross-Polarization Terms

• Correction of the X-hand response for the ‘leakage’ is important, since the 

D-term amplitude is comparable to the fractional polarization.

• There are two standard ways to proceed:

1. Observe a calibrator source of known polarization (preferably zero!)

2. Observe a calibrator of unknown polarization over an extended period.  

• Case 1:  Calibrator source known to have zero polarization.  
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• Then a single observation should suffice to measure the leakage 

terms.  
• In fact, in this approximation, only 2Nant-1 terms can be determined.  

One must be assumed (usually = 0).  All the others are referred to 

this.  These are called the ‘relative’ D terms.  
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Determining Source and Antenna Polarizations

Case 2:  Calibrator with significant (or unknown) polarization.

• As time passes, YP changes in a known way.

• The source polarization term then rotates w.r.t. the antenna leakage 

term, allowing a separation.    

Intro to Interferometric Polarization

Source polarization rotates with 

parallactic angle

Leakage term is fixed

• You can determine both the (relative) D terms and the calibrator 

polarizations for an alt-az antenna by observing over a wide 

range of parallactic angle.  (Conway and Kronberg first used this 

method.)



VLA’s Polarized Beams at 3 GHz.

• The VLA’s primary antenna 

response is significantly 

polarized.

• This is due primarily to 

asymmetries in the optical 

design.

• V polarization due to offset of 

the feed from axis of symmetry.

• Q, U polarizations due to 

parabolic reflector.  

• These antenna-imposed signals 

must be removed from data to 

enable wide-field astronomical 

polarimetry.  
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VLA’s I and V beams – all 8 bands

• I and V beam patterns for all 

eight JVLA bands.

• I beams (scaled) are all very 

similar.

• V beams rotate according to 

the position angle of the offset 

feed.  

• V>0 => Red = RCP

• V< 0 => Purple = LCP

• Correction for beam

polarization is difficult – done 

(in principle) by ‘A-Projection’.

Intro to Interferometric Polarization

L             S             C            X

1.5 GHz        3.0 GHz       6 GHz           10 GHz

U            K             A            Q

15 GHz          23 GHz          34 GHz        45 GHz

I

V

I

V


