

Radio transients and variables

Dr Laura Driessen Postdoc at the University of Sydney

www.AstroLaura.com Laura.Driessen@Sydney.edu.au

THE UNIVERSITY OF SYDNEY

Transients vs Variables

Transient: by nature it happens once and doesn't happen again. E.g. explosions (supernovae, GRBs)

Variable: by nature can happen multiple times, periodically or otherwise. E.g. X-ray binaries (XRBs), novae, stellar flares

L. Rudnick, T. Delaney, J. Keohane & B. Koralesky, image composite by T. Rector (VLA) Stellar radio flare (from YZ Canis Minoris) was observed by Sir Bernard Lovell in 1969 using the Mark I (now Lovell) telescope

It is fortunate that these records are of unusually high quality, and because the event occurred in the early hours of a Sunday morning they are completely free from any transient forms of terrestrial interference.

ν	Area	Direction (deg)	$\Delta \theta$ (")	Nep	δt	Δt	rms	Sources	Tran.	Var.	Reference
(GHz)	(deg^2)		10000	255			(mJy)				
0.84	2776	$\delta < -30$	~45	2	12 hr	1 day–20 yr	2.8	29730	2	~ 100	Bannister et al. (2011)
1.4	0.22	<i>l</i> = 150, <i>b</i> = +53	4.5	3	6 hr	19 days,	0.015		0	2%	Carilli et al. (2003)
						17 months					
1.4	2.6	l = 151, b = +24	60	16	12 hr	1–12 days,	0.7	245	0	$\sim 1\%$	Frail et al. (1994)
						1-3 months					
1.4	120	South Gal. cap	5	2	days	7 yr	0.15	9086	0	1.4%	de Vries et al. (2004)
1.4	2500	$b \ge 30$	45	2	days	~years	0.45	7181	1		Levinson et al. (2002)
1.4	2870	$+32 > \delta > +42$	24"×2.4'	~ 1000	4 min	1 day	300		1		Aoki et al. (2014)
1.4	0.2	l = 57, b = +81	20	1852	minutes	1 day-23 yr	2	10	0		Bower & Saul (2011)
1.4	690	l = 70, b = +64	150	2	months	15 yr	3.94	4408	0	$\sim 0.1\%$	Croft et al. (2010b)
1.4	690	l = 70, b = +64	150	12	> 1 day	days-	38	4408	0	$\lesssim 0.5\%$	Croft et al. (2011)
						months					
1.4	0.2	Phase calibration		151	5 min	days-years	~ 1		0		Bell et al. (2011)
1.4	8444	North Gal. cap	5.4	\sim 55000	11 yr	\sim days–	~ 1	279407		1627	Thyagarajan et al.
						years					(2011a)
1.5	0.44	l = 237, b = +42	4.3	172	\sim days	days–6 yr	0.001	2713		58	Sarbadhicary et al. (2020)
1.4	0.5	E-CDFS	~3	49	3 months	1 day-3 mont	ths 0.003	736	0	1%	Mooley et al. (2013)
1.4	60	SDSS Stripe 82	5	3	21 yr	7 yr	0.15	1436	0	89	Hodge et al. (2013)
0.86	56	PSR J1107-5907	78	390	13 hr	2 min-13 hr	21		0	1	Hobbs et al. (2016)
1.4	5.97	$I \approx 296, b \approx -70$		6	8 yr	\sim days–8 yr	~ 1	~500	1	8	Hancock et al. (2016)
0.86	150	Spitzer SSDF	70	3	1 week	12 h-1 week	1	3722	0	1	Heywood et al. (2016)
1.4	30	NGC 7232	~17	8	12 day	~days	0.3	1653	0	9	Bhandari et al. (2018)
0.95	30	<i>l</i> = 40.5, <i>b</i> = -80	12	7	$\sim\!\!1{ m yr}$	minutes- 1 yr	0.0.035	40859	0	6	Wang et al. (2021)

Table 1.1: Summary of radio searches for variable and transient sources between 0.8 and 2 GHz, reproduced from Ofek et al. (2011a). Bold rows indicate surveys that were not included in Ofek et al. (2011a). ν is the central frequency of the survey; the area is the total area observed by the survey; $\Delta \theta$ is the FWHM of the primary beam of the instrument conducting the survey; N_{ep} is the number of epochs; δt is the time span over which each epoch was obtained; Δt is the range of separations between epochs; rms is the average root-mean-square (RMS) noise in the images; Sources is the total number of detected persistent sources; Tran. is the number of transient sources detected; Var. is the number or percentage of variable sources detected.

ν (GHz)	Area (deg ²)	Direction (deg)	Δθ (")	N _{ep}	δt	Δt	rms (mJy)	Sources	Tran.	Var.	Reference
0.84	2776	$\delta < -30$	~45	2	12 hr	1 day-20 yr	2.8	29730	2	~100	Bannister et al. (2011)
1.4	0.22	<i>l</i> = 150, <i>b</i> = +53	4.5	3	6 hr	19 days, 17 months	0.015	1 11 11	0	2%	Carilli et al. (2003)
1.4	2.6	<i>l</i> = 151, <i>b</i> = +24	60	16	12 hr	1–12 days, 1–3 months	0.7	245	0	$\sim 1\%$	Frail et al. (1994)
1.4	120	South Gal. cap	5	2	days	7 yr	0.15	9086	0	1.4%	de Vries et al. (2004)
1.4	2500	$b \ge 30$	45	2	days	~years	0.45	7181	1		Levinson et al. (2002)
1.4	2870	$+32 > \delta > +42$	24"×2.4'	~ 1000	4 min	1 day	300	**	1		Aoki et al. (2014)
1.4	0.2	l = 57, b = +81	20	1852	minutes	1 day-23 yr	2	10	0	-	Bower & Saul (2011)
1.4	690	l = 70, b = +64	150	2	months	15 yr	3.94	4408	0	~0.1%	Croft et al. (2010b)
1.4	690	<i>l</i> = 70, <i>b</i> = +64	150	12	> <mark>1 d</mark> ay	days– months	38	4408	0	≲0.5%	Croft et al. (2011)
1.4	0.2	Phase calibration		151	5 min	days-years	~ 1		0		Bell et al. (2011)
1.4	8444	North Gal. cap	5.4	~55000	11 yr	∼days– years	~1	279407		1627	Thyagarajan et al. (2011a)
1.5	0.44	<i>l</i> = 237, <i>b</i> = +42	4.3	172	\sim days	days-6 yr	0.001	2713	-	58	Sarbadhicary et al. (2020)
1.4	0.5	E-CDFS	~3	49	3 months	1 day-3 mon	ths 0.003	736	0	1%	Mooley et al. (2013)
1.4	60	SDSS Stripe 82	5	3	21 yr	7 yr	0.15	1436	0	89	Hodge et al. (2013)
0.86	56	PSR J1107-5907	78	390	13 hr	2 min-13 hr	21		0	1	Hobbs et al. (2016)
1.4	5.97	$I \approx 296, b \approx -70$		6	8 yr	\sim days–8 yr	~ 1	~500	1	8	Hancock et al. (2016)
0.86	150	Spitzer SSDF	70	3	1 week	12 h-1 week	1	3722	0	1	Heywood et al. (2016)
1.4	30	NGC 7232	~17	8	12 day	~days	0.3	1653	0	9	Bhandari et al. (2018)
0.95	30	l = 40.5, b = -80	12	7	${\sim}1{ m yr}$	minutes- 1 yr	0.0.035	40859	0	6	Wang et al. (2021)

Table 1.1: Summary of radio searches for variable and transient sources between 0.8 and 2 GHz, reproduced from Ofek et al. (2011a). Bold rows indicate surveys that were not included in Ofek et al. (2011a). ν is the central frequency of the survey; the area is the total area observed by the survey; $\Delta \theta$ is the FWHM of the primary beam of the instrument conducting the survey; N_{ep} is the number of epochs; δt is the time span over which each epoch was obtained; Δt is the range of separations between epochs; rms is the average root-mean-square (RMS) noise in the images; Sources is the total number of detected persistent sources; Tran. is the number of transient sources detected; Var. is the number or percentage of variable sources detected.

Different types of radio variables/transients

Fast vs Slow

Fast = pulsars, rotating radio transients, magnetars, fast radio bursts

Slow = AGN scintillation, XRBs, stellar flares, novae, GRB afterglows, tidal disruption events and more

Fast vs Slow

Fast = pulsars, rotating radio transients, magnetars, fast radio bursts

Slow = AGN scintillation, XRBs, stellar flares, novae, GRB afterglows, tidal disruption events and more

- Doesn't tell us any physical information about the sources
- Where do we draw the line? How fast is fast? How slow is slow?
- We can now make very short images and longer dynamic spectra, there's no clear divide between the techniques anymore

Emission types: coherent vs incoherent

νW(GHz s)

Techniques: image-plane vs time-domain Image-plane = searching in images of the radio sky

Time-domain = searching in the time-frequency-brightness domain (dynamic spectra)

Techniques: image-plane vs time-domain Image-plane = searching in images of the radio sky

Time-domain = searching in the time-frequency-brightness domain (dynamic spectra)

Techniques: image-plane vs time-domain Image-plane = searching in images of the radio sky

Time-domain = searching in the time-frequency-brightness domain (dynamic spectra)

Techniques: image-play Image-plane = searching j ges of the radio

Time-domain = searching in the time-frequency spectra)

ness domain (dynamic

Techniques: image-plane vs time-domain

VAST

- ASKAP
- Image-plane source-tracking
- Visibility subtraction
- Untargeted

CRACO

- ASKAP
- Searching for "fast" transients in the visibilities (including de-dispersion)
 Untargeted

ThunderKAT

- MeerKAT
- Image-plane source tracking
- Exploring visibility subtraction
- Targeted and untargeted

MeerTRAP

- MeerKAT
- Real-time single-pulse searching
- Imaging ms-long integrations to localise sources

Image plane - source tracking

Why not do difference imaging?

- Optical astronomers do difference imaging
 - Make an average image
 - Subtract it from each individual image
 - See what's changed

Why not do difference imaging?

- Optical astronomers difference imaging

Ie.

- Make an average
- Subtract it from each vidual image
- See what's changed

Image plane - variability parameters

- V_v modulation parameter
- η_v reduced chi-squared parameter

PSR J1703-4851

PSR J1703-4851

MKT J170456.2 – 482100

ASKAP VAST - Galactic Centre Transients

ASKAP VAST - Galactic Centre Transients

The University of Sydney

Legend: Measurement • SELAVY + Forced-fit + 3σ

Bursts from space - radio transients with citizen science

Bursts from space - radio transients with citizen science

MKT J170456.2 – 482100

Image plane - fun variables

CHILES VERDES (VLA) - 370 (4.9%) variable candidates

A new pulsar candidate in 47 Tucanae discovered with MeerKAT imaging

lan Heywood 2023

The first localised MeerKAT Fast Radio Burst

The first localised MeerKAT Fast Radio Burst

- Source find in each image
- Get the light curve of each source
- Already used to find lots of interesting sources

- Source find in each image
- Get the light curve of each source
- Already used to find lots of interesting sources
- Use variability parameters to find variables
 - $V_{\rm v}$ and $\eta_{\rm v}$ are good for finding clear outliers, but do miss lower-amplitude variables

- Source find in each image
- Get the light curve of each source
- Already used to find lots of interesting sources
- Use variability parameters to find variables
 - $V_{\rm v}$ and $\eta_{\rm v}$ are good for finding clear outliers, but do miss lower-amplitude variables
- Use citizen scientists to find variables
 - Time consuming to set up
 - Miss other kinds of variables

- Source find in each image
- Get the light curve of each source
- Already used to find lots of interesting sources
- Use variability parameters to find variables
 - $V_{\rm v}$ and $\eta_{\rm v}$ are good for finding clear outliers, but do miss lower-amplitude variables
- Use citizen scientists to find variables
 - Time consuming to set up
 - Miss other kinds of variables
- Manual inspection by scientists
 - Too much data
 - Not enough scientists

- Source find in each image
- Get the light curve of each source
- Already used to find lots of interesting sources
- Use variability parameters to find variables
 - $V_{\rm v}$ and $\eta_{\rm v}$ are good for finding clear outliers, but do miss lower-amplitude variables
- Use citizen scientists to find variables
 - Time consuming to set up
 - Miss other kinds of variables
- Manual inspection by scientists
 - Too much data
 - Not enough scientists

www.AstroLaura.com | Laura.Driessen@Sydney.edu.au | www.instagram.com/AstroLauraD

www.AstroLaura.com | Laura.Driessen@Sydney.edu.au | www.instagram.com/AstroLauraD