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The 5W of wide-field wide-band imaging 
• Who should care? 
• What are the effects to care about? 
• Where do the effects arise from?
• When do we apply mitigating steps
• Why ?

– “Because it’s there”   
 *if you know why this expression is famous, come and talk to me 
later. 



Outline (following the “white book”)

• Effects of wide observing 
band

• Effects of time

• Using “normal” imaging to 
cover large areas – mosaic

Source confusion

• Non-coplanar baselines

• Direction dependent effects

** White book = Synthesis Imaging in Radio Astronomy II, (Taylor, Carrilli & Perley 1998) 



Effects of wide observing band
• Why use wide band?  

– To increase sensitivity 
● Bandwidth is cheaper to increase than antennas

– To improve u-v coverage (better images)



Improved UV coverage
• Different frequency fill

different part of u-v plane
(radially)

• u-v plane is filled quicker

VLA snapshot u-v coverage: (lef)t single frequency (right) multiple frequencies

source: https://casaguides.nrao.edu/index.php?title=File:MultiFrequency_Synthesis_snapshot.png



Improved UV coverage
• Sampling function → F.T. → 

PSF

• Fewer gaps = better PSF

source: 



BUT averaging in u-v = smearing in image
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• Bandwidth smearing (chromatic 
abberation) is:

– Radial in nature (main lobe)
– Gets worse with distance 

from phase centre

• Total flux is conserved
– But peak flux decreases
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• Peak amplitude drops with 

radial distance from the 
phase centre



Effect of frequency averaging
• Peak amplitude drops with 

radial distance from the 
phase centre

Observing freq (GHz):                           1 – 2     4 – 8     18 – 22
Bandwidth (GHz):                                     1            4              4
Bandwidth ratio (nu_min:nu_max):                  2:1        2:1          1.22:1
Fractional bandwidth (bandwidth/obs freq.):   0.67       0.67          0.20
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BUT averaging in u-v = smearing in image

Fig. 2-17, SIRA-II

• Bandwidth smearing (chromatic 
abberation) is:

– Radial in nature (main lobe)
– Gets worse with distance 

from phase centre

• Total flux is conserved
– But peak flux decreases

• Solution: multi-frequency synthesis



Multi-frequency synthesis (MFS)
Simple concept:

• Divide the band into smaller 
channels

• Image each channel seprately
– Removes smearing

• Add images at the end
– Output image is smoothed 

to lowest resolution

Challenges
• Natural radio sources have 

different spectra
– Flat, inverted, steep (or 

some mixture)
• Instrument response (e.g. primary 

beam) change with frequency
– Can add artificial spectral 

index
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• Add images at the end
– Gridded to lowest 

resolution

Challenges
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different spectra
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• Instrument response (e.g. primary 

beam) change with  frequency
– Can add artificial spectral 

index
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Multi-frequency synthesis (MFS)
Solution:

• Multi-term MFS
– Fit for spectral index of 

each pixel using 
polynomial (Taylor 
term); (Rau & Cornwell 2011)

– Image simultanteously
12 channels
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ASKAP 10s u-v coverage ASKAP 1hr u-v coverage



Averaging in time

ASKAP 10s u-v coverage ASKAP 1hr u-v coverage 
(pole)

Averaging in time (Fig 2-18, SIRA-II)
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– Effect is azimuthal



Averaging in time
• Circular u-v plane only when 

observing the poles
– Effect is azimuthal

• But It’s not practical to 
always point at the poles

– Effect becomes 
complicated ASKAP 1hr u-v coverage 

(Dec -8 deg)



Averaging in time - mitigation
• Use short intervals to observe/image
• Baseline dependent averaging

– Effect is a function of uv 
distance, so average as a 
function of u-v distance

• Optimising time series filtering
• Multiple observations

– Change phase centre and image ASKAP 1hr u-v coverage 
(Dec -8 deg)



Time smearing - example
• VLBA image

– Longest baselin 8500 
km

– 2 sec averaging
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Time smearing - example
• VLBA image

– Longest baselin 8500 
km

– 40 sec averaging
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• Peak amplitude drops in a 

similar manner, as a function 
of distance
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• Peak amplitude drops in a 
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Mosaicking
• Want to image large area

– But your PB has limited size

• Adequately sample multiple locations over the 
region of interest in the sky

• Combine images 
– deconvolved separately, or
– jointly
– Using appropriate weights e.g. antenna 

primary beam



Mosaicking
• Mosaiked image with 406 pointings 

of ATCA + Parkes data

• Some newer instruments (e.g. 
ASKAP) form multiple primary 
beams simultaneously using phased 
array feed. 



Mosaicking
• To image area with side n, 

n

n
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Mosaicking
• To image area with side n, 

– need sampling of n2 x that 
required for each beam

– Sampling < the diameter of 
antenna needed 

– The act of scanning across the 
field provides extra information 
(Ekers & Rots 1979)

– Add single dish



Mosaicking
• Images can be mosaicked:

– Linearly
● Image individually
● Deconvolve individually
● Combine

– Non linearly:
● Image individually
● Combine
● Jointly deconvolve (using MEM)

– Other variations e.g. Sault et al. (1996)



Mosaicking example
• Mosaicked Meerkat image of 

Galactic centre
– Variance weighting 

– square of PB attenuation as 
weighting function

– Total image area: 6.5 sq deg



Mosaicing

• Newer instruments form multiple primary 
beams simultaneously using phased array 
feed (e.g. ASKAP).

– ASKAP’s mosaiced images 
produce ~30 sq deg. sky coverage
simultaneously  



Breaking the 2-D FT – the w-term



The measurement equation in 2-D



The measurement equation – general 



The measurement equation – general 

● Reduces to 2-D familiar expression when 
is close to 0 or <<1
– Co-planar baselines

● w=0 when E-W baselines with pointing parallel to Earth’s rotation axis
– Imaging region close to phase centre

● (l2+m2 ~0) i.e.                           ~1



The origin of w



The origin of n

Source: NH-W

                
 n =



The origin of n

Source: NH-W

                
 n =

In both cases, 
phase error: 



Menifestation
• Co-planar arrays:

– Positional shift
• Non-coplanar baselines show

– Complicated 
menifestation
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Mitigation
• Snapshot images

– Some instruments (e.g. VLA) baselines are 
almost coplanar

– Note: fails for very disparate geo locations 
(e.g. hills-valleys), VLBI

• 1 D E-W instruments (e.g. ATCA, Westerbrok) 
are coplanar even for long integrations.

• 3 D fourier transform
– Computationally intensive
– Some work being done. 



Mitigation – more common
• Facets

• W-projection (e.g. CASA)

• W-stacking (e.g. WSclean)

• Hybrids of the above (e.g. ASKAPsoft)



Mitigation: facets
• Approximate the celestial

sphere with multiple 
smaller tangents (facets)

– 2-D FT is now valid
• Phase rotate per facet
• Image each facet with it’s phase reference 

centre
• Reproject to the tangent plane
• Widely used but slow, can cause artifacts 

at joins



Mitigation: w-projection   
• Different interpretation:

– E field travelling from B to B’ will 
have diffracted

– B and B’ are related by Fresnel 
diffraction kernel

– Frater & Docherty (1980): 
reprojection to [and from] any 
position in (u,v,w) space [to and] 
from w=0 plane using 
convolution with known kernel
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diffraction kernel
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Mitigation: w-projection   
• Correction:

– Correct this with a 
convolution with inverse 
kernel during gridding of 
visibilities

– Different kernels for 
different w values



w-projection performance



Mitigation: w-stacking   (e.g. WSclean)
• Somewhat similar mathematical 

approach to w-projection,
BUT:

Grid equal w-value samples on a 
uniform grid

Calculate inverse FFT
Apply phase shift to each layer

Add all layers
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Mitigation: w-stacking   (e.g. WSclean)
• Somewhat similar mathematical 

approach to w-projection,
BUT:

– Grid equal w-value samples 
on a uniform grid

– Calculate inverse FFT
– Apply phase shift to each layer
– Add all layers



Some take-aways:
W-projection (e.g. CASA):
• Correction in visibility plane

• Computationally challenged 
for large images >1000s pixels

• Suited for imaging wide fields 
with instruments e.g. VLA 

W-stacking (WSclean):
• Correction in image plane

• Efficient for large images
(up to an order of mag. faster 
for MWA images) 

• Suited for large FoV instruments 
e.g. MWA



Other direction dependent effects
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Direction dependent effects

• Due to isoplanatic patches
• Troposphere

– Small effect except for VLBI/mm
• Ionosphere – 

– Frequency dependent
– Patches smaller than the field of 

view
– Corrections must be made to 

patches

Instrumental:
• Different response in different direction 

(primary beam)
• Polarisation changes across reception 

pattern

Calibration is independent of direction 
doesn’t always hold true in wide-field observations



Direction dependent effects - mitigation

Direction dependent calibration
– Obtain complex gains at different grid points in 

the sky (facets) calibration with a source in the 
middle of the facet

– Approached in a similar manner to w-projection, 
implement a correcting convolution kernel (A 
projection)

Calibration is independent of direction 
doesn’t always hold true in wide-field observations



Summary

● Need to be mindful of a number of different effects

● A combination of techniques needed to obtain 
desired results. 



Thanks for listening

Special thanks:
Stefan Duchense
Cormac Reynolds
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