Spectral line tutorial - Miriad CSIRO S&A Radio School 2023

Karen Lee-Waddell

September 27, 2023

1 Miriad

Miriad is a radio interferometry data reduction package that can be downloaded from the ATNF website: https://www.atnf.csiro.au/computing/software/miriad/. It is mostly used to process ATCA data.

1.1 General commands

- \rightarrow miriad (start Miriad, run within the processing folder)
- \rightarrow inp *taskname* (load a task and see the inputs, values can carry over between tasks)
- \rightarrow help (details about loaded task)
- \rightarrow parameter = $\langle value \rangle$ (set a parameter value)
- \rightarrow unset *parameter* (clear a parameter value)
- \rightarrow tput *taskname* (save parameter values)
- \rightarrow tget *taskname* (reloads a task)
- \rightarrow exit (exit Miriad, save parameter settings)

You can also put all the parameter setting into a single command, the examples of which have been provided in green.

2 Processing data

2.1 Import and split data

You can start by downloading raw data cubes from Australia Telescope Online Archive (https://atoa.atnf.csiro.au/query.jsp).

For this tutorial, we will be using data from the IMAGINE legacy survey (PI: A. Popping), ATCA project code C3157. NGC 1512 is a barred spiral galaxy with a very extended neutral hydrogen (HI) disk with a mass of $M_{HI} \sim 6 \times 10^9 M_{\odot}$.

Observations details:

- date = 2 Oct 2018
- ATCA configuration = 750C (with zoom mode)
- flux calibrator = 1934-638
- phase calibrator = 0438-436

IMAGINE used a redundant observing strategy to mitigate downtime due to CABB blocks dropping out. For this particular dataset, IF2 is the "better" dataset.

atlod converts the files into Miriad uv format using the following parameters:

- \rightarrow inp at lod
- \rightarrow in = *.C### (for this tutorial, project code = C3157)
- \rightarrow out = rawdata.uv (new filename, which will include all datasets within the folder)
- \rightarrow ifsel = # (select 4 for IF2 in zoom mode)
- \rightarrow restfreq = 1.420405752 (for HI, in GHz)
- \rightarrow options=bary,birdie,noauto,rfiflag (barycentric velocity frame, flag 'birdies', autocorrelations and known RFI channels)
- \rightarrow go (to excute atlod, same command for all tasks)

command line: atlod in=*.C3157 out=rawdata.uv ifsel=4 restfreq=1.420405752 options=bary, birdie, noauto, rfiflag

Use uvindex to index the uv data:

- \rightarrow vis = rawdata.uv (previously imported data)
- \rightarrow log = rawdata.uvlog (to save a log file of the indexed data)
- \rightarrow unset options (to clear previous option settings, same syntax to clear any parameter settings)

command line: uvindex vis=rawdata.uv log=rawdata.uvlog

Use uvflag to flag edge channels:

- \rightarrow vis = rawdata.uv
- \rightarrow edge = # (number of channels to flag at start and end of spectral window, use 40 for CABB data from ATCA)
- \rightarrow flagval = flag
- \rightarrow unset log (to clear previous option settings, same syntax to clear any parameter settings)

command line: uvflag vis=rawdata.uv edge=40 flagval=flag

uvsplit splits the data into calibrator and science targets:

- \rightarrow vis = rawdata.uv
- \rightarrow select = -shadow(d) (discards data affected by shadowing, d = diameter of dish + 15% = 25)
- \rightarrow options = mosaic (since these data was observed in mosaic mode with proper naming convention)

command line: uvsplit vis=rawdata.uv select=-shadow(25) option=mosaic

The output files will be named using the format: *source_name.freq_details*

2.2 View visibility data

To look at spectra of a visibility dataset, use uvspec:

- \rightarrow vis = source.freq
- \rightarrow stokes = i (for Stokes-I polarization)
- \rightarrow interval = ### (time averaging in minutes, choose a higher number i.e. 1000 to average all data)
- \rightarrow device = /xw (to open a new display window, use *filename*/ps to write a postscript file)
- \rightarrow nxy = 5,3 (plot all 15 baselines on the screen at once)

command line: uvspec vis=source.freq stokes=i interval=1000 device=/xw nxy=5,3

For an overall summary:

- \rightarrow options = avall,nobase (average all baselines)
- \rightarrow options = avall,nobase,ampscalar (average all baselines, plot amplitude using scalar averaging)
- \rightarrow nxy = 1,1 (single output plot)

command line: blflag vis=*source.freq* stokes=i interval=1000 device=/xw options=avall,nobase,ampscalar nxy=1,1

Figure 1: uvspec output of flux calibrator 1934-638 data, showing each baseline

2.3 Visually inspect and flag data

For the most part, you want to flag spurious signals in the bandpass and phase calibrators data. For this tutorial, flux calibrator = 1934-638 and phase calibrator = 0438-436.

Use either or both of these following tasks to manually flag "spikes" and/or outliers in the data. After flagging, inspect the data again using uvspec. Iterate the flagging and inspecting cycle as necessary.

Note: there are more automated/algorithmic methods used for flagging data, but sometimes its just more fun to do things manually (plus this dataset is fairly clean).

blflag allows for interactive flagging using the cursor:

- \rightarrow vis = source.freq
- \rightarrow device = /xw
- \rightarrow axis = time, phase (for phase plot, unset for amplitude plot)
- \rightarrow options = nobase (plot all baselines on one plot)

command line: blflag vis=source.freq device=/xw axis=time,phase options=nobase

Interaction commands: carriage return displays help menu with key commands.

Single	key commands are
Left-	button Delete nearest point
Right-button Next baseline	
<cr></cr>	Help
?	Help
а	Delete nearest point
с	Clear flagging of this baseline
e	Exit, preserving edits
h	Help, these messages
р	Delete point in polygonal region
q	Quit, discarding edits
r	Redraw
u	Unzoom
x	Next baseline
z	Zoom in

Figure 2: blflag commands

pgflag displays waterfall plots and allows for interactive flagging:

- \rightarrow vis = source.freq
- \rightarrow device = /xw

command line: pgflag vis=source.freq device=/xw

Interaction commands: http://www.atnf.csiro.au/computing/software/miriad/doc/pgflag.html

Figure 3: Left panel: blflag window showing baseline 1-2 of the phase calibrator 0438-436 data. The phase calibrator is observed at regular intervals. Right panel: pgflag window also showing baseline 1-2 of the phase calibrator 0438-436 data.

2.4 Bandpass calibration

Use mfcal for multifrequency bandpass calibration:

- \rightarrow vis = *bp_cal.freq*
- \rightarrow edge = # (number of channels to be dropped from the start and end of each spectral window, pick 10-20)
- \rightarrow refant = # (reference antenna, pick a "good" antenna, default is 3)
- \rightarrow interval = # (length of calibration solution interval, in minutes, default is 5)
- \rightarrow options = interpolate (interpolates bandpass values for flagged channels)

 \rightarrow unset stokes

command line: mfcal vis= $bp_cal.freq$ edge=10 options=interpolate

If the source is a known calibrator, mfcal will use values from the database. Otherwise, specify the details using flux parameter.

Inspect with **blflag** and flag as required:

- \rightarrow vis = *bp_cal.freq*
- \rightarrow device = /xw
- \rightarrow stokes = i
- \rightarrow axis = real,imag
- \rightarrow options = nobase

command line: blflag vis=bp_cal.freq device=/xw stokes=i axis=real,imag options=nobase

2.5 Phase calibration

Use gpcopy to copy the bandpass solutions to the phase calibrator:

- \rightarrow vis = *bp_cal.freq*
- \rightarrow out = phase_cal.freq

command line: gpcopy vis=bp_cal.freq out=phase_cal.freq

Use gpcal for phase calibration:

- \rightarrow vis = phase_cal.freq
- \rightarrow refant = # (reference antenna, pick a "good" antenna, default is 3)
- \rightarrow interval = # (length of calibration solution interval, in minutes, default is 5)
- \rightarrow options = xyvary, nopol (assume XY phase remains constant, do not solve for polarization leakages)

command line: gpcal vis=phase_cal.freq options=xyvary,nopol

Calibrator fluxes can be compared to the values in the ATCA database: https://www.narrabri.atnf.csiro.au/calibrators/calibrator_database.html

uvflux will determine some statistics about the visibilities:

- \rightarrow vis = phase_cal.freq
- \rightarrow stokes = i

command line: uvflux vis=phase_cal.freq stokes=i

Inspect with **blflag** and flag as required:

- \rightarrow vis = phase_cal.freq
- \rightarrow device = /xw
- \rightarrow stokes = i
- \rightarrow axis = real,imag
- \rightarrow options = nobase

command line: blflag vis=phase_cal.freq device=/xw stokes=i axis=real,imag options=nobase

gpplt plots the gain corrections:

- \rightarrow vis = phase_cal.freq
- \rightarrow device = /xw
- \rightarrow yaxis = phase
- \rightarrow options = xygains

command line: gpplt vis=phase_cal.freq device=/xw yaxis=phase options=xygains

gpboot corrects the gain table by comparing amplitudes of the datasets:

- \rightarrow vis = phase_cal.freq
- \rightarrow cal = *bp_cal.freq*

command line: gpboot vis=phase_cal.freq cal=bp_cal.freq

2.6 Apply calibration solutions

Use gpcopy to copy the phase/gain solutions to the science data:

- \rightarrow vis = phase_cal.freq
- \rightarrow out = *science.freq*

command line: gpcopy vis=phase_cal.freq out=science.freq

Examine the spectral of the calibrated science data using uvspec and note which channels have HI:

```
\rightarrow vis = science.freq
```

- \rightarrow stokes = i
- \rightarrow interval = ###
- \rightarrow options = avall,nobase
- \rightarrow axis = felocity (x-axis is velocity, in standard optical convention)
- \rightarrow device = /xw
- \rightarrow nxy = 1,1

command line: uvspec vis=*science.freq* stokes=i interval=1000 options=avall,nobase axis=felocity device=/xw nxy=1,1

2.7 Subtract continuum in uv domain

Inspect with **blflag** and flag if required:

```
\rightarrow vis = science.freq
```

- \rightarrow device = /xw
- \rightarrow stokes = i

command line: blflag vis=science.freq device=/xw stokes=i

uvlin can subtract out the continuum:

- \rightarrow vis = science.freq
- \rightarrow out = *science*.line

- \rightarrow chans = #,#,#,# (select line-free channels)
- \rightarrow order = 1 (linear fit)

command line: uvlin vis=science.freq out=science.line chans=#,#,#,# order=1

uvlin can also make a continuum only dataset (optional):

- \rightarrow vis = science.freq
- \rightarrow out = *science*.cont
- \rightarrow chans = #,#,#,# (select line-free channels)
- \rightarrow order = 1
- \rightarrow mode = continuum

command line: uvlin vis=science.freq out=science.cont chans=#, #, #, # order=1 mode=continuum

3 Imaging and data analysis

Visualisation applications such as CASAviewer (inview in CASA), CARTA, and kvis/Karma are useful to open and inspect the image cubes. Other visualisation tools could also be used but may require conversion to a different format (e.g. fits).

3.1 Making image cubes

invert make a 'dirty' image:

- \rightarrow vis = *science*.line
- \rightarrow map = *science*.dirtymap (output map name)
- \rightarrow beam = *science*.beam (output beam, i.e. PSF)
- \rightarrow imsize = # (chose number that is not a power of two and is large enough to image the entire primary beam)
- \rightarrow cell = # (pixel size, should have 5 pixels across the synthesized beam size)
- \rightarrow sup = 0 (natural weighting sidelobe suppression, better to vary robust parameter)
- \rightarrow line = felocity,total#,start#,average#,step# (line type, number of channels/bins, starting channel/velocity, number of channels/velocity range to average together, step size. Note: units of values depend on the line type specified. To combine multi-epoch data, use velocity/felocity rather than channel)
- \rightarrow select = *subset_options* (can specify a subset of the data, e.g. leave out antenna 6 with select = -antennae(6))
- \rightarrow options = mosaic (if observations are in mosaic mode, also specify offset to set the image centre)

command line: invert vis=*science.line* map=*science.*dirtymap beam=*science.*beam imsize=400 cell=10 sup=0 line=felocity,150,600,4,4 options=mosaic

Tips: averaging channels (to about 4 km/s per channel) and/or pixels (ensuring there are at least 5 pixels across the beam minor axis) should improve signal-to-noise. Also try imaging with natural weighting $(\sup = 0)$ without and with antenna 6. Then try robust weighting (unset sup and robust = 0.5 or robust = 0) without and with antenna 6.

clean and mossdi extract 'clean' components, the latter is used for observations made in mosaic mode:

- \rightarrow map = *science*.dirtymap
- \rightarrow beam = *science*.beam
- \rightarrow out = *science.ccomp* (clean component output)
- \rightarrow gain = # (minor iteration loop gain, default is 0.1)
- \rightarrow cutoff = 0.02 (clean cut-off, start with 5 σ , vary as required. Invert will give theoretical RMS)
- \rightarrow niters = 100000 (number of iterations, pick a high number)

command line: clean map=science.dirtymap beam=science.beam out=science.ccomp cutoff=0.02 niters=100000

command line: mossdi map=*science*.dirtymap beam=*science*.beam out=*science*.ccomp cutoff=0.02 niters=100000

restor makes a 'clean' image:

- \rightarrow model = *science*.ccomp
- \rightarrow beam = *science*.beam
- \rightarrow map = *science*.dirtymap
- \rightarrow out = *science*.cleanmap

command line: restor model=science.ccomp beam=science.beam map=science.dirtymap out=science.cleanmap

Figure 4: Left panel: single channel of 'dirty' cube. Right panel: same channel in 'cleaned' cube.

If the data is not a mosaic, linmos applies a primary beam correction:

- \rightarrow in = *science*.cleanmap
- \rightarrow out = *science*.cleanmap.pb

command line: linmos in=science.cleanmap out=science.cleanmap.pb

3.2 Moment and channel maps

moment produces moment maps:

- \rightarrow in = *science*.cleanmap
- \rightarrow out = *science*.mom0
- \rightarrow mom = 0 (moment zero, total intensity map)
- \rightarrow axis = 3
- \rightarrow clip = -1000,0.003

command line: moment in=science.cleanmap out=science.mom0 mom=0 axis=3 clip=-1000,0.003

- \rightarrow out = *science*.peakint
- \rightarrow mom = -2 (peak intensity map)

command line: moment in=science.cleanmap out=science.peakint mom=-2 axis=3 clip=-1000,0.003

Figure 5: HI map and optical image of NGC 1512

cgdisp produces channel maps (i.e. subplots of individual or averaged channels):

- \rightarrow in = *science*.cleanmap (can specify multiple files)
- \rightarrow type = c (contour map)
- \rightarrow region = boxes(#,#,#,#)(#,#) for (x_{min},y_{min},x_{max},y_{max})(z₁,z₂)
- \rightarrow chan = #,# (two values, first = channel increment, second = number of channels to average)
- \rightarrow cols1 = # (contour colours, 1 = foreground colour)
- \rightarrow device = channel.ps/vcps (outputs a colour postscript file)

- \rightarrow nxy = #,# (number of sub plots)
- \rightarrow labtyp = hms,dms (spatial axes in RA, Dec)
- \rightarrow beamtyp = b,l,2 (outline of synthesised beam in bottom left)
- \rightarrow options = 3value, blacklab, nofirst (label each subplot, black labels, one set of x-axis labels,)
- \rightarrow 3format = f5.0 (label formatting)
- \rightarrow csize = 0.5,0.7,0.7,0.7 (character sizes)

command line: cgdisp in=*science*.cleanmap type=c region=boxes(100,100,400,400)(38,117) chan=4,4 cols1=1 device=channel.ps/vcps nxy=4,6 labtyp=hms,dms beamtyp=b,l,2 options=3value,nofirst,blacklab 3format=f5.0 csize=0.5,0.7,0.7,0.7

Figure 6: Channel maps of NGC 1512

3.3 Spectral analysis

mbspect plots spectral profile and measures fluxes:

- \rightarrow in = *science*.cleanmap
- \rightarrow coord = #,# (central coordinates of source, default is centre of the map)
- \rightarrow width = #,# (dimension of box, in pixels, around the source. Must be odd numbers)
- \rightarrow xaxis = felo ('optical' velocity)
- \rightarrow yaxis = sum (summed and normalised values)
- \rightarrow xrange = #,# (x-axis range for the plot)
- \rightarrow order = 0 (order of polynomial fit)
- \rightarrow options = measure (measure the spectral parameters from the plotted spectrum)
- \rightarrow mask = #,#,... (x-axis range to be excluded from continuum fit, give pairs of numbers)
- \rightarrow profile = #,# (x-axis range for profile measurements)
- \rightarrow device = /xw

command line: mbspect in=*science*.cleanmap width=101,101 xaxis=felo yaxis=sum order=0 option=measure mask=750,1070 profile=760,1060 device=/xw

Figure 7: mbspect outputs. Left panel: spectrum with lines showing regions being fitted/measured. Right panel: values measured from spectral fitting.

3.4 Export to fits

Convert image made in Miriad to fits format with fits:

- \rightarrow in = *imagename*
- \rightarrow op = xyout
- \rightarrow out = *imagename*.fits

command line: fits in=*imagename* op=xyout out=*imagename*.fits