
Basic CABB Continuum Data Reduction with CASA∗

Tessa Vernstrom

2019
September

1 Introduction

This tutorial will describe the regular method of calibrating, flagging and imaging for ATCA CABB

data. Most of what we do here will be applicable to pre-CABB data as well. The data we use here

is from the ATCA experiment CX208. This experiment’s aim was to measure the flux density of

a source that appeared to have a very steep spectral index at low frequencies (below 1 GHz). The

ATCA 16cm system (which covers the 1.1 – 3.1 GHz range) was used to get a measurement of the

spectral index in this frequency range. The experiment was performed on 28 April 2011. The array

was in the 6A configuration at the time, because it was thought that confusion may have been a

possible explanation for the apparent spectral steepness. Each section in this tutorial will deal with

a stage of the processing. The outline of the process is as follows:

1. load the data

2. flag the data - RFI flagging

3. initial calibration

4. calibrate

5. apply calibration and prepare for image

6. image and deconvole

This tutorial will show these steps using the NRAO software CASA1, however a version of this

tutorial, with the same dataset, using the MIRIAD software package is also available.2

1.1 Using CASA

To open CASA from the command line, you should normally only have to type “casa” or “casapy” at

terminal prompt and press enter. This will open essentially an interactive python CASA window,

as well as a logger. This operates like a normal interactive or ipython window. You can import

modules (e.g. “import numpy as np”) as well as perform other python functions.

A list of all available CASAtasks and information on how to use them is given at the CASA

Documentation Homepage, https://casa.nrao.edu/casadocs.

In brief, there are at least three different ways to run CASA:

∗with help from Jamie Stevens
1 https://casa.nrao.edu
2http://www.narrabri.atnf.csiro.au/people/Jamie.Stevens/CX208/tutorial/basic_continuum_

tutorial.pdf

1

https://casa.nrao.edu/casadocs
https://casa.nrao.edu
http://www.narrabri.atnf.csiro.au/people/Jamie.Stevens/CX208/tutorial/basic_continuum_tutorial.pdf
http://www.narrabri.atnf.csiro.au/people/Jamie.Stevens/CX208/tutorial/basic_continuum_tutorial.pdf

• Interactively examining task inputs. In this mode, one types taskname to load the task, inp

to examine the inputs, and go once those inputs have been set to your satisfaction. Allowed

inputs are shown in blue and bad inputs are colored red. The input parameters themselves

are changed one by one, e.g., selectdata=T. Screenshots of the inputs to various tasks used in

the data reduction below are provided, to illustrate which parameters need to be set. More

detailed help can be obtained on any task by typing help(taskname). Once a task is run,

the set of inputs are stored and can be retrieved via tget taskname; subsequent runs will

overwrite the previous tget file.

CASA <3>: inp listobs

--------> inp(listobs)

listobs :: List the summary of a data set in the logger or in a file

vis = '' # Name of input visibility file (MS)

selectdata = True # Data selection parameters

field = '' # Selection based on field names or field index numbers. Default is all.

spw = '' # Selection based on spectral-window/frequency/channel.

antenna = '' # Selection based on antenna/baselines. Default is all.

timerange = '' # Selection based on time range. Default is entire range.

correlation = '' # Selection based on correlation. Default is all.

scan = '' # Selection based on scan numbers. Default is all.

intent = '' # Selection based on observation intent. Default is all.

feed = '' # Selection based on multi-feed numbers: Not yet implemented

array = '' # Selection based on (sub)array numbers. Default is all.

uvrange = '' # Selection based on uv range. Default: entire range. Default units: meters.

observation = '' # Selection based on observation ID. Default is all.

verbose = True # Controls level of information detail reported. True reports more than False.

listfile = '' # Name of disk file to write output. Default is none (output is written to logger only).

listunfl = False # List unflagged row counts? If true, it can have significant negative performance impact.

cachesize = 50 # EXPERIMENTAL. Maximum size in megabytes of cache in which data structures can be held.

CASA <4>: vis='visname.ms'

CASA <5>: listfile='lsitobs.dat'

CASA <6>: go

You can also see the manual help information for a particular task by typing: help(taskname).

• Pseudo-interactively via task function calls. In this case, all of the desired inputs to a task are

provided at once on the CASA command line. This tutorial is made up of such calls, which

were developed by looking at the inputs for each task and deciding what needed to be changed

from default values. For task function calls, only parameters that you want to be different

from their defaults need to be set.

• Non-interactively via a script. A series of task function calls can be combined together into a

script, and run from within CASA via execfile('scriptname.py').

If you are a relative novice or just new to CASA, it is strongly recommended to work through this

tutorial by cutting and pasting the task function calls provided below after you have read all the

associated explanations (you can cut and paste them also into a text editor and save as a .py file for

later use), but before executing commands inp and help the tasks to get more information about

them and see the available parameters to set. Work at your own pace, look at the inputs to the

tasks to see what other options exist, and read the help files. Later, when you are more comfortable,

you might try to rerun the script, modify it for your purposes, and begin to reduce other data.

1.2 Formats

The native CASA format for data is called a Measurement Set (MS). There are a number of

tasks for importing data from other formats to the CASA format (e.g importuvfits, importatca,

importgmrt, importmiriad, importasdm). The data are stored in columns, with the raw data

2

being stored in the “DATA” column. During calibration, or self-calibration, a “MODEL DATA”

column may be created and model visibilities are stored. The raw data is never altered. But once

calibration solutions are derived, they are applied. This creates a “CORRECTED DATA” column,

where the corrected visibilities are stored. This does mean that a CASA measurement set can ∼
triple in size, make sure you have enough free hard drive space for this. The data can be viewed as

plots using the task plotms, or viewed as a table using the browsetable task.

The calibration solutions are stored in calibration tables. These can be viewed using either the

plotms task or the plotcal task. These tables are not applied until the task applycal has been

called.

Flags are generally applied across all the data (DATA, MODEL, CORRECTED). Different ver-

sions of the flagging may be saved or restored using the flagmanager task (which will allow you

to manually save or restore the flags at any time), or when flagging the data with flagdata or

when applying calibration with applycal set flagbackup=True to save a version of the flags before

a task is run. This will create a new folder where the flags are stored having the name “vis-

name.ms.flagversions”.

1.3 Plotting

The main utility for plotting or examining your data in CASA is the task plotms. Plots can be

generated one of two ways: First by typing plotms() with no inputs. This will open up the plotms

window. Here you can make your selections or inputs directly into the plotms window. You can also

choose the inputs in the function call,

In CASA

plotms(vis=visname, field='0', xaxis='frequency', yaxis='amp',

ydatacolumn='data', correlation='xy,yx')

This again will open the plotms window but with the specified parameters chosen. The field

column can be the field number or the field name. To see all the options type inp plotms .

Interactive flagging can be done in plotms, as well as locating of data (e.g. some bad data points

may be highlighted and then the ”locate” button selected, the exact time, baselines, correlations,

channel, etc of the selected data will then be shown in the logger window).

2 Loading & Listing the Data

Once you have CASA up and running in the directory containing the data, then start your data

reduction by getting the RPFITS file data into a Measurement Set, CASA’s native format. The

task to do this, importatca, lets us choose which of the simultaneously recorded frequencies to load.

In this case we just want to only load the data from the first IF (or in CASA spectral window, spw)

since when observing with the 16cm band, the central continuum frequency is set to be 2.1 GHz in

each IF, and each IF is therefore just a copy of the other (recall that the usable 16cm frequency

range is 1.1 – 3.1 GHz). We can select with spw=0.

We specify the options ’birdie’ to remove known bad channels and ’noac’ to discard the autocor-

relations. The edge parameter specifies how many edge channels to discard as a percentage of the

number of channels in each band, e.g., the default value of 8 will discard 82 channels from the top

and bottom of a 2048 channel spectrum. Here we set edge=4 to discard 40 channels at the bottom

of the band and 40 channels at the top of the band.

3

In CASA

rawname='2011-04-28_1858.CX208' #define the variable for the raw data name

visname='cx208.0.ms' #define variable name for the output measurement set

importatca(vis=visname,files=rawname,spw=0,options='birdie,noac',edge=4)

As the data loads a listing appears in the logger of the data encountered. Once this task is

completed you should see the newly created measurement set in your directory.

The task listobs can be used to get a listing of the individual scans comprising the observation,

the frequency setup, source list, and antenna locations. By default this information will be displayed

in the logger, however, it can be useful to save this information to a file which can be set with the

listfile parameter.

In CASA

listobs(vis=visname, listfile='listobs_cx208.dat')

The output should look like:

4

Figure 1: Output from listobs

We can see there are 3 different sources : 1934-638 the primary calibrator , 2058-425 the secondary

or phase calibrator, and 2051-377 the target. We also see the data has a 2048 MHz bandwidth, with

1 MHz channels, centred on 2.1 GHz with 4 linear polarisations. The antenna station names give

away that this is a compact configuration, with CA01-CA05 close together and CA06 a long way

away (multiply the station numbers by 15 to get distance in meters from station W0).

The task plotants can be used to plot the positions of the antenna. And the task plotuv will

generate a plot of the uv coverage. Examples of these are show in Figure 2.

In CASA

#make a plot of the antenna locations

plotants(vis=visname,figfile='cx208_ants.png')

#make a plot of the uv coverage

plotuv(vis=visname,field=tar,figfile='cx208_target_uv.png')

5

Figure 2: Left: Plot of the antenna locations. Right: plot the of uv coverage of the target.

It is also helpful to set some additional variables.

#In CASA

#define some variables from output of listobs for

#the field names and a reference antenna

pri='1934-638'

sec='2058-425'

tar='2051-377'

ref='CA04'

3 Flagging the Data

It is always a good idea to examine the data and do some basic flagging before jumping straight

into calibration. For this the task flagdata will be used. First we flag any visibilities with zero

amplitudes, as well as any where the antennas are in shadow. Then we “quack” (or flag) the first

5 seconds of the each scan.

In CASA

#save the intitial flags with flagmanager, can set names for the saved flag versions.

flagmanager(vis=visname, mode='save', versionname='before_online_flagging')

#flag for zero values, where antennas in shadow and the first 5 seconds of the scans.

flagdata(vis=visname, mode='clip', clipzeros=True,flagbackup=False)

flagdata(vis=visname, mode='shadow', tolerance=0.0, flagbackup=False)

flagdata(vis=visname, mode='quack', quackinterval=5.0, quackmode='beg', flagbackup=False)

#save flags again

flagmanager(vis=visname, mode='save', versionname='after_online_flagging')

At low frequencies there is a lot of RFI, some of it is very strong and persistent so lets get of

rid of that first. Use plotms to make a plot of the XY and YX correlations on the calibrator.

These correlations should normally have little signal in them, certainly anything stronger than the

calibrator flux will be interference.

6

In CASA

plotms(vis=visname,field=pri,xaxis='channel',yaxis='amp',

correlation='xy,yx',ydatacolumn='data')

The “range” parameter in the plotms window can be used to zoom in. An image of this can be

seen in Figure 3.

Figure 3: Plot of 1934 XY,YX amplitude vs channel before RFI flagging.

CASA has several modes for automatic RFI flagging, both use flagdata. Here will we look at

using mode=’tfcrop’ .

In CASA

#Calculate flags using tfcrop based on time and frequency window

flagdata(vis=visname, mode='tfcrop', datacolumn='data', action='apply',display='report',

flagbackup=True, extendpols=True, correlation='', flagdimension='freqtime',

growtime=95.0, growfreq=95.0, timecutoff=4., freqcutoff=3.5, timefit='line',

freqfit='poly',maxnpieces=5, combinescans=False, ntime='scan', extendflags=False)

#extend the flags to all correlations

flagdata(vis=visname, mode='extend', action='apply',display='report',flagbackup=False,

extendpols=True, correlation='', growtime=95.0, growfreq=95.0, growaround=True,

flagneartime=False, flagnearfreq=False, combinescans=False, ntime='scan')

Now if we look at the same plot again (Figure 4) we can see how well the RFI flagging did (either

re-enter the call to plotms from above or in the plotms window simply hit “plot” again).

7

Figure 4: Plot of 1934 XY,YX amplitude vs channel after RFI flagging.

Other plots can be made or checked by changing the correlations, the field that is plotted, or

what is plotted on the axes (feel free to play around).

4 Calibration

4.1 MS transform

The first thing we want to do is split the wide bandwidth of 2048 MHz up into 8 spectral windows

of 256 MHz each so we can solve for the gains and polarisation leakages per spectral window. Make

sure you are using CASA 4.7 or later for this step as earlier versions of mstransform had a bug

that scrambled the baselines when used in this way

In CASA

msname='cx208.ms' #define new name for transformed MS

mstransform(vis=visname,outputvis=msname,datacolumn='data',mode='channel',

regridms=True,spw='0',nspw=8)

#can make a new listobs to see the difference

listobs(vis=msname,listfile='listobs_cx208_transform.dat')

#save new flag file

flagmanager(vis=msname,mode='save',versionname='after_transform')

4.2 Initial Calibration

Next we set the flux scale for the primary calibrator 1934-638 using the task setjy. We have a choice

of standards: ’Perley-Butler 2010’ works fine at frequencies below 11 GHz; ’Stevens-Reynolds 2016’

first appeared in CASA 4.7 and has the same scale below 11 GHz but is more accurate above that

8

frequency, make sure to use this for 15 or 7mm data. If you haven’t managed to observe 1934-638

in your observation, you may be able to ’borrow’ an observation from an observation directly before

or after yours if it happened to use the same setup, otherwise your best bet is to check the ATCA

Calibrator database for a recent observation of your calibrator and use the flux from that.

In CASA

setjy(vis=msname,field=pri,scalebychan=True,standard='Perley-Butler 2010',usescratch=True)

Out[30]:

{'0': {'0': {'fluxd': array([9.18244858, 0. , 0. , 0.])},

'1': {'fluxd': array([9.92884018, 0. , 0. , 0.])},

'2': {'fluxd': array([10.75012454, 0. , 0. , 0.])},

'3': {'fluxd': array([11.6425861, 0. , 0. , 0.])},

'4': {'fluxd': array([12.58972782, 0. , 0. , 0.])},

'5': {'fluxd': array([13.54956179, 0. , 0. , 0.])},

'6': {'fluxd': array([14.42993683, 0. , 0. , 0.])},

'7': {'fluxd': array([15.04066761, 0. , 0. , 0.])},

'fieldName': '1934-638'},

'format': "{field Id: {spw Id: {fluxd: [I,Q,U,V] in Jy}, 'fieldName':field name }}"

Setting scalebychan=True scales the flux density on a per channel basis or else on a per spw

basis. Setting usescratch=True will populate the MODEL DATA column with model visibilities.

We can then see what this spectrum would look like with plotms (Figure 5).

In CASA

plotms(vis=msname,,field=pri,xaxis='frequency',yaxis='amp',

correlation='xx,yy',ydatacolumn='model',coloraxis='spw')

Figure 5: plotms of amp vs frequency for the model of 1934.

The next thing we want to do is derive a bandpass solution for our data. Before we can do that

though, we need to phase calibrate the data so we can integrate over a long solution interval to

9

do the bandpass solution. For the gain calibration we use the task gaincal and for the bandpass

calibration the task bandpass. Because we’re processing polarization data from an Az/El telescope

we switch on parallactic angle rotation using parang=True in all the steps from here.

In CASA

gaincal(vis=msname,caltable='cal.G0',field=pri,refant=ref,gaintype='G',

calmode='p',parang=True, solint='60s')

bandpass(vis=msname,caltable='cal.B0',field=pri,spw='',refant=ref,solnorm=True,

solint='inf',bandtype='B',gaintable=['cal.G0'],parang=True)

After the bandpass solution we’re ready to determine the gains using the secondary calibrator.

We also solve for the gains on the primary. We’re using a 60s solution interval and apply the

bandpass table we’ve just created using the gaintable parameter.

In CASA

gaincal(vis=msname,caltable='cal.G1',field=pri+','+sec,refant=ref,spw='*',

gaintype='G',calmode='ap',parang=True,solint='60s',gaintable=['cal.B0'])

The remaining calibration to solve for is the polarisation leakage or D-terms. For the ATCA

we can often use the unpolarised primary calibrator 1934-638 for this, but you can also use the

secondary calibrator. In both cases we need to determine the polarisation of the secondary so we

can correct the gains for source polarisation. Here we use polcal with the primary calibrator and

apply the previously determined bandpass and gain calibration.

In CASA

polcal(vis=msname,caltable='cal.D0',field=pri,refant=ref,

gaintable=['cal.B0','cal.G1'],poltype='Df',solint='inf')

In CASA

plotcal(caltable='cal.G1',xaxis='time',yaxis='amp',poln='/',iteration='antenna,spw')

4.3 Final Calibration & Applying

We now want to take our initial calibration solutions and determine better, or final, solutions.

We use the qufromgain routine to extract polarised source model for the secondary. The qufrom-

gain routine works out the Q and U of the calibrator for each spectral window and returns the mean

values. We capture those and use them as a first order correction for the next round of calibration.

Since we don’t know the flux of the secondary yet, it is assumed to be 1 by gaincal and our source

model is relative to this. The qufromgain routine assumes the X feed is offset by 45 degrees for

ATCA (except for 7mm observations when it uses 135 degrees, if you have analyzed polarised 7mm

data let us know if you think this is incorrect). We also need to select the secondary calibrator with

the field id, which is 1. You are advised to use plotcal to inspect the gain table used in this step.

The qufromgain routine looks at the ratio between the X and Y gains, so we specify poln=’/’ to

inspect that.

In CASA

from recipes.atcapolhelpers import qufromgain

qu = qufromgain('cal.G1',fieldids=[1])

smodel=[1,qu[1][0],qu[1][1],0]

As you can see (print smodel) the secondary calibrator is only very weakly polarised (∼ 1%) so

this step is not as important here as it might be for a strongly polarised calibator. Now we redo the

10

whole calibration using our best estimates for gains, leakages and secondary polarisation. We have

to split the gain calibration into two steps so we can specify the source model for the secondary. We

use the parameter append=True to get the solutions for the primary and secondary into the same

table as that is what we need for the fluxscale step that comes next.

In CASA

bandpass(vis=msname,caltable='cal.B1',field=pri,spw='',refant=ref,solnorm=True,

solint='inf',bandtype='B',gaintable=['cal.G1','cal.D0'],parang=True)

gaincal(vis=msname,caltable='cal.G2',field=pri,refant=ref,spw='*',

gaintype='G',calmode='ap',parang=True,solint='60s',gaintable=['cal.B1','cal.D0'])

gaincal(vis=msname,caltable='cal.G2',field=sec,refant=ref,spw='*',

gaintype='G',calmode='ap',parang=True,solint='60s',

gaintable=['cal.B1','cal.D0'],smodel=smodel,append=True)

polcal(vis=msname,caltable='cal.D1',field=pri,refant=ref,gaintable=['cal.B1','cal.G2'],

poltype='Df',solint='inf')

Now is a good time to check your solutions with plots. This can be done with plotms or plotcal.

There are different ways of plotting the solutions, and both tasks allow for locating or flagging of

bad solutions (see Figures 6, 7, 8, and 9).

In CASA

#can use plotms to inspect the solutions tables.

#iterate over the antenna

plotms(vis='cal.B1', xaxis='freq', yaxis='amp', iteraxis='antenna',coloraxis='spw')

#all antennas on one plot

plotms(vis='cal.B1', xaxis='freq', yaxis='amp',coloraxis='spw')

#can also use plotcal

plotcal(caltable='cal.B1',xaxis='freq',yaxis='amp',iteration='antenna,spw',subplot=331)

#look at gain solutions for primary

plotms(vis='cal.G2', xaxis='freq', yaxis='amp',field=pri, iteraxis='antenna',coloraxis='spw')

plotms(vis='cal.G2', xaxis='time', yaxis='phase',field=pri, iteraxis='antenna',

plotrange=[0,0,-180.,180.],coloraxis='spw')

#look at gain solutions for secondary

plotms(vis='cal.G2', xaxis='freq', yaxis='amp',field=sec, iteraxis='antenna',coloraxis='spw')

plotms(vis='cal.G2', xaxis='time', yaxis='phase',field=sec, iteraxis='antenna',

plotrange=[0,0,-180.,180.],coloraxis='spw')

11

Figure 6: plotms of bandpass solutions caltable cal.B1 iterating over antenna.

Figure 7: plotms of bandpass solutions caltable cal.B1, all antenna on one plot.

12

Figure 8: plotcal of bandpass solutions cal.B1 iterating over antenna and spw, using subplots.

Figure 9: plotms of gain solutions cal.G2 for secondary calibrator, phase vs time, iterating over antenna.

All that remains now is to correct the flux scale using comparison between the primary and

secondary calibrator and then apply all the corrections.

13

In CASA

flux_transfer=fluxscale(vis=msname,caltable='cal.G2',fluxtable='cal.F0',reference=pri)

If you check your logger output you should see the amplitude values for the secondary and a

solved for spectral index, something like this (Figure 10):

Figure 10: Result of running fluxscale.

Once that is done its time to apply our calibration tables using the task applycal. We use the

gainfield parameter in applycal to indicate which solutions to apply from each calibration table.

In CASA

#save flags first

flagmanager(vis=msname,mode='save',versionname='before_applycal')

applycal(vis=msname,gaintable=['cal.B1','cal.D1','cal.F0'],gainfield=[pri,pri,pri]

,field=pri,parang=True,flagbackup=False)

applycal(vis=msname,gaintable=['cal.B1','cal.D1','cal.F0'],gainfield=[pri,pri,sec],

field=sec+','+tar,parang=True,flagbackup=False)

5 Inspection & Flagging

Once the calibration has been applied we want to inspect out output and see how well we did. Using

plotms we can look at the data before (Figure 11) and after calibration (Figure 12).

In CASA

plotms(vis=msname,field=pri,xaxis='frequency',yaxis='amp',correlation='xx,yy'

,ydatacolumn='data',coloraxis='spw')

14

Figure 11: plotms of 1934 amplitude vs frequency before applying calibration.

Now make the plot using the ”corrected” data axis for the ydata (Figure 12).

In CASA

plotms(vis=msname,field=pri,xaxis='frequency',yaxis='amp',correlation='xx,yy'

,ydatacolumn='corrected',coloraxis='spw')

15

Figure 12: plotms of 1934 amplitude vs frequency after applying calibration.

We can see it looks much better. And we can do similar for the secondary calibrator (Figure 13).

Figure 13: plotms of secondary amplitude vs frequency before (left) and after (right) applying calibration.

Other plots that can be useful to look at are real vs imag, phase vs amp, amp vs uvdistance,

amp/phase vs time. In Figure 14 we see the real vs imag for the primary and secondary calibrators.

For the primary calibrator we see clump of points that has a spread along the real axis and is tightly

constrained around 0 along the imaginary axis. For a well calibrated point source that has a varying

amplitude over the frequency range you’re plotting, this is what we expect. For the secondary we

see a more tightly constrained clump around 0 on the imaginary axis and ∼ 1.2 on the real axis,

this is what you’d expect for a point source that had a roughly constant amplitude across the band.

16

Figure 14: plotms of secondary real vs imag values for the primary calibrator (left) and secondary calibrator (right) after applying
calibration.

The plots look pretty good, though some RFI remains. Applying calibration can bring out more

RFI. So we can do some more flagging. The other task for automatic RFI flagging in CASA is with

flagdata mode=’rflag’ . The difference here is that rflag needs to be run on calibrated data. So we

can use the round of calibration we just did to run rflag on the calibrators and the target corrected

data.

In CASA

#first save the flags

flagmanager(vis=msname,mode='save',versionname='before_rflag')

#do rflag for primary calibrator

flagdata(vis=msname, mode='rflag', field=pri, spw='0~7', datacolumn='corrected',

action='apply',display='report', correlation='ABS_ALL', timedevscale=3.0,

freqdevscale=3.0, winsize=3, combinescans=True, ntime='9999999min',

extendflags=False,flagbackup=False)

#do rflag for secondary calibrator

flagdata(vis=msname, mode='rflag', field=sec, spw='0~7', datacolumn='corrected',

action='apply',display='report', correlation='ABS_ALL', timedevscale=3.0,

freqdevscale=3.0, winsize=3, combinescans=True, ntime='9999999min',

extendflags=False,flagbackup=False)

#do rflag for target

flagdata(vis=msname, mode='rflag', field=tar, spw='0~7', datacolumn='corrected',

action='apply',display='report', correlation='ABS_ALL', timedevscale=3.0,

freqdevscale=3.0, winsize=3, combinescans=True, ntime='9999999min',

extendflags=False,flagbackup=False)

#extend flags for both

flagdata(vis=msname, mode='extend', field=pri+','+sec, spw='0~7', action='apply',

display='report',flagbackup=False, extendpols=True, correlation='', growtime=95.0,

growfreq=95.0, growaround=True, flagneartime=False, flagnearfreq=False,

combinescans=True, ntime='9999999min')

Now if we make the same plot for the primary calibrator again (Figure 15 compared to Figure 12)

we see the majority of RFI is gone.

17

Figure 15: plotms of 1934 amplitude vs frequency after applying calibration and after running rflag.

We could now go back and generate a new round of calibration solutions from the newly flagged

data (rerun steps from Section 4.3), but for now we will proceed.

6 Splitting

Once the target data has been calibrated and flagged you may want to split it off into its own

measurement set. This is achieved with the task split. We select the ’corrected’ data column to get

the calibrated visibilities.

In CASA

split(vis=msname, outputvis='cx208_target.ms',datacolumn='corrected')

targetms='cx208_target.ms',

#save the flags for the new MS

flagmanager(vis=targetms,mode='save',versionname='after_split')

7 Imaging

7.1 Cleaning

Now we are finally ready to make some images. The imaging task in CASA is called clean (inp

clean or help(clean) for more information). The full 1.1-3.1 GHz band is too wide to image properly

in one go (even with multi-frequency synthesis, MFS), so we will break it up into two chunks. We

use mode=’mfs’ and nterms=2 since its still 1GHz of bandwidth we need to perform multi-frequency

synthesis.

18

We use the spw parameter to select the first 4 spws (spw=’0∼3’), or the higher frequency half

of the band. At an average frequency of about 2.7 GHz the primary beam is about 17’ and the

resolution is about ∼ 20”, but because of our uv coverage the beam is highly elliptical with a

much smaller minor axis. Based on this we’ll choose a cell size of 1 arcsecond (we could go to 0.5

arcseconds) and and image size of 2048 pixels. We will make a test image to see what the field

looks like and use the interactive option so we can set the area to clean. If you wanted to perform

self-calibration you would set usescratch=True, this would populate the MODEL column with the

model clean components to use for self calibration.

In CASA

clean(vis=targetms,imagename='2051-377.2700.0',spw='0~3',mode='mfs',

nterms=2,niter=3000,threshold='5e-5Jy',imsize=2048,cell='1.0arcsec',stokes='I',

weighting='briggs',robust=0.5,interactive=True)

This will open an interactive cleaning window. You can zoom in and out of different regions.

And you can set clean regions. In the example we’ve used a simple box, but you can use polygons

or other shapes. Once you have set the clean area you can save it to a file and then enter this as the

mask for deeper cleaning later. Once you put your clean boxes around the bright sources selecting

the green arrow will continue deconvolution, but bring back the interactive viewer after completing

one cycle. Then you can set more boxes, as more (fainter) point sources should show up now. Once

you’re happy with your boxes you can hit the blue arrow to continue cleaning non-interactively

until the number of iterations is met or the threshold is reached (see Figures 16, 17, 18, and 19 for

examples).

Figure 16: Target cleaning interactive window.

19

Figure 17: Target cleaning interactive window zoomed in on central source, with clean box placed.

Figure 18: Target cleaning interactive window, zoomed out, several boxes placed.

20

Figure 19: Target cleaning interactive window, zoomed out, several boxes placed after first cycle of cleaning, more point sources now
visible.

Once the cleaning is done, there will be several files or images created. There will be

• .mask : mask file containing the locations of the boxes you created

• .flux : the primary beam attenuation pattern (used to create a primary beam corrected image)

• .model.tt# : model images, or clean component images for the first two taylor terms (nterms=2)

• .residual.tt# : residual images

• .psf.tt# : beam or point spread function images, showing the synthesised dirty beams

• .image.tt# : the final cleaned and restored images

• .image.alpha (and .image.alpha.error) : spectral index images created from the taylor terms.

7.2 Image Analysis

To view any of this images you can open the CASA viewer by simply type viewer() at the CASA

prompt, which will open a viewer window (similar to the clean window) and a menu should appear

asking which image(s) to load (select the image you want and hit ”raster image”). You can open

more than one at a time, and the CASA viewer can do things like overlay contours, measure/display

a spectrum, as well as other features.

If you prefer to view the images in a different fits viewer you can use the CASA task exportfits:

In CASA

exportfits(imagename='2051-377.2700.0.image.tt0',fitsimage='2051-377.2700.0.image.tt0.fits')

21

You can then go on and clean the other part of the band (spw=’4∼7’).

In CASA

clean(vis=targetms,imagename='2051-377.1600.0',spw='4~7',mode='mfs',

nterms=2,niter=3000,threshold='5e-5Jy',imsize=2400,cell='1.0arcsec',stokes='I',

weighting='briggs',robust=0.5,interactive=True)

You can use the task imhead to get header information, such as the center frequency or the

beam shape.

In CASA

head1600=imhead('2051-377.1600.0.image.tt0',mode='list')

head2700=imhead('2051-377.2700.0.image.tt0',mode='list')

CASA <24>: head2700

Out[24]:

{'beammajor': {'unit': 'arcsec', 'value': 21.770307540893555},

'beamminor': {'unit': 'arcsec', 'value': 2.556743860244751},

'beampa': {'unit': 'deg', 'value': 0.52105712890625},

'bunit': 'Jy/beam',

'cdelt1': -4.84813681109536e-06,

'cdelt2': 4.84813681109536e-06,

'cdelt3': 1.0,

'cdelt4': 1027892614.7435131,

'crpix1': 1200.0,

'crpix2': 1200.0,

'crpix3': 0.0,

'crpix4': 0.0,

'crval1': 5.475563285,

'crval2': -0.655560211,

'crval3': 1.0,

'crval4': 2610222502.292313,

'ctype1': 'Right Ascension',

'ctype2': 'Declination',

'ctype3': 'Stokes',

'ctype4': 'Frequency',

'cunit1': 'rad',

'cunit2': 'rad',

'cunit3': '',

'cunit4': 'Hz',

'datamax': 0.026629474014043808,

'datamin': -0.0006516462890431285,

'date-obs': '2011/04/28/18:59:15',

'equinox': 'J2000',

'imtype': 'Intensity',

'masks': array([],

dtype='|S1'),

'maxpixpos': array([1202, 1190, 0, 0], dtype=int32),

'maxpos': '20:54:54.232 -37.33.49.000 I 2610501343.58Hz',

'minpixpos': array([1205, 1168, 0, 0], dtype=int32),

'minpos': '20:54:53.979 -37.34.11.000 I 2610501343.58Hz',

'object': '2051-377',

'observer': 'obs',

'projection': 'SIN',

'reffreqtype': 'LSRK',

'restfreq': array([2.10000000e+09]),

'shape': array([2400, 2400, 1, 1], dtype=int32),

'telescope': 'ATCA'}

22

The there is the task imstat which can give statistics about the images.

In CASA

stats1600=imstat(imagename='2051-377.1600.0.image.tt0')

stats2700=imstat(imagename='2051-377.2700.0.image.tt0')

CASA <27>: stats2700

Out[27]:

{'blc': array([0, 0, 0, 0], dtype=int32),

'blcf': '20:56:35.775, -37.53.36.310, I, 2610501343.58Hz',

'flux': array([0.08951914]),

'max': array([0.02662947]),

'maxpos': array([1202, 1190, 0, 0], dtype=int32),

'maxposf': '20:54:54.232, -37.33.49.000, I, 2610501343.58Hz',

'mean': array([9.80188502e-07]),

'medabsdevmed': array([1.67812486e-05]),

'median': array([-2.50002543e-08]),

'min': array([-0.00065165]),

'minpos': array([1205, 1168, 0, 0], dtype=int32),

'minposf': '20:54:53.979, -37.34.11.000, I, 2610501343.58Hz',

'npts': array([5760000.]),

'q1': array([-1.67777380e-05]),

'q3': array([1.67850194e-05]),

'quartile': array([3.35627574e-05]),

'rms': array([8.68720098e-05]),

'sigma': array([8.68664874e-05]),

'sum': array([5.64588577]),

'sumsq': array([0.04346926]),

'trc': array([2399, 2399, 0, 0], dtype=int32),

'trcf': '20:53:14.011, -37.13.37.325, I, 2610501343.58Hz'}

From here you could do some self calibration, but that is not covered in this tutorial (or you

could go back and try this data with the miriad tutorial and see how the results compare).

23

	Introduction
	Using CASA
	Formats
	Plotting

	Loading & Listing the Data
	Flagging the Data
	Calibration
	MS transform
	Initial Calibration
	Final Calibration & Applying

	Inspection & Flagging
	Splitting
	Imaging
	Cleaning
	Image Analysis

