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“One man’s noise is another man’s signal.”

– Edward Ng,The New York Times, March 20, 1990
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Abstract

This thesis addresses the problem of gravitational-wave (GW) detection using radio timing

observations of pulsars. We study GW signals in real and simulated pulsar timing observations,

and describe the astrophysical implications for cases in which no GW signal is detected. We

simulate timing observations from a range of hypothetical pulsar timing array projects. The

pulse arrival times are then perturbed by an individual source of GWs. One of the simulated

data sets comprises an array of 20 pulsars timed with a root-mean-square residual of 10 ns

over 10 years. If there is no detectable GW signal in this dataset, then the merger rate of

supermassive black-hole binaries (SMBHBs) with a chirp mass of109 solar masses is less than

one merger every105 years up to a redshift ofz = 2. This constraint rules out estimates of

the SMBHB merger rate based on hierarchical galaxy formation with standard assumptions on

the merger parameters. Applying a similar analysis to recently published observations from

the Parkes Pulsar Timing Array (PPTA) yields a constraint onthe merger rate of SMBHBs of

less than one merger every five years for SMBHBs with chirp mass∼ 1010 solar masses up to

a redshift ofz = 2. The results also indicate that it is unlikely that an individual GW source

could be detected with existing data sets.

We consider the signal caused by an isotropic stochastic gravitational-wave background

(GWB), and show that, with a few more years of observations, either the GWB will be de-

tected or the parameter space of most current galaxy evolution models will be significantly

constrained. An analysis of the cross-correlation betweenthe timing residuals of different pul-

sars in the PPTA shows that there is no detectable GWB signal in the current data. The GWB

detection statistic is dominated by only a few pulsars in thecurrent PPTA data. There are good

prospects for detection of the GWB using radio timing of pulsars in the next decade. We con-

clude that the effect of instabilities in realisations of the terrestrial timescale and inaccuracies in

the solar system ephemeris must be removed from the timing residuals in order to detect a GW

signal in pulsar timing observations in the future. The forthcoming International Pulsar Timing

Array project will also significantly increase the probability of detection of GW signals using

pulsar timing.
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Chapter 1

Introduction to Pulsar Timing and

Gravitational Waves
Chapter Outline: In this Chapter, we describe:

• pulsars and their properties;
• millisecond pulsars and techniques for observing them;
• gravitational waves including some common sources of gravitational waves and a sum-

mary of projects aiming to detect them;
• techniques for detecting gravitational waves using radio timing observations of millisec-

ond pulsars;
• the current state of the field in detecting and placing limitson gravitational waves with

pulsar timing;
• an outline of the thesis.

1.1 Pulsars

A pulsar is a rapidly rotating magnetised neutron star that emits beams of electromagnetic (EM)

radiation. The first pulsar was discovered in 1967 (Hewish etal., 1968). Because the EM beams

periodically sweep over the Earth (like a lighthouse beam sweeps across an observer), the pulsar

detection was made by observing a sequence of pulses in a timeseries that J. Bell had obtained

using a radio telescope (reproduced in Figure 1.1). The pulses were periodic and appeared at

the same sidereal time every day. This led Bell and Hewish to confront the possibility that these

were artificially-generated signals from extraterrestrial planets (Hewish, 1975). It was soon

realised that the pulses could be the radio emission from thesuper-dense stellar remnant of a

supernova (e.g., Gold, 1968), and, in the 44 years that have followed, almost 2000 pulsars have

been catalogued (Manchester et al., 2005)1.

1The ATNF Pulsar Catalogue:http://www.atnf.csiro.au/research/pulsar/psrcat/ .
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Figure 1.1: The pen chart showing the detection of pulsed radio emission from a pulsar, with
time on the horizontal axis and intensity given by vertical deflections (in the top trace). The
pulses have a 1.33 s period, and appear at the same sidereal time every day. [Image reproduced
from Hewish (1975)]

1.1.1 Properties

A typical pulsar is born after a star with initial mass approximately in the range 8M⊙ to 15M⊙,

where1M⊙ ≈ 2 × 1030 kg is one Solar mass, undergoes core collapse to produce a supernova

(Lyne & Smith, 2005). The core of the progenitor usually remains after the supernova explosion

and forms a neutron star with a typical mass of1.4M⊙, radius of 10 km and surface magnetic

field of ∼ 1012 gauss (Chandrasekhar, 1935; Pacini, 1967; Gold, 1968). This neutron star

can be detected as a pulsar if it emits EM radiation from its magnetic poles, the magnetic and

rotation axes are misaligned and its emission beams intersect the line of sight to the Earth.

Because pulsars lose energy through a range of processes (e.g., emitting a relativistic particle

wind; Lorimer & Kramer, 2005), their angular velocity will decrease as they age. We can model

the rate of decrease in the pulsar’s angular velocityω as a power law2:

ω̇ ∝ −ωn . (1.1)

2A power-law model is chosen because it gives simple estimates for several pulsar properties, without assuming
that the pulsar spin-down is caused by magnetic dipole braking in vacuum.
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If we assume that the only mechanism that reduces the rotation rate of the pulsar is magnetic

dipole braking (Jackson, 1962), thenn = 3 in Equation (1.1). This, combined with the assump-

tion that the pulsar’s present day period is much greater than its period at birth, allows for an

estimate of the pulsar’scharacteristic age(e.g., Lorimer & Kramer, 2005):

τc =
P

2Ṗ
, (1.2)

whereP is the pulsar rotational period (assumed equal to the pulse period) andṖ is its time-

derivative.

We can extend this analysis to estimate the magnetic field strength at the surface of the

pulsar. We assume not only that the magnetic field is a pure dipole (as above), but also that the

magnetic axis is perpendicular to the rotation axis. Takingcanonical values of the radius and the

moment of inertia of the pulsar (10 km and1038 kg m2 respectively), we obtain the following

formula for the surface magnetic field at the pulsar’s magnetic equator (e.g., Manchester &

Taylor, 1977):

Bsurf,eq = 3.2 × 1019(PṖ )1/2 G , (1.3)

whereP is in units of seconds. However, the assumptions on the radius and moment of inertia of

the pulsar and that the magnetic and rotation axes are perpendicular will be inaccurate. Hence,

Equation (1.3) gives at best an order of magnitude estimate of Bsurf,eq. The magnetic field

strength at the poles is expected to be a factor of two larger (Shapiro & Teukolsky, 1983; Usov

& Melrose, 1995).

It is apparent from equations (1.2) and (1.3) thatP andṖ are instrumental in determining

the present properties of a given pulsar, and also its evolutionary history and future. A popu-

lar graphical representation for the pulsar population is theP -Ṗ diagram, which is plotted in

Figure 1.2 for 1702 pulsars. The thin-dotted lines correspond to lines of constant characteristic

age, indicating that most pulsars are born in the upper-leftcorner of the diagram. As pulsars

age, it was originally thought that the magnetic field decaysexponentially with a∼ 5 × 106 yr

timescale (Bhattacharya & van den Heuvel, 1991). However, recent work suggests that early

pulsar evolution may include an increase in magnetic field strength for some pulsars (Lyne,

2004; Lyne & Smith, 2005). In the standard model, a pulsar’s period increases and its period

derivative decreases such that it joins the population of “normal” pulsars with periods∼ 1 s,

and period derivatives∼ 10−15.
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The pulsar will eventually evolve to a state in which it can nolonger produce its character-

istic beams of EM radiation. While the pulsar emission mechanism is not well-understood, it is

believed that an electron-positron pair cascade process isrequired (Melrose, 2004). When there

is insufficient energy for this cascade process to continue,pulsars will cease their emission.

This occurs when a pulsar’s rotation rate slows, and thus provides a “death line” on Figure 1.2.

This death line is thought to occur at (adapted from Ruderman& Sutherland, 1975)

ṖP−3 = 2.8 × 10−17 s−3 . (1.4)

However, this line is by no means a hard limit; Lyne & Smith (2005) point out that some

pulsars become faint enough to avoid detection well before crossing the death line, while others

are detected with largerP and smallerṖ than this “limit” allows.

After crossing the death line, some pulsars can be reborn because of accretion from a binary

companion. These “recycled” pulsars form the topic of the next Section.

1.1.2 Recycled and Millisecond Pulsars

A review of a variety of formation mechanisms for recycled pulsars and so-called “millisecond

pulsars” (MSPs) is given by Bhattacharya & van den Heuvel (1991). The most widely accepted

mechanism contains the following essential steps:

1. The larger mass member (the primary) of a sufficiently massive binary system evolves

to supernova before the smaller mass member (the secondary)leaves the main sequence.

The supernova will disrupt the binary orbit in at least 90% ofcases (Radhakrishnan &

Shukre, 1985; Dewey & Cordes, 1987).

2. After the supernova explosion, the primary forms a neutron star. In the rare case that the

binary system is not disrupted, the secondary remains largely unperturbed. The neutron

star primary may or may not evolve to cross the death line in Figure 1.2.

3. The secondary evolves and leaves the main sequence, causing it to expand until it over-

flows its Roche lobe. This causes accretion onto the neutron star primary, which transfers

angular momentum to the neutron star, increasing its rotational frequency. If the primary

is visible as a pulsar, it will now be termed a “recycled pulsar”.
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Figure 1.2: TheP − Ṗ diagram for all 1702 pulsars with measurements ofP and Ṗ (‘+’
symbols), whereṖ > 0, as at February 19th, 2011. Also shown are the lines of constant char-
acteristic age (dotted lines) and constant magnetic field (dashed lines). The “death line” (solid
line with label) indicates a rough lower limit on the productṖP−3 (see Equation 1.4), below
which the pulsar emission will cease. Some pulsars in binarysystems can then be “recycled”
to the lower-left quadrant and reappear as short-period pulsars (see Section 1.1.2). The “Spin-
up Line” (solid line with label) indicates an estimate of theminimum spin period of recycled
pulsars for a given value oḟP .
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4. The final rotational period of the recycled pulsar depends, among other things, on the

mass of the secondary star. If the secondary star is not massive enough to experience

core-collapse, then its red giant phase will provide accreting matter to the primary for

∼ 107 years or more. The primary star will then be spun up to a rotational period of

∼ms. The weakening of the primary’s magnetic field during the accretion process also

ensures that the primary will spin down slowly compared to young pulsars. The primary

star is now a MSP.

A lower bound on the period of the MSP can be found by analysingthe interaction of the

magnetised accreting matter with the magnetosphere of the MSP. The accretion flow exerts

torque on the MSP at the outer boundary of its magnetosphere,known as the “Alfvén surface”

(Lyne & Smith, 2005). The spin-up process continues until the angular velocity of the magne-

tosphere equals the angular velocity of the accreting matter at the Alfvén surface. When this

condition is satisfied,P andṖ will be related by (Arzoumanian et al., 1999):

Ṗ = αP 4/3 , (1.5)

where the value ofα is uncertain; we have assumedα = 8.3 × 10−16 s−4/3. Equation (1.5)

provides a lower bound onP for a given value ofṖ that is labelled “Spin-up Line” in Figure

1.2. Thus, the population of MSPs is expected to populate theregion between the spin-up line

and the death line.

The first MSP was discovered in 1982 (Backer et al., 1982), with a rotational frequency

of 642 Hz. About 7% of all known pulsars today can be classed asMSPs, and they form a

population in the lower left corner of Figure 1.2 that is distinct from normal pulsars. They are

useful laboratories for astrophysics because of their veryhigh matter density, extreme rotational

speeds and predictable spin-down behaviour.

1.2 Observing Pulsars

Pulsars are observed using large-aperture radio telescopes fitted with low system-temperature

receivers. The signal from the telescope is processed usinga “backend” system, which is usually

a digital signal processor. When observing their radio pulses, a range of effects must be taken

into account during each pulsar observation. The dispersive effects of the interstellar medium
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(ISM) must be corrected, as the ISM acts to “smear out” each pulse (see Lorimer & Kramer,

2005). Charged particles in the ISM change the group velocity of radio waves as a function of

frequency, which gives the following formula for their group velocity (Shapiro & Teukolsky,

1983):

v(fEM) = c

(

1 − f 2
e

f 2
EM

)1/2

m s−1 , (1.6)

wherefEM is the radio frequency,v is the group velocity of the waves,c is the speed of light in

vacuum andfe is the plasma frequency for the ISM, which is a function of thedensity of charged

particlesne. According to Equation (1.6), a wave of infinite frequency will travel atc through

plasma. The difference in arrival time at the telescope for two radio waves with frequencies

fEM,1 andfEM,2 after travelling a distanceD from their source with velocitiesv1 andv2 is

∆t =

∫ D

0

[v1(l)
−1 − v2(l)

−1]dl

≈ e2

2πmec

(

f−2
EM,1 − f−2

EM,2

)

∫ D

0

ne(l)dl , (1.7)

where we have writtenfe in terms of the fundamental constantsc, e (the charge of an electron)

andme (the rest mass of an electron). The charged particle densityis a function ofl because the

density of charged particles varies throughout the Galaxy (Taylor & Cordes, 1993). The integral

of ne along the line of sight is called the dispersion measure (DM). We can thus calculate the

delay – compared to EM radiation travelling in vacuum – as a function of frequency by assuming

thatfEM,2 = ∞ andfEM,1 = fEM in Equation (1.7). This leads to the following expression for

the delay of a pulse of frequencyfEM because of plasma in the ISM:

∆t ≈ 4.15 × 103

[
∫ D

0

ne(l)dl

]

f−2
EM s . (1.8)

This means that each pulse from the pulsar is smeared out whenit is observed at the radio

telescope, because each pulse consists of a range of frequencies (see Figure 1.3).

1.2.1 Incoherent De-dispersion

The dispersion effect described in the preceding Section can be corrected using the process of

de-dispersion, which is often performed by the observing backend system. One method for

de-dispersion is known as “incoherent” de-dispersion, where the range of observed frequencies

is divided into many small segments, or “frequency channels”. After measuring the DM, a
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Figure 1.3: Pulse dispersion and “incoherent” de-dispersion. The abscissa gives the pulsar rota-
tional phase. The pulse signal arrives at the telescope at a later time in lower frequency channels
because of the dispersion induced by the interstellar plasma, as described by Equation (1.8). In
the case shown here, the pulse is so dispersed compared to thepulse period that the difference
in time-of-arrival between the highest frequency channel and the lowest is larger than two pulse
periods. Thus, the delayed signal has wrapped across multiple cycles of pulse phase. The to-
tal bandwidth for this observation was 288 MHz, comprising 96 channels of 3 MHz bandwidth
each. An artificial delay is induced in all frequency channelsfEM,1 with respect to the lowest fre-
quency channelfEM,2 using Equation (1.7). The addition of the signal in each delayed frequency
channel gives the incoherently de-dispersed pulse shown inthe lower panel. The absolute delay
experienced by the lowest frequency (fEM ≈ 1233 Hz) can be calculated using Equation (1.8).
[Image obtained from:http://www.cv.nrao.edu/course/astr534/Pulsars.html;
original image by Lorimer & Kramer (2005)]

time delay (described by Equation 1.7) is then induced in each channel relative to the lowest

observed frequency, as shown in Figure 1.3. The delayed signals from each frequency channel

can then be summed to produce a time series of de-dispersed pulses where the pulse arrival time

is approximately independent of frequency.
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1.2.2 Coherent De-dispersion

Incoherent de-dispersion cannot correct the pulse dispersion across the bandwidth of each fre-

quency channel; for example, the dispersion across the 3 MHzbandwidth of each channel in the

observation in Figure 1.3. This effect can be overcome using“coherent” de-dispersion (Hank-

ins & Rickett, 1975). This technique is based on the fact thatthe frequency-dependent delays

introduced by propagation through the ISM can be represented as phase rotations of the pulsar

signal. These phase rotations depend on the frequency and the distance travelled by the pulse

(e.g., Lorimer & Kramer, 2005). The effect of the ISM is to filter the pulsar signal using a filter

with transfer functionH. If the centre of the telescope’s observing frequency rangeis at f0,

then the value of the transfer function at frequencyf0 + f will be (Lorimer & Kramer, 2005)

H(f0 + f) = exp

(

i2π[DM]D
(f0 + f)f 2

0

f 2

)

, (1.9)

wherei =
√
−1, D = 4.15 × 103 MHz2 pc−1 cm3 s is the dispersion measure constant from

Equation (1.8) and[DM] is the dispersion measure, which can be measured by the telescope.

To perform the coherent de-dispersion, the phase rotationsinduced by the ISM are first

determined by measuring the complex voltage signal observed at the telescope. These phase

rotations are then “unwound” by applying the inverse of the transfer function in Equation (1.9)

to the observed signal. This process has been implemented inseveral observing systems around

the world (see Bailes, 2003; Demorest et al., 2004).

1.2.3 Folding

After coherent or incoherent de-dispersion, the mean pulseprofile is formed using a “timing

model” for the pulsar’s behaviour. This model can be extremely detailed, and will include the

pulsar’s basic properties, such as its period, dispersion measure and sky-position, as well as a

range of other effects if the pulsar is a member of a binary system. This model is used to “fold”

the incoming signal at the apparent pulse period, which increases the signal-to-noise (S/N) ratio

of a pulsar observation by summing the individual pulses. This process forms the mean pulse

profile, or “folded” profile. After folding, the mean pulse profile of an MSP is largely invariant

for that MSP (Lorimer, 2005). We can thus develop a standard template pulse profile, which is

either an analytic model of a high S/N ratio observation of the pulsar, or simply a very high S/N
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ratio observation of the pulsar. By comparing the template to observations of the pulsar over

a period of∼years (see Section 1.5.1), predictable spin-down behaviour is observed for many

pulsars (Hobbs et al., 2011). This predictable spin-down behaviour will be the focus of most

of this thesis, in particular the way this property of MSPs can be used to detect gravitational

waves.

1.3 Gravitational Waves

Gravitational waves (GWs)3 are one of the predictions of general relativity (GR; Einstein, 1916).

A GW is a travelling perturbation in space-time, and its effect on a ring of freely-moving test

particles with fixed coordinates is shown in Figure 1.4. The GW stretches space in one direc-

tion and simultaneously compresses it in the perpendiculardirection (e.g., Shawhan & LIGO

Scientific Collaboration, 2003). GWs exhibit two orthogonal polarisation modes - the ‘+’ polar-

isation (shown in Figure 1.4) and the ‘×’ polarisation. The ‘×’ polarisation causes space-time

deformations that are offset by an angleπ/4 from those caused by a ‘+’ polarised GW. The

strength of a GW is generally defined by the strainhc induced in a rod of lengthl as:

hc = ∆l/l , (1.10)

where∆l is the maximum change inl induced by the GW over one period (for a periodic GW).

GWs are emitted by any object undergoing acceleration whosemotion is neither spherically nor

cylindrically symmetric, such as any two objects orbiting their common centre of mass (Peters

& Mathews, 1963).

Any system that emits GWs will lose energy via GW radiation (Einstein, 1918; Peters &

Mathews, 1963; Phinney, 2001). The energy loss caused by GW emission has been indirectly

inferred using observations of the binary pulsar PSR B1913+16 (Hulse & Taylor, 1975; Tay-

lor & Weisberg, 1982). The detection was based on observation of the orbital decay of PSR

B1913+16, measured by the cumulative advance of the periastron time for the orbit (see Fig-

ure 1.5). That is, the difference between consecutive timesat which the pulsar is closest to its

companion is decreasing. The decrease in the time taken to complete each orbit is consistent

with GR and inconsistent with some other theories of gravitation (Will, 1977; Taylor & Weis-

3Note that “gravitational waves” are not to be confused with “gravity waves”, which are waves for which the
restoring force is gravity, e.g., water waves in the open ocean.

10



Figure 1.4: The effect of a GW with strengthhc = 0.5 on a ring of freely-moving test particles
when the GW propagates perpendicularly to the plane of that ring, e.g., caused by a GW prop-
agating into the page. The ring (1st image from left) is compressed East-West and expanded
North-South (2nd image from left), then returned to its original state (3rd image from left), then
compressed North-South and expanded East-West (4th image from left), then returned to its
orignal state (5th image from left). If the GW is periodic with a period ofTgw, then these im-
ages show the form of the ring at times t = 0,Tgw/4, Tgw/2, 3Tgw/4 andTgw. [Image reproduced
from Shawhan & LIGO Scientific Collaboration (2003)]

berg, 1982). In Figure 1.5 we reproduce an updated version ofthe famous image from Taylor &

Weisberg (1982), showing the remarkable level of agreementbetween the theoretical prediction

of GR and the observed orbital shrinkage over 30 years of observations of PSR B1913+164. As

a result of such investigations, we are now all but sure of theexistence of GWs.

1.4 Detecting Gravitational Waves

The results of Taylor & Weisberg (1982) and Weisberg et al. (2010) do not constitute a direct

detection of GWs, as they have not explicitly detected the stretching and compressing of space-

time expected of a GW (see Figure 1.4). Direct detection of GWs will herald a new era in the

study of astronomy and astrophysics.

GWs provide a unique way to study the Universe as they provideinformation about systems

in a completely different way to EM waves. In particular, some regions of the Universe that

are opaque to EM radiation - including, for example, the first3 × 105 yr after the Big Bang

(Sathyaprakash & Schutz, 2009) - may be observable using GW telescopes. Similarly, much

recent work (e.g., Bloom et al., 2009; Sesana & Vecchio, 2010a,b; Corbin & Cornish, 2010) has

outlined the benefits for detecting EM counterparts for GW sources and vice versa.

4A similar figure was presented by Weisberg et al. (2010).
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Figure 1.5: The shrinking of the orbit of the binary pulsar PSR B1913+16 (as mea-
sured by the decreasing time taken for each complete orbit ofthe pulsar) as a func-
tion of year number. The measurements of the cumulative advance in the peri-
astron time (points) are remarkably consistent with the prediction of GR (parabolic
line). If the system were not emitting GWs, its orbit would not be decaying and
the points would follow the line of zero orbital decay (horizontal line). [Image credit:
http://www.people.carleton.edu/∼jweisber/binarypulsar/B1913+16.gif ]
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1.4.1 Current and Future Gravitational-Wave Detection Projects

The huge scientific gains expected from directly observing GWs has led to the establishment of

many current global efforts to detect GWs. The Laser Interferometer Gravitational-Wave Ob-

servatory (LIGO; e.g., Abbott et al., 2009)5, VIRGO (Acernese et al., 2006)6 and The Australian

International Gravitational Observatory (Barriga et al.,2010)7 are some of the more well-known

projects that aim to detect and analyse GW signals from astrophysical objects. Each of these

projects aims to detect the delay of a locally-generated EM signal along one direction being

correlated with the advance of a locally-generated EM signal in a perpendicular direction. For

example, each of the widely-separated LIGO stations consists of two evacuated 4 km chambers

at 90 degrees to each other. Laser signals are sent and received through these chambers with the

objective of detecting a relative delay between the two. Such a detection could correspond to a

detection of the compression of space-time in one directionoccurring simultaneously with an

expansion of space-time along a perpendicular direction, which is the expected action of GWs

(see Figure 1.4). Measuring the delay and advance of light due to the action of GWs requires

exquisitely precise measurement instruments. For example, LIGO is attempting to measure a

path length difference of∼10−18 m between its two perpendicular arms over 4 km (Shawhan

& LIGO Scientific Collaboration, 2003). For comparison, thediameter of an atomic nucleus is

∼10−15 m (e.g., Pohl et al., 2010).

Typical GW sources for LIGO and other ground-based interferometers include the coales-

cence of compact binaries (containing white dwarfs, neutron stars or low-mass black holes),

supernova explosions and nearby non-axisymmetric rotating neutron stars, whose rotation pe-

riod and sky-position are known if they are detectable as pulsars (Shawhan & LIGO Scientific

Collaboration, 2003). These sources all emit GWs with frequencies from∼Hz to∼kHz, corre-

sponding to the frequency range over which LIGO is most sensitive. Advanced LIGO (Smith

& LIGO Scientific Collaboration, 2009, and references therein) is an upgrade to LIGO that

is currently being implemented and should improve the detector’s sensitivity by two orders of

magnitude while retaining a similar range of detectable frequencies.

A GW detection experiment in its planning stages is the proposed Laser Interferometer

5Seehttp://www.ligo.caltech.edu/advLIGO/ .
6Seehttp://www.virgo.infn.it/ .
7Seehttp://www.aigo.org.au/ .
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Space Antenna (LISA; Larson et al., 2000)8. LISA will consist of three instruments in space

forming three laser interferometers. For LISA, the evacuated cavities that are required for LIGO

to function on Earth are replaced by the near-perfect vacuumof interplanetary space, which

means that the length of these “cavities” can be much greater. The three LISA components

are expected to be separated by∼5×106 km. LISA will be sensitive to the final inspiral and

coalescence of binary black holes (with member masses in therange103M⊙ to 1010M⊙) and a

galactic foreground of neutron star and white dwarf binaries. These processes emit GWs with

frequencies of∼µHz to∼mHz. The sensitivity ranges and likely sources for LIGO and LISA

are summarised in Figure 1.6.

1.5 Detecting Gravitational Waves with Millisecond Pulsars

GWs can also be detected using the predictable rotation behaviour of MSPs and their beams of

EM radiation. This was first suggested by Sazhin (1978) and Detweiler (1979). The likely GW

sources whose signals may be detected with MSPs will emit in adifferent GW frequency range

to sources for the other detection experiments mentioned above. MSPs can detect GWs in the

frequency range∼nHz to∼µHz. Such GWs will be emitted by a range of sources, including:

• supermassive black-hole binaries (SMBHBs) at the cores of merged galaxies (Jaffe &

Backer, 2003; Wyithe & Loeb, 2003; Jenet et al., 2004; Sesanaet al., 2008);

• a network of cosmic superstrings (e.g., Damour & Vilenkin, 2005);

• relic GWs from the interaction of the large-scale dynamic cosmological metric with quan-

tum instabilities in metric perturbations that existed in the early Universe (Grishchuk,

2005);

• the quantum chromodynamic (QCD) phase transition in the early Universe, when the Uni-

verse’s temperature was∼100 MeV (Maggiore, 2000; Caprini et al., 2010, and references

therein).

These sources are plotted in Figure 1.6, indicating their typical frequency ranges.

8Seehttp://lisa.nasa.gov/ .
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Figure 1.6: GW strain sensitivity as a function of frequencyfor GW analysis with pulsars
(“PTA”), LISA and LIGO. The ordinates show the logarithm of the GW strain,hc, defined
in equations (1.10) and (1.11). In the nHz –µHz frequency range, we have listed sources of
stochastic GWBs (“Cosmic strings”, “Supermassive black-hole binaries in galaxies” and “Relic
G-waves”) and the limits that have been placed on their amplitude (see Section 1.6.2 for de-
tails; “J06” is the Jenet et al., 2006 limit; “Current limit”is the van Haasteren et al., 2011
limit). The wedge-shaped limits are derived under the approximation that the pulsar sensitiv-
ity to GWs is maximum atf = 1/Tobs, whereTobs is the time-span of the observations. The
pulsar sensitivity is assumed to be zero for lower frequencies and proportional to frequency for
higher frequencies, as described in Equation (53) of Sesanaet al. (2008). “Unresolved Galactic
binaries” includes white-dwarf and neutron-star binaries. The region labelled “Coalescing mas-
sive black-hole binaries” shows the expected range of signals from the final inspiral of massive
black-hole binary systems with member masses in the range103M⊙ to 1010M⊙. The “Current”
LIGO sensitivity shows the capabilities of existing datasets, while “Advanced” LIGO expects to
improve GW sensitivity by two orders of magnitude. “SN [supernova] core collapse” and “NS-
NS [neutron star] coalescence” are typical signals that LIGO expects to detect. [This image is
based on figure 7 presented by Manchester (2010)]
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Superstrings, relic GWs and the QCD phase transition all represent GW sources for which

the resultant GW signal is believed to be independent of direction and stochastic9. Each source

forms an isotropic stochastic gravitational-wave background (GWB). Very massive or nearby

SMBHBs can be considered as individual sources of GWs (Lommen & Backer, 2001; Jenet

et al., 2004; Sesana et al., 2009). Alternatively, the superposition of the GW signals from many

SMBHBs throughout the Universe will form a GWB (e.g., Jaffe &Backer, 2003).

Detection of the GWs from an individual SMBHB will require very precise pulsar observa-

tions over a period of several years (Sesana et al., 2009). The combination of new observing

systems and recently discovered pulsars means we are approaching the required level of preci-

sion (Demorest, 2011; Manchester, 2011). However, observations must continue at this level

over at least five years to achieve the level of precision calculated by Sesana et al. (2009) as the

minimum requirement for detection of a single source of GWs.On the other hand, some of the

GWB sources provide a relatively large amplitude signal andmay be detected or ruled out in

the coming years (Jenet et al., 2006).

GWB sources can be described using many parametrisations. We will use the characteristic

strain spectrumhc(f), which takes the following form for most GWBs:

hc(f) = A(f/f1yr)
α , (1.11)

whereA = hc(f = f1 yr) is a dimensionless constant termed the “amplitude” of the GWB

(see Equation 1.10),f1 yr = 1/(1 yr) andα is a constant that satisfiesα < 0 for all expected

backgrounds (Jenet et al., 2005). Another quantity often used to discuss GWB sources is the

energy density of the GWB per unit logarithmic frequency interval,Ωgw(f) (adapted from Jenet

et al., 2006):

Ωgw(f)H2
0 =

2π2

3
hc(f)2f 2 , (1.12)

whereH0 is the Hubble constant. Typical values forA andα are in the ranges10−17 < A <

10−14 and−7/6 ≤ α ≤ −2/3 respectively.

However, the GWB due to merging and coalescing SMBHBs exhibits a slightly different

form from that shown in Equation (1.11). It is now generally thought that the large elliptical

galaxies seen in the present day have formed from the mergingof smaller galaxies. Since most

9The stochastic signal consists of many GW emitters, each radiating GWs with a different amplitude, frequency
and phase.
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nearby galaxies appear to have solitary supermassive blackholes (SMBHs) at their centre, this

implies that the SMBHs at the core of each of the progenitor galaxies must coalesce in some

way. It is unknown whether most of the mass transfer that takes place during coalescence is via

accretion or via the merging of the two black holes (BHs). Many authors have considered the

expected GWB that would result from hierarchical galaxy formation models (Phinney, 2001;

Jaffe & Backer, 2003; Wyithe & Loeb, 2003; Enoki et al., 2004;Sesana et al., 2008). GR

predicts that the characteristic strain spectrum has a spectral exponent ofα = −2/3 (Phinney,

2001), and most authors have concluded that the amplitude isin the range10−15 . A .

10−14. However, a recent analysis based on Monte Carlo simulations of the population of

SMBHBs was performed by Sesana et al. (2008), which showed that the discrete nature of

the GW-emitting sources has a measurable effect on the GWB due to SMBHBs. This led to the

derivation of a different form forhc(f) (Sesana et al., 2008):

hc(f) = h0

(

f

f0

)−2/3 (

1 +
f

f0

)γ0

(1.13)

with the following ranges for the variablesγ0, f0 andh0:

• γ0 : −1.04 < γ0 < −1.11

• f0 : 1.4 × 10−8 Hz < f0 < 5.3 × 10−8 Hz

• h0 : 0.65 × 10−15 < h0 < 2.15 × 10−15

from the results of the four models of SMBHB assembly considered in their paper. These ranges

imply that the predicted range ofA = hc(f = f1 yr) is

10−16 < A < 3 × 10−15 .

In Figure 1.7, we have reproduced a figure from Sesana et al. (2008) that shows their prediction

for the characteristic strain spectrum of the GWB and the uncertainty in that prediction.

The obvious next question is “How can we use MSPs to study such sources?” We choose to

study GWs with MSPs as the detector by using a technique called “pulsar timing”.
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Figure 1.7: The characteristic strain spectrum of the GWB asa function of GW frequency
as calculated by Sesana et al. (2008). This spectrum is determined by the parameters of the
SMBHB population, which is determined by the evolution of SMBHs. Four recent models of
SMBH evolution are compared (dashed lines; see Volonteri etal., 2003; Koushiappas et al.,
2004; Begelman et al., 2006; Volonteri et al., 2006), along with the average signal calculated
by Sesana et al. (2008) (thick solid line) and its 1-σ uncertainty (hatched region). The signal
resulting from the standard GR assumption of a spectral exponent ofα = −2/3 for the charac-
teristic strain spectrum is also shown (thin solid line; seeEquation 1.11), calculated using the
SMBHB assembly model discussed by Volonteri et al. (2003). [Image reproduced from Sesana
et al. (2008)]

18



1.5.1 Millisecond Pulsar Timing

The aim of a pulsar timing observation is to measure a preciseand accurate time-of-arrival

(ToA) for a pulse of EM radiation from a pulsar. Mean pulse profiles are very stable (e.g.,

Lorimer & Kramer, 2005), which means precise and unbiased ToAs can be obtained over many

years.

To perform the most precise pulsar timing, a range of effectsmust be taken into account dur-

ing each observation. The dispersive effects of the ISM mustbe corrected using de-dispersion

(Sections 1.2.1 and 1.2.2). The mean pulse profile is then formed by folding the de-dispersed

pulses (Section 1.2.3). The observation will typically have a duration of∼1 hr for precision

MSP timing, meaning that the data contains∼ 106 pulses for a typical MSP.

The observed pulse profile is compared with the standard template for the MSP by measur-

ing the time shift that gives maximum cross-correlation between the two, following the method

described by Taylor (1992). This measurement results in an estimate of a ToA (that is, the

arrival time of the pulse at the radio telescope) and its uncertainty.

The ToA is then corrected using a chain of clock corrections,whereby the observatory

timescale is first referenced to Universal Coordinated Time(UTC) and then to Terrestrial Time

as realised by International Atomic Time, abbreviated to TT(TAI). This corrected ToA is then

transformed to the arrival time at the solar system barycentre using a solar system ephemeris

(see Standish, 2004). This ephemeris includes, amongst other things, the relativistic time trans-

formations between the Earth and the solar system barycentre, and the masses and velocities

of each planet and many major dwarf planets and asteroids. These transformations provide a

barycentric ToA.

For high precision timing, pulsars are usually observed many times per year over at least a

few years. The ToAs obtained can then be used to improve the model for the pulsar’s timing

behaviour that is used to fold the incoming pulses as described earlier in this Section. For

example, the estimate of the pulsar’s sky-position can be improved after timing observations

have been carried out for a year or more. Timing models will bediscussed in greater detail in

Chapter 2.

By subtracting the arrival time predicted by the pulsar timing model from the observed

arrival time, we obtain a “timing residual” for that particular observation. Timing residuals are

influenced by noise, but also contain a wealth of informationabout the telescope hardware and

19



processing systems, or about planetary, solar system, extra-galactic and cosmological physics.

In particular, MSP timing residuals may contain the signalsinduced by GWs. Hence, MSPs

may be used to study GW signals from astrophysical and cosmological sources by examining

the timing residuals. Many authors have developed strategies for using MSP timing residuals to

study GWs (Romani & Taylor, 1983; Kaspi et al., 1994; Jenet etal., 2005, 2006; van Haasteren

et al., 2009; Anholm et al., 2009; Burt et al., 2011), and we outline the present state of the field

in the next Section.

1.6 Techniques for Studying Gravitational Waves with Pul-

sar Timing

1.6.1 Detecting Gravitational Waves with Pulsar Timing

After the pioneering work of Sazhin (1978) and Detweiler (1979), the foundation for detection

of a GWB with pulsars was laid down by Hellings & Downs (1983).It is now widely accepted

that a background of low-frequency GWs that is described by Equation (1.11) causes ToA

perturbations with power spectrum,Pg, given by: (Detweiler, 1979; Jenet et al., 2005, 2006)

Pg(f) =
A2

12π2

(

f

f1 yr

)2α−3

, (1.14)

wheref1 yr = 1/(1 yr). These ToA perturbations (regardless of the source) are also correlated

between pairs of pulsars in a quadrupolar fashion. This correlation, which depends only on the

angle between the pair of pulsars as shown in Figure 1.8 (Hellings & Downs, 1983), provides

an unambiguous signature of the GWB. The functional form of this signature is given by:

ζ(θij) =
3

2
x log x − x

4
+

1

2
, (1.15)

wherex = [1 − cos(θij)]/2 and θij is the angle between pulsarsi and j subtended at the

observer (Hellings & Downs, 1983; Jenet et al., 2005)10. The functionζ(θij) is independent of

GW frequency, and is derived assuming the GW polarisation modes are as described by GR;

other GW modes are analysed by Lee et al. (2008) but are not considered in this thesis.

10The right-hand-side of Equation (1.15) is a factor of3/2 larger than the original result of Hellings & Downs
(1983), but identical to the equation given by Jenet et al. (2005). This is because Hellings & Downs (1983)
correlated GWB-induced Doppler shifts in pulse ToAs, whereas Jenet et al. (2005) correlated GWB-induced timing
residuals (the integral of the Doppler shift).
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Figure 1.8: The expected correlation in pulsar timing residuals due to an isotropic stochastic
GWB. The abscissa gives the angle subtended at the observer by a particular pulsar pair. The
ordinate gives the expected correlation (normalised to a value between−1 and1) between the
timing residuals of that pair. This signal is independent ofthe GW frequency and assumes that
GWs behave as predicted by GR.
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Detection of such a correlated signal requires timing residuals with overlapping time-spans

from many MSPs in order to sample the curve shown in Figure 1.8with sufficient density to

claim a detection of the GWB. This goal can be achieved using a“pulsar timing array” (PTA).

PTAs are able not only to detect GWs and the GWB, but also can detect errors in TT(TAI) and

errors in the solar system ephemeris (Foster & Backer, 1990).

The first complete account of a method for detecting the correlated signal induced in timing

residuals by the GWB, and thus directly detecting the GWB using a PTA, was given by Jenet

et al. (2005). Their method involves the calculation of the pairwise correlations between the

time series of residuals for each pulsar in the PTA. For an array of Npsr pulsars, this process

providesNpsr(Npsr − 1)/2 measured correlations. A detection of the GWB would then be

possible by calculating the correlation between the expected GWB signal shown in Figure 1.8

and the observed pairwise correlations. Jenet et al. (2005)label the value of this correlation as

ρ and define the “significance” of the detection as

S = ρ/σρ , (1.16)

whereσ2
ρ = 2/Npsr(Npsr − 1) (Jenet et al., 2005). However, this detection scheme is sub-

optimal; for instance, pulsars with different amounts of noise in their timing residuals contribute

equally to this detection statistic. While Jenet et al. (2005) did consider the effect of analysing

residuals with different noise levels, each time series of residuals is given an equal weight

in calculatingS. There was also no treatment of other issues associated withanalysing real

pulsar timing residuals, such as the non-simultaneous sampling of the observations, the highly

variable ToA error bars, large variation in the time-span ofdifferent time series and the issue of

non-overlapping observations.

Van Haasteren et al. (2009) present a Bayesian technique fordetecting the GWB that im-

proves on the Jenet et al. (2005) technique. The technique assumes that the GWB has the form

given in Equation (1.11), but that neitherA nor α are known. A joint distribution in these two

variables can then be calculated. This technique was applied recently to observations of six

pulsars from the EPTA as described in van Haasteren et al. (2011). This paper also includes the

detection of a simulated GWB signal that has been artificially added to their data set. However,

the GWB detection problem includes many aspects that are difficult to solve exactly and ap-

proximate solutions may only be testable with Monte Carlo simulation. Tests based on Monte
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Carlo simulation have not yet been performed with the van Haasteren et al. (2009) technique

because these tests would require a very large amount of computation time.

A detection technique was also presented by Anholm et al. (2009). Their method is a

frequency-domain analysis based on the methods of the laserinterferometer community. How-

ever, their derivation does not include the effects of the fitting of the pulsar timing model to the

observed ToAs. This fit severely attenuates the GWB signal that we aim to detect and compli-

cates the analysis of the timing residuals. The effect of thetiming model fit on GWB estimation

is discussed at length in Chapter 6 (also published as Yardley et al., 2011a).

The detection of a GWB requires a 100 ns root-mean-square (rms) timing residual on at least

20 pulsars over a period of at least five years (Jenet et al., 2005). Using extensive observations

of 20 MSPs over several years (see, e.g., table 1 of Manchester, 2011), it is apparent that some

MSPs can be timed more precisely than others because of narrow pulse profiles or greater

flux density. This means the reference PTA data set, which consists of observations of 20

pulsars with 100 ns rms residual timed over five years, will bevery difficult to obtain with

current observation systems and processing algorithms. However, the prospects for future GW

detection with pulsars are improved by the fact that the GWB signal from all expected sources

hasα ≤ −2/3 in Equation (1.14). This means that the strength of the expected GWB signal

increases with observing time-span,Tobs, at least as fast asT 13/3
obs ; for example, doubling the

observed data-span increases the expected signal by a factor of 20. Furthermore, recent work

by Sesana et al. (2009) suggests that it may be possible to directly detect a single source of

GWs with a few very precisely timed pulsars, despite the factthat the GWB signal is expected

to be stronger on average than any individual source. This has led to a flurry of recent interest in

detecting single sources of GWs with pulsars (e.g., Corbin &Cornish, 2010; Sesana & Vecchio,

2010a; van Haasteren & Levin, 2010; Sesana & Vecchio, 2010b;Pshirkov et al., 2010; Burt

et al., 2011).

These works have considered detection of sinusoidal signals induced by GWs in MSP timing

residuals, as well as GW “burst” signals caused by SMBHB coalescence or the periastron ap-

proaches of SMBHBs with highly elliptical orbits. In principle, the algorithm of van Haasteren

& Levin (2010) is suitable for the study of any GW signal for which the GW waveform has

known functional form. Many of the techniques for single source detection proposed in the

last five years are yet to be applied to real pulsar timing observations, with the exception of the
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technique presented in Chapter 4 of this thesis, which is applied to timing residuals from a PTA

observed with the Parkes radio telescope (see Section 2.1).

However, the noise levels on many current PTA observations are too high to allow detection

of GW signals at the expected levels (e.g., the levels given in Sesana et al., 2008, 2009). It is

likely that the GWB will be detected within the next decade (Demorest, 2007; Hobbs et al.,

2010a), while a detection of an individual source of GWs depends on the location of the source

relative to precisely timed pulsars (Burt et al., 2011). In the meantime, a wealth of astrophysical

information can be gleaned by placing limits on the expectedamplitude of GW signals. These

limits have been calculated using the timing of individual pulsars, as well as the timing of

multiple pulsars11.

1.6.2 Finding Upper Limits on Gravitational Waves with Pulsar Timing

Historically, most authors have focussed on finding upper bounds on parameters of the GWB,

whereas interest in constraining the properties of individual sources of GWs has been rela-

tively recent. Romani & Taylor (1983) used the timing residuals of a 1.3 s-period pulsar, PSR

B1237+25, to constrainΩgw(f) at f ∼ 10−8 Hz, and thus demonstrate that such GWs do not

dominate the energy density of the Universe. While Stinebring et al. (1990) observed two pul-

sars (PSRs J1857+0943 and J1939+2134), their technique was only used to provide an upper

bound onΩgwH2
0 using the timing residuals of each pulsar individually. Kaspi et al. (1994) then

used a similar technique to provide an upper bound onΩgwH2
0 using similar observations with

a longer time-span. They made the important step of combining the data from their two pulsars

to find the best constraint on the GWB amplitude. However, thestatistical method employed by

Kaspi et al. (1994) has been criticised by other authors (Thorsett & Dewey, 1996).

The technique of Kaspi et al. (1994) was modified by Jenet et al. (2006) in the wake of such

criticism to provide statistically rigorous constraints on ΩgwH2
0 and also onhc(f). Jenet et al.

considered a range of different GWB sources and found a new limit on the parameters of each

source. In particular, their limit of

hc(f = f1 yr) ≤ 1.1 × 10−14 , (1.17)

11A measurement of a binary pulsar’s orbital period and the error in the measurement of the rate of change
of orbital period can constrain the GWB in the frequency range 10−12 Hz< f < 10−9 Hz (Bertotti et al., 1983;
Kopeikin, 1997). This thesis does not discuss these methods.
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Figure 1.9: MBHB coalescence rates and galaxy merger rates as a function of redshift. The
galaxy merger models assumed by Jaffe & Backer (2003) (thin solid line) and Rajagopal &
Romani (1995) (thin dashed line) are inconsistent with recent simulations of the coalescence
rates for SMBHBs (histograms). Using the model of Jaffe & Backer (2003) in the Monte Carlo
simulations of Sesana et al. (2008) yields results that are inconsistent with recent models of the
evolution with redshift of the SMBHB coalescence rate (thindotted line; Sesana et al., 2008).
[Image reproduced from Sesana et al. (2008)]

as the 95%-confidence upper bound on a GWB with spectral exponent ofα = −2/3 constrains

the galaxy merger rate evolution with redshift (Jenet et al., 2006). Jaffe & Backer (2003) and

Wen et al. (2011) parametrised the merger rate of galaxiesR(z) such thatR(z) goes as(1+z)γ ,

whereγ is now thought to be in the range−1 < γ < 3 (Carlberg et al., 2000; Patton et al., 2002;

Lin et al., 2004; Kartaltepe et al., 2007; Lin et al., 2008). The limit given in Equation (1.17)

constrainsγ to be less than 2.6, but only if we allow the formation of SMBHsat very high

redshifts nearz = 100 (see Wen et al., 2011). Furthermore, figure 12 of Sesana et al.(2008)

(reproduced in Figure 1.9) suggests that the SMBH coalescence rate is not a simple power-law

with redshift, and that the rate decreases at redshifts greater thanz = 2 for most current models.

MSP timing is yet to provide constraints, via upper limits onthe expected GWB signal, that

rule out the most recently proposed models of SMBHB evolution (see Sesana et al., 2008). A

very recent upper bound on the GWB amplitude ofhc(f = f1 yr) ≤ 6 × 10−15 for α = −2/3

(van Haasteren et al., 2011) does constrain the parameters of the GWB model of Wyithe &

Loeb (2003), but not the currently accepted predictions forthe GWB amplitude of Sesana et al.

(2008). However, significant progress has been made in constraining the parameter space of
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Figure 1.10: An upper bound on the GWB amplitudehc(f = f1 yr) as a function ofα. The
ordinates are measured inlog(hc(f = f1 yr)) (the axis on the left-hand side) and inlog(Ωgw(f =
f1yr)h

2
0), whereh0 = H0/100 (the axis on the right-hand side). The 68%-confidence upper

bound (solid line) and the 95%-confidence upper bound (dashed line) from van Haasteren et al.
(2011) are more constraining than the upper bounds published by Jenet et al. (2006) (dots).
The van Haasteren et al. (2011) upper bound is the first that can be calculated as a continuous
function of α. For a GWB caused by SMBHBs, it is expected thatα = −2/3 at the most
sensitive frequencies of current pulsar timing experiments (the value indicated by the vertical
dot-dashed line). [Image reproduced from van Haasteren et al. (2011)]

cosmic superstring models (Jenet et al., 2006;Ölmez et al., 2010; van Haasteren et al., 2011).

In Figure 1.10, we reproduce a figure from van Haasteren et al.(2011) that shows the GWB

upper bounds for different values ofα.

With regard to individual GW source limits, MSP timing has been used to provide use-

ful constraints on the parameters of proposed SMBHBs. Lommen & Backer (2001) used

∼1000 days of observations on three MSPs (PSRs J1713+0747, J1857+0943, J1939+2134)

to constrain the properties of a range of nearby massive darkobjects, if any of these objects

harboured a black-hole binary. Jenet et al. (2004) ruled outa proposed SMBHB at the core

of the radio galaxy 3C66B (Sudou et al., 2003). Using a straightforward periodogram analy-

sis and seven years of publicly-available pulsar timing observations of PSR B1855+09, Jenet

26



et al. (2004) showed that the SMBHB proposed by Sudou et al. (2003) is ruled out with 95%

confidence by these observations. They went on to show that they could constrain the mass

ratio of the two BHs and / or the orbital eccentricity of any SMBHB in 3C66B with very high

confidence.

However, with the exception of the techniques presented by van Haasteren et al. (2009)

and in Chapters 4 and 6, many techniques have not been able to adequately account for all the

aspects of real pulsar timing observations. These include,but are not limited to, non-white

noise sources affecting the timing residuals, the irregularly and non-simultaneously sampled

observations of a PTA, and the effects of fitting the timing model to the observed ToAs.

The aim of this thesis is to develop, implement and demonstrate techniques for studying

GWs with PTAs that can be applied immediately to almost all real pulsar timing observations.

The only data sets to which these techniques may not be applied in their present form are those

with time series that exhibit a very steeply-decreasing power spectrum with power-law exponent

less than−2, as is seen in many young pulsars and a few MSPs (e.g., PSR J1939+2134; Hobbs

et al., 2010b). This is not a significant drawback of the techniques presented because any time

series that exhibits such a steeply-sloping spectrum is unlikely to be useful for GW detection.

It is also not difficult to augment these techniques using a new method of spectral analysis

appropriate for steeply-decreasing power spectra (Coles et al., 2011).

1.7 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2:

We show some examples of real pulsar timing data sets from oneof the most prominent

PTA projects, the Parkes Pulsar Timing Array (PPTA). We describe methods of simulating

ToAs and GW signals using “plugins” to the software packageTEMPO2. We demonstrate that

these simulated observations do resemble real observations from a radio telescope.

Chapter 3:

We develop a technique for detecting GW signals from individual SMBHBs that induce

a correlated sinusoidal signal in timing residuals that areotherwise uncorrelated. We test the

technique on simulations of a range of possible future PTA observations. We analyse a set
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of uncorrelated timing residuals observed at the Arecibo and Parkes telescopes to determine

their sensitivity to GW sources that induce sinusoidal signals in the residuals. We use these

sensitivity calculations to constrain the coalescence rate of SMBHBs as a function of their mass

and redshift using a technique developed by Wen et al. (2011). We also describe the limitations

of this technique.

Chapter 4:

We improve the technique of Chapter 3 such that we can processthe most recently published

data from the PPTA, as published by Verbiest et al. (2009). This leads to a measurement of the

sensitivity of a PTA to sinusoidal GW sources. We calculate the first realistic GW-sensitivity

curve for a PTA that can be compared with LIGO and LISA GW-sensitivity curves. The PTA

sensitivity curve includes GW frequencies from 2 nHz to 400 nHz and is calculated for current

observations and future predictions. We calculate the constraint on the coalescence rate of

SMBHBs for the PPTA data set presented by Verbiest et al. (2008, 2009) using the Wen et al.

(2011) technique.

Chapter 5:

We transition from treating individual GW sources to treating the incoherent sum of all GW

sources, which forms the isotropic stochastic GWB. We describe the software implemented in

TEMPO2 for simulating GWB signals and their effect on timing observations of pulsars. We

useTEMPO2 to calculate a limit on the amplitude of the GWB for a varietyof data sets using

the method of Jenet et al. (2006). Each limit leads to a constraint on the coalescence rate of

SMBHBs using the Wen et al. (2011) technique.

Chapter 6:

We introduce a new technique that can detect the expected steep power-law GWB signal in

pulsar timing residuals. We demonstrate that no GWB signal has been detected in the PPTA

residuals to date, but find previously unpublished effects in the GWB detection process that

must be accounted for. In particular, the full effect of the timing model fit that produces the

timing residuals must be included in the analysis.

Chapter 7:

We conclude the thesis with some suggestions and predictions for future directions of GWB

detection with pulsars. In particular, we briefly discuss the importance of the International
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Pulsar Timing Array collaboration.
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Chapter 2

Real and Simulated Data Sets
Chapter Outline: In this Chapter, we:

• review current PTA projects across the world and the properties of their data sets.
• describe two published data sets from the Parkes Pulsar Timing Array that have been the

focus of our GW analysis and will be used in later Chapters.
• describe methods for simulation of realistic timing residuals.
• describe simulations of GW signals in timing observations.
• give examples of simulated data sets for current and future observing programs.

Chapter 1 listed numerous techniques that have been proposed for estimating the amplitude

of GW signals in pulsar timing residuals (Sections 1.5 and 1.6). However, most of these meth-

ods cannot be applied directly to recent observations because of, for example, the sampling of

the observations or the presence of non-white noise in the residuals. In Chapters 3 – 6, we

will introduce new GW-analysis techniques that have been applied to observations from the

Parkes Pulsar Timing Array. These methods can be applied to almost any set of pulsar timing

observations. To develop algorithms that can be applied to real observations, it is necessary to

parameterise the effects that must be accounted for. In thisChapter, we review the current PTA

projects and describe the data sets that they are producing.We give a detailed description of data

sets that will be analysed in later Chapters. We describe andimplement methods for simulating

pulsar timing observations and derive and implement the effects of GWs on the pulse ToAs.

Finally, we describe the properties of simulated pulsar timing data sets that will be analysed in

Chapters 3 and 5.

2.1 Current Pulsar Timing Array Projects

Several pulsar timing research groups around the world are carrying out PTA observing projects.

At the time of writing, these are:
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• The “Parkes Pulsar Timing Array” (PPTA; Manchester, 2008; Verbiest et al., 2010, and

references therein)12 collaboration, which uses the 64-m diameter Parkes radio telescope.

The collaboration aims to time 20 MSPs over a period of at least 5 years. The majority of

the pulsars are already yielding a weighted rms residual below 1µs, with the rms of a few

pulsars below 200 ns (Manchester, 2010). The project has been ongoing since late 2004,

although a subset of the PPTA pulsars have been timed at the Parkes observatory since

1994, albeit with less regularity and precision (Verbiest et al., 2008, 2009). The PPTA

data sets are the focus of the GW analysis presented later in this thesis. Details of these

data sets are given below in Sections 2.2.3 – 2.2.5.

• The “European Pulsar Timing Array” (EPTA; e.g., Stappers etal., 2006; Ferdman et al.,

2010)13 collaboration, which currently observes MSPs using four large radio telescopes.

These are the 100-m diameter Effelsberg, the 76-m diameter Lovell, the 94-m diameter-

equivalent Nançay, and the 96-m diameter-equivalent Westerbork synthesis radio tele-

scopes. The EPTA collaboration also intends to observe pulsars with the 64-m diameter

Sardinia radio telescope, which is expected to become operational in 2011 (Tofani et al.,

2008). The combination of these telescopes provides observations at a wide range of

frequencies from 0.12 GHz to 95.5 GHz with bandwidths ranging from ∼100 MHz to

1 GHz. The EPTA collaboration currently times 24 MSPs (Ferdman et al., 2010; Hobbs

et al., 2010a).

• The “North American Nanohertz Observatory for Gravitational Waves” (NANOGrav;

Jenet et al., 2009)14 collaboration, which observes MSPs using the 100-m diameter Green

Bank Telescope and the 300-m diameter telescope at the Arecibo Observatory. Pulsars

are observed at Green Bank at 820 and 1400 MHz, and observed atArecibo at 327, 430,

1400 and 2300 MHz (Demorest, 2011)15. Sources have been observed using coherent

dedispersion systems with a 64 MHz bandwidth, though recentupgrades allow a coher-

ently de-dispersed observing bandwidth of up to 800 MHz (Ransom et al., 2009). They

are currently timing 20 MSPs (Nice et al., 2011), though new pulsars are being added to

12http://www.atnf.csiro.au/research/pulsar/ppta/ .
13http://www.epta.eu.org/ .
14http://nanograv.org/ .
15See also: http://science.nrao.edu/newscience/9-Wed/17-Demorest/demorest_

santa_fe_2011.pdf .
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the source list.

• A PTA at Kalyazin Observatory, Russia, described by Ilyasovet al. (2004b), is observed

using the 64-m diameter Kalyazin telescope. This telescopetypically times pulsars at

frequencies of 600 and 1400 MHz with a bandwidth of 3.2 MHz (Ilyasov, 2006). Kalyazin

observatory has performed timing observations on an array of seven MSPs since 1996

(Ilyasov & Oreshko, 2007).

Other collaborations and countries, such as China, may sooncommence MSP timing obser-

vations that could lead to their own PTA (Nan, 2008; Smits et al., 2009; Nan, 2009). Also,

very-low-frequency observations of pulsars using India’sGiant Meterwave Radio Telescope

may facilitate even more precise timing observations (Jenet et al., 2009).

A new global PTA collaboration is emerging, the International Pulsar Timing Array (IPTA),

which is currently a combination of the PPTA, EPTA and NANOGrav (Hobbs et al., 2010a).

The current array of pulsars observed as part of the IPTA is shown in Figure 2.1. The IPTA will

provide the most sensitive data sets to date for GW detectionvia pulsar timing. Even though

a few experiments have already used shared data (e.g., Champion et al., 2010), more extensive

collaboration and data-sharing agreements have not yet been finalised.

2.2 High-Precision Pulsar Timing at Parkes

Throughout this thesis we will focus on the analysis of data from the PPTA to determine its

sensitivity to GWs and other signals that are expected to produce a correlated signal in the

timing residuals. High-precision timing of pulsars for thePPTA project has been conducted

under two long-term observing proposals: P140 and P456. Details of both projects are given

below.

2.2.1 P140: “Precision Pulsar Timing”

The first project that carried out repeated observations of an array of MSPs at the Parkes tele-

scope commenced in 1994, entitled “P140: Precision Pulsar Timing”. These observations were

conducted during the same period of time as the Parkes 70 cm survey for MSPs (Bailes et al.,

1994; Lyne et al., 1998) with the original intention of improving the timing models for pulsars

that were newly discovered as part of the survey. The projectalso observed two of the bright
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Figure 2.1: The position and typical ToA uncertainty for theIPTA pulsars (as listed in table 1 of Hobbs et al., 2010a). Thefigure shows pulsars
from the PPTA (blue), EPTA (green) and NANOGrav (red) projects described in Section 2.1. The centre of each circle indicates the location of
the pulsar in right ascension (RA) and declination (Dec). The radius of the circle,rcirc, is related to the size of the typical error bar,σtyp, on a
timing observation of that pulsar for that project viarcirc = 0.011(1 − log(0.25σtyp)). Hence, a larger circle on the above plot indicates that a
ToA from the pulsar has a smaller typical error bar. The labelling of RA is non-standard, such thatRA = 12h is the central meridian.
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MSPs discovered earlier at Arecibo, PSRs J1713+0747 and J1939+2134. With the discovery

of new pulsars in the Swinburne intermediate-latitude survey (Edwards et al., 2001), the list of

pulsars that were being observed under the project was extended to 16 MSPs by 2006. The

P140 project ended in 2011. Highlights from the P140 projectinclude:

• the measurement of the 3-dimensional binary orbital geometry of PSR J0437−4715,

which led to a verification of the space-time distortion nearits companion via detection

of the Shapiro delay predicted by GR (van Straten et al., 2001)16;

• the measurement of the mass of the binary companion of PSR J1909−3744 by observing

its Shapiro delay (Jacoby et al., 2005). This mass measurement, combined with other

measurements and predictions of GR, implied that PSR J1909−3744 has a large mass.

This supported the idea that the cause of the high spin-frequency of MSPs is that they

undergo a recycling phase via accretion from their companion;

• a comparison between the pulsar timing measurements and theradio interferometry mea-

surements of the position, parallax and proper motion of PSRJ0437−4715. This led to

independent confirmation of the parallax distance (Deller et al., 2008).

2.2.2 P456: “A millisecond pulsar timing array”

In February 2004, the first observations for the PPTA began under the Parkes observing project

“P456: A millisecond pulsar timing array”. High-precisionobservations (see Section 1.5.1)

were collected from late 2004. This ongoing project differsfrom P140 as it specifically aims

to detect GWs. The P456 project also aims to detect errors in TT(TAI) and in the solar system

ephemeris. These aims require the extension of the list of monitored pulsars from 16 to 20

MSPs, suggested by Jenet et al. (2005) as a minimum requirement for GWB detection. The

project includes low- and high-frequency observations of the pulsars to enable correction for

variations in the pulse DM (You et al., 2007). Some highlights of the project so far include:

• the use of P456 observations and publicly-available observations (Kaspi et al., 1994) to

measure an upper bound on the GWB amplitude that rules out some GWB formation

mechanisms (Jenet et al., 2006);

16Observations of this pulsar were later used to constrain theparameters of alternative gravity theories (Verbiest
et al., 2008; Deller et al., 2008).
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• measurement of the instability of Terrestrial Time (TT), asrealised by TT(TAI), using a

combination of P140 and P456 observations (Hobbs et al., 2011);

• measurement of the mass of all solar system planetary systems from Mercury to Saturn,

providing the most precise published value for the Jovian system mass (Champion et al.,

2010). This paper used observations of three pulsars from P140 and P456 (published by

Verbiest et al., 2009), as well as some observations of a fourth pulsar made at Effelsberg

and Arecibo.

2.2.3 Properties of the P140/P456 Observations

For the majority of the analysis discussed in this paper, theP456 and P140 data have been com-

bined. Each pulsar has been observed for∼10 min to 1 h in each observation, depending on the

hardware used at the time. Since 2005, the typical length of an observation is∼1 h. Observa-

tions of each pulsar are made every few weeks, though PSRs J0437−4715 and J1909−3744 are

often observed several times during each observing session. For some pulsars there are gaps of

several months during which no observations were taken.

Most observations have been performed at wavelengths centred on 10/50 cm (3100/685 MHz)

using a dual-frequency receiver (Granet et al., 2005) or at 20 cm (1400 MHz). Observations in

the 20 cm band between 1994 and November 2002 were taken with the Caltech fast pulsar tim-

ing machine (FPTM; Navarro, 1994). This backend system timed pulsars with either one or two

128 MHz-wide bands; the observations varied greatly in quality. Observations between Novem-

ber 2002 and June 2010 were taken with the Caltech-Parkes-Swinburne Recorder 2 (CPSR2;

Bailes, 2003). These observations were coherently de-dispersed over two 64 MHz-wide observ-

ing bands centred at 1341 MHz and 1405 MHz. From 2004, additional simultaneous observa-

tions have been taken with a variety of Parkes digital filterbank systems with bandwidths from

256 MHz to 1 GHz (Manchester, 2008). Each MSP monitored at Parkes has been observed for

a different time-span, depending in part on when each pulsarwas discovered. The observations

have been made at irregular intervals and the sampling has been different between pulsars.

ToA uncertainties have varied widely over short and long timescales. Short timescale varia-

tion is caused by unequal integration time between observations and by scintillation in the ISM

(Lyne & Rickett, 1968; Rickett, 1990; Cordes, 2002). Long timescale variation in the ToA error

size is caused by upgrades in the receiver and backend systems at the telescope. The magni-
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tude of the average ToA uncertainty can change discontinuously as a result of these upgrades

in the observing hardware at Parkes. In Figure 2.2, we plot the timing residuals obtained from

observations of two pulsars to demonstrate the variations in ToA uncertainties, sampling and

time-span described above.

Figure 2.2: The variation in sampling, ToA uncertainties and time-spans of MSP timing obser-
vations under P140/P456. The abscissa is time in days as measured by the Modified Julian Date
(MJD). The ordinate measures the timing residual for each observation of each pulsar. The dot-
ted lines indicate zero residual for each pulsar, and the length of the vertical bar on the left-hand
side in each panel indicates 10µs. The right-hand column gives the pulsar’s name in the J2000
coordinate system. The observations of PSRs J1730−2304 and J1600−3053 shown here are a
subset of the 20 sets of MSP timing observations published byVerbiest et al. (2009).

2.2.4 Fitting the Timing Model and Estimation of Pulsar Parameters

The ToAs for each pulsar are fit with a model for the pulsar’s behaviour to minimise the vari-

ance of the timing residuals. A typical model includes the DM, rotational parameters (pulse

frequency and its first derivative), astrometric parameters (e.g., position, proper motion) and, if

the pulsar is a member of a binary system, orbital parameters(i.e., the Keplerian binary parame-

ters and, if necessary, some post-Keplerian parameters; see Edwards et al., 2006). A significant

parallax has only been measured for pulsars that are relatively close to Earth or for those with a

small rms residual (Verbiest et al., 2009).
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For our data, the fitting of the pulsar timing model is carriedout withTEMPO2 (Hobbs et al.,

2006; Edwards et al., 2006). TEMPO2 is a software package designed as a plugin architecture

in the ‘C’ programming language. This enables users to writetheir own programs in C with

access to theTEMPO2 core. TEMPO2 supersedes the earlierTEMPO code that was not designed

for processing multiple pulsars simultaneously, whereasTEMPO2 can simultaneously process

PTA observations (e.g., Hobbs et al., 2006, 2011). Also, theTEMPO code does not account

for all effects that cause ToA variations of. 100 ns. TEMPO2 accounts for all known timing

effects to∼1 ns accuracy (Hobbs et al., 2006). This level of accuracy is an order of magnitude

greater than the most precise current timing observations (e.g., Manchester, 2011). In particular,

TEMPO2 accounts for

• the pulsar’s intrinsic slow-down behaviour;

• its orbital motion;

• its secular motion or that of its binary system;

• dispersion caused by the solar system, Earth’s ionosphere,and the ISM;

• the motion of the observatory caused by Earth’s rotation, orbital motion, precession, nu-

tation and polar motion;

• pulse delay induced by Earth’s troposphere; and

• gravitational time-delays caused by solar system bodies orthe pulsar’s binary companion.

In this way,TEMPO2 produces very precise parameter estimates for any observed pulsar. Pul-

sar model parameters for most of the Parkes pulsars timed under P140 and P456 have been

published by Verbiest et al. (2008, 2009).

Compared to other measurement techniques, the pulsar parameters are most precisely de-

termined using the timing observations themselves17. However, it should not be assumed that

every measured parameter has physical meaning. For example, the intrinsic rotational period

17A notable exception is the parallax measurement for PSR J0437−4715 obtained with interferometry that is an
order of magnitude more precise than the best measurement from pulsar timing (Deller et al., 2008; Verbiest et al.,
2008). However, the pulsar timing measurement of other parameters (such as the proper motion) is more precise
than the interferometric measurement. Also, while such precise interferometry measurements are possible for the
very close and bright pulsar PSR J0437−4715, these measurements will not be practical for the general population
of pulsars because of their much greater distance and lower flux density.
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of a pulsar cannot be directly measured with current techniques. The pulse period determined

by TEMPO2 is affected by the pulsar’s radial velocity, intrinsic pulsar rotational instabilities

(Hobbs et al., 2010b), instabilities in terrestrial time standards (Hobbs et al., 2011), and even

the existence of GW signals (e.g., Pshirkov, 2009), amongstnumerous other factors.

2.2.5 Properties of the P140/P456 Timing Residuals

The timing residuals (see Section 1.5.1) produced byTEMPO2 for the P140/P456 observations

are shown in Figures 2.4, 2.5 and 2.6. The error bar on each residual, which is equal to the

ToA uncertainty, is underestimated on average for almost all of the PPTA pulsars (Verbiest

et al., 2009). This means that the uncertainty in the parameter estimates for these pulsars will

be underestimated18. In an effort to correct this, the standard approach is to multiply each

measured ToA uncertainty for a particular pulsar by an “error factor” (EFAC; e.g., Verbiest

et al., 2009). Generally, the EFAC (typically a number between one and four and defined as
√

[χ2
r]) will be different for each pulsar, though a recent analysisby Verbiest et al. (2009) used

EFACs that were also different for each backend system.

Several deterministic signals have been removed from the residuals because of the timing

model fit that estimates the parameters of the pulsar model. In Figure 2.3, we show characteristic

signatures induced in the timing residuals for an incorrectpulse period (top left), an incorrect

pulse period derivative (top right), an incorrect pulsar sky-position (bottom left) and an incorrect

pulsar binary orbital period (bottom right). Any physical phenomenon that induces timing

residuals resembling the signals in Figure 2.3 – such as a constant Doppler shift of the pulse

period, acceleration of the pulsar in the local gravitational potential (e.g., for pulsars in globular

clusters; see Freire et al., 2001) or GW signals with a periodof 1 yr – will be undetectable

after the standard pulsar timing fit has been applied. The implications of this are discussed in

Chapter 4 and Chapter 6 and have been discussed by several authors (e.g., Blandford et al.,

1984; Hellings, 1989; Kopeikin, 1999).

The weighted rms residual varies over two orders of magnitude between different pulsars

(see Table 2.2). This is because of the S/N ratio difference of the pulse profile between different

18This can be corrected using the “reducedχ2” of the fit, defined asχ2
r

=
∑

n

r
2

n

σ2
n

/Ndof , wherern is then-
th observed post-fit residual,σn is its error andNdof is the number of degrees of freedom in the residuals. By
multiplying each measured parameter uncertainty by

√

χ2
r
, the correct uncertainty can be obtained if the uncer-

tainties have a normal distribution. Ideally,χ2
r

is close to unity, indicating that the model fits the observations at
the accuracy predicted by the noise level of the observations.
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Figure 2.3: The signature in simulated pulsar timing residuals for PSR J0613−0200 as produced
by an incorrect value of different pulsar parameter measurements. In each plot, the abscissa is
the MJD while the ordinates are the residuals determined using the input pulsar parameter file
before fitting is applied withinTEMPO2 to improve the pulsar parameter estimates. Here we plot
the timing residuals after introducing an error in the pulsar’s period (top left), period derivative
(top right), sky position (bottom left) and binary orbit period (bottom right). These simulated
observations are sampled once every 14 d with an uncertaintyof 100 ns on each residual, except
for the data set displaying the binary orbit period error. For the binary orbit period error, one
observation every two days with a 10 ns uncertainty on each residual was chosen since the
orbital period of PSR J0613−0200 is 25 d. Each image was produced using thePLK plugin to
TEMPO2 from simulated data created using theFAKE plugin.
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pulsars and because of unmodelled signals in the timing observations. For example, most of the

published observations from these projects have not been fully corrected for DM variations (You

et al., 2007)19. This means that the residuals still contain signals due to variations in the DM.

Other physical effects that have not been included in the timing model – such as calibration

and other instrumental errors (van Straten, 2006), timing noise intrinsic to the pulsar system

(Hobbs et al., 2010b; Shannon & Cordes, 2010, and referencestherein), errors in the solar

system ephemeris (Champion et al., 2010), and errors in TT(TAI) (Hobbs et al., 2011) – will

induce timing residuals.

Verbiest et al. (2009) showed that such noise sources will not prohibit GWB detection with

the PPTA pulsars. Furthermore, these authors provided an in-depth analysis of the noise prop-

erties of all the PPTA pulsars. They conclude that instabilities intrinsic to the pulsars or the

observing systems do not induce residuals with rms> 100 ns over a five-year timescale for

most PPTA pulsars. Hence, GW detection with the PPTA pulsarsremains a possibility, using

observations carried out under the observing projects P140and P456. Some recently published

observations of the PPTA pulsars are described in the next Section. Both sets of observations

will be analysed to study GW signals in Chapters 3, 4, 5 and 6.

2.3 Published Observations from the Parkes Pulsar Timing

Array

In this Section we describe the observations that formed theJenet et al. (2006) data set and those

that formed the Verbiest et al. (2009) data set. We show the pulsar timing residuals that result

from each timing analysis. In Chapters 3 and 5, we analyse theJenet et al. (2006) observations

to determine their sensitivity to individual sources of GWsand calculate an upper bound on the

GWB amplitude. In Chapters 4 and 6, we analyse the Verbiest etal. (2009) observations and

search for single sources of GWs and a GWB signal.

2.3.1 The Jenet et al. (2006) Observations

Jenet et al. (2006) presented a statistically-rigorous technique for finding an upper bound on the

GWB amplitude. The Jenet et al. (2006) observations have been assembled from:

19Such corrections are now part of the standard PPTA data processing and can be applied to most existing
residuals for which observations have been made at two or more frequencies.
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• publicly-available observations of PSR J1857+0943 taken with the Arecibo radio tele-

scope between 1986 and 1993 (Kaspi et al., 1994); and

• observations of seven pulsars, including PSR J1857+0943, made with the Parkes radio

telescope under the P140 and P456 timing projects (Hotan et al., 2006).

The Arecibo observations of PSR J1857+0943 were carried out at∼1400 MHz and span

eight years. The Parkes observations used both the 20 cm receiver and the 10/50 cm dual-

frequency coaxial receiver. The average sampling intervalof these data is∼16 d, with one

observation at each of the three frequencies taken during each 16 d period. The observed pulsar

signals were recorded with a variety of backend systems, including:

• the Wide-Band Correlator system (You et al., 2007) with 2 bitdigital sampling at a band-

width of up to 1 GHz;

• a digital filterbank with 8 bit digital sampling of a 256 MHz bandwidth (Yan et al., 2011);

• the Caltech Parkes Swinburne Recorder 2 (CPSR2; details in Bailes, 2003; Hotan et al.,

2006), a baseband recorder with coherent dedispersion overtwo observing bands, each of

64 MHz bandwidth. For observations at 20 cm, these bands are centred on 1341 and

1405 MHz; for simultaneous observations at 10/50 cm they arecentred on 3100 and

685 MHz.

The residuals are summarised in Table 2.1 and plotted in Figure 2.4. The figure shows the

very irregular sampling, the unequal noise levels between pulsars and the significant variation

in error bar size between observations of a given pulsar. In Section 3.3.3, we will analyse

these observations to determine their sensitivity to individual GW sources that induce sinusoidal

timing residuals.

Jenet et al. (2006) did not apply their method to all the Parkes MSP observations that were

available in 2006. This is because their technique for finding an upper bound on the GWB

amplitude (described in Chapter 5) demanded the use of time series that were consistent with

white noise (i.e., their power spectrum is independent of frequency). Many time series from

the P140 and P456 projects did not meet their criteria for whiteness because of calibration- and

hardware-induced artifacts, as well as other unknown timing noise sources (Jenet et al., 2006).

For some other pulsars, only a subset of their observations could be used. This meant that,
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Table 2.1: Parameters of the Jenet et al. (2006) data set.

PSRJ Period DM Pb Weighted RMS Span No. of
(ms) (cm−3 pc) (d) Residual (µs) (years) Observations

J0437−4715 5.757 2.65 5.74 0.12 2.2 233
J1024−0719 5.162 6.49 – 1.10 2.4 92
J1713+0747 4.570 15.99 67.83 0.23 3.2 168
J1744−1134 4.075 3.14 – 0.52 3.3 101
J1857+0943 5.362 13.31 12.33 1.12 20.3 398
J1909−3744 2.947 10.39 1.53 0.29 2.4 2859
J1939+2134 1.558 71.04 – 0.21 2.4 231

Figure 2.4: The timing residuals from the observations of seven pulsars published by Jenet et al.
(2006). The abscissa gives the time of the corresponding observation in MJD. The ordinate
measures the timing residual for each observation of each pulsar. The dotted lines indicate zero
residual for each pulsar, and the length of the vertical bar on the left-hand side in each panel is
10µs. The right-hand column gives the pulsar’s name in the J2000coordinate system. [Image
produced using thePLOTMANY plugin toTEMPO2.]
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Table 2.2: Basic information for the Verbiest et al. (2008, 2009) data sets.

PSRJ Period DM Pb Weighted RMS Span No. of
(ms) (cm−3 pc) (d) Residual (µs) (years) Observations

J0437−4715 5.757 2.65 5.74 0.20 9.9 2847
J0613−0200 3.062 38.78 1.20 1.56 8.2 190
J0711−6830 5.491 18.41 – 3.23 14.2 227
J1022+1001 16.453 10.25 7.81 1.62 5.1 260
J1024−0719 5.162 6.49 – 4.22 12.1 269
J1045−4509 7.474 58.15 4.08 6.64 14.1 401
J1600−3053 3.598 52.19 14.34 1.14 6.8 477
J1603−7202 14.842 38.05 6.31 1.92 12.4 212
J1643−1224 4.622 62.41 147.02 2.50 14.0 241
J1713+0747 4.570 15.99 67.83 0.20 14.0 392
J1730−2304 8.123 9.61 – 2.51 14.0 180
J1732−5049 5.313 56.84 5.26 3.24 6.8 129
J1744−1134 4.075 3.14 – 0.62 13.2 342
J1824−2452 3.054 119.9 – 1.6020 2.8 89
J1857+0943 5.362 13.31 12.33 1.21 22.121 376
J1909−3744 2.947 10.39 1.53 0.17 5.2 893
J1939+2134 1.558 71.04 – 23.9 23.322 588
J2124−3358 4.931 4.62 – 4.03 13.8 416
J2129−5721 3.726 31.85 6.63 2.19 12.5 179
J2145−0750 16.052 9.00 6.84 1.82 13.8 377

because of the nature of their technique, Jenet et al. had to discard a large fraction of their

observations.

2.3.2 The Verbiest et al. (2009) Observations

Verbiest et al. (2009) presented long time-span observations of 20 MSPs using the Parkes radio

telescope23. The pulsars were timed with a weighted rms residual of∼ 0.2 − 23 µs for a

period of∼12 years. The specifications of each set of timing residuals are given in Table 2.2,

where, in column order, we present the pulsar name in the J2000 coordinate system, pulse

period, dispersion measure, orbital period, weighted rms residual, data-span and number of

recorded ToAs. For full details of ToA estimation and data processing, see Verbiest et al. (2008,

2009). The timing residuals from all observations are shownin figure 1 of Verbiest et al. (2009).

Between different pulsars, there is variation in the noise level of the residuals and the sampling

23In this thesis, we augment the Verbiest et al. observations by adding eight years of ToAs for PSRs J1857+0943
and J1939+2134 to the beginning of the list of observations for these pulsars. These additional ToAs were obtained
from publicly-available data collected using the Arecibo radio telescope and presented by Kaspi et al. (1994).
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Figure 2.5: The 10 pulsars with the smallest weighted rms residual in the Verbiest et al. (2009)
observations. The abscissa gives the date of the observation. The ordinate measures the timing
residual for each observation of each pulsar. The dotted lines indicate zero residual for each
pulsar, and the length of the vertical bar on the left-hand side in each panel indicates 10µs.
The right-hand column gives the pulsar’s name in the J2000 coordinate system. Noise levels
vary significantly both between pulsars and at different epochs. The time-span also differs for
different time series, and in general the observations of each pulsar were begun on different
dates.

frequency and start dates for the observations. In Figure 2.5, we plot the timing residuals for the

10 pulsars with the smallest weighted rms residual with the same scaling on the axes. In Figure

2.6, we plot a similar figure for the remaining 10 pulsars.

The observations were made with a number of different observing systems – both the fron-

tend receivers and the backend instrumentation have variedover time. Arbitrary phase offsets

have been fitted for and removed between the ToAs from each different observing system for

a given pulsar. This reduces the standard deviation of the timing residuals for that pulsar and

can remove significant signals from the residuals, especially over long timescales. This effect

is shown in Figure 2.7 for an extended set of observations of PSR J0437−4715 that includes

more recent data than that published by Verbiest et al. (2009).

The Verbiest et al. (2009) residuals have a number of features that complicate their analysis.

While the timing residuals of most of the pulsars are white, nine out of the twenty pulsars exhibit
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Figure 2.6: The 10 pulsars with the largest weighted rms residual in the Verbiest et al. (2009)
observations. The abscissa gives the date of the observation. The ordinate measures the timing
residual for each observation of each pulsar. The dotted lines indicate zero residual for each
pulsar, and the length of the vertical bar on the left-hand side in each panel indicates 50µs. The
right-hand column gives the pulsar’s name in the J2000 coordinate system. Noise levels vary
significantly both between pulsars and at different epochs.The residuals of PSR J1939+2134
are dominated by a polynomial of unknown origin.

non-white noise24.

The Verbiest et al. (2009) observations contain a wealth of information on many physical

effects. However, the techniques for GW analysis presentedto date have difficulty in analysing

the residuals. The Jenet et al. (2006) technique cannot be applied in its current form, nor can

the Anholm et al. (2009) technique, as outlined in Section 1.6. The technique presented by

van Haasteren et al. (2009) can be applied to these observations, but this would require a large

amount of computation time and the results would be difficultto confirm via Monte Carlo

simulation. This necessitates the development of new techniques for GW analysis that can be

applied to pulsar timing observations. Such methods are described in subsequent Chapters of

this thesis. To develop and test new GW-analysis techniques, we need to be able to simulate PTA

observations. Many methods are possible for creating simulated timing residuals; we choose to

use the methods implemented in theFAKE andPSD SIMULATOR plugins toTEMPO2.

24This was determined using a simple two-point correlation analysis to determine the degree of correlation
between adjacent residuals using theCHECKWHITE plugin toTEMPO2.
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Figure 2.7: The effect of fitting arbitrary phase offsets between different observing systems
on the PSR J0437−4715 residuals obtained from observations under P140 and P456. The
total time-span of the observations in each figure is 12.2 years; the first 9.9 years of data were
presented by Verbiest et al. (2008) and are described above.If the phase offsets are measured
using very precise system tests at Parkes (upper figure; Manchester, 2011), then significant low-
frequency structure is revealed in the residuals, indicating the presence of an unmodelled signal.
If we instead determine these phase offsets using aTEMPO2 fit of the observations, as was done
by Verbiest et al. (2008, 2009) for the first 9.9 years of the observations, then most of this signal
is removed (lower figure).
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2.4 Simulating Pulsar Timing Observations

2.4.1 The FAKE Plugin to TEMPO2

TheFAKE plugin produces simulated observations at a user-defined set of times that are affected

by user-selected levels of white noise, red noise or other pulsar timing effects such as glitches.

The only required input is the timing model for the pulsar. The arrival times predicted by the

input timing model are subtracted from the list of observation times, which are assumed to

represent pulse ToAs, and the timing residuals are formed. These timing residuals are then sub-

tracted from the initial ToAs, creating a new set of ToAs thatwill be predicted more accurately

by the input timing model than the initial ToAs. TheTEMPO2 modelling and fitting process is

non-linear in general, meaning that this procedure must be repeated until the timing residuals

are negligible (Hobbs et al., 2009). The ToAs will then be exactly predicted by the input timing

model; we refer to these as a set of “ideal ToAs”. The ideal ToAs have the same sample times as

the actual observations. They can then be modified using the specified levels of white noise, red

noise, GWs and any other simulated effects. This process creates simulated pulsar timing ob-

servations for which we know the form of all effects that influence the ToAs. In the upper panel

of Figure 2.9, we show simulated timing residuals for PSR J0613−0200 created with theFAKE

plugin. The simulated residuals have the same time-span, average sampling and weighted rms

residual as the real observations, but the observation times, error bars and spectral properties of

the simulated residuals do not resemble the actual observedresiduals shown in Figure 2.8.

2.4.2 Simulating Observations with Variable Error Bars and Irregular

Sampling

If we have a list of ToAs and their uncertainties, it is straightforward to simulate ToAs with the

same sampling and error bars as the input ToAs usingTEMPO2. In particular, this means that

the noise level can vary from one ToA to the next, as occurs forreal observations of pulsars.

The sampling interval between consecutive observations can also vary. In the lower panel of

Figure 2.9, we show timing residuals formed from a simulatedset of observations for PSR

J0613−0200. Each simulated observation has the same error bar and MJD as the corresponding

real observation.

These simulated observations give residuals that are more similar to the observed data in Fig-
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Figure 2.8: The observed timing residuals for PSR J0613−0200 from Verbiest et al. (2009).
The residuals collected with CPSR2 (filled diamonds) and other backend systems (open circles)
are shown. We investigate three different methods to simulate a time series that resembles this
time series as closely as possible. The results of applying each different simulation method are
shown in Figures 2.9 and 2.13.

ure 2.8 than the simulated observations created byFAKE. However, the simulations described

here still yield residuals that are consistent with white noise of varying standard deviation. The

observations in Figure 2.8 exhibit significant low-frequency noise that should be included in

simulations of observations of this pulsar25.

2.4.3 ThePSD SIMULATOR Plugin to TEMPO2

To simulate significant low-frequency noise in pulsar timing residuals, we require a mathe-

matical model of the low-frequency spectrum of the “pre-fit”residuals. We define the pre-fit

residuals to be the timing residuals obtained before applying theTEMPO2 parameter fit to de-

termine a new timing model. The predictions of this new timing model can be subtracted from

the ToAs to form the “post-fit” residuals. When observing pulsars, multiple fits will already

have been applied to the data. For example, in the discovery of a new pulsar, an estimate of the

pulsar’s pulse period, dispersion measure and sky-position will have been obtained. Subsequent

observations of the pulsar will allow these parameters (as well as the period derivative and other

parameters) to be measured using the standard pulsar timingprocedure, which includes a pulsar

parameter fit. As the time-span of the observations increases, it is possible to fit for more and

25The low-frequency noise in PSR J0613−0200 was analysed by Verbiest et al. (2009).
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Figure 2.9: Simulated timing residuals for PSR J0613−0200. The upper panel was created
using theFAKE plugin to TEMPO2 and assuming regular sampling with equal error bars. The
lower panel was created using the same observation epochs and error bars as the observed resid-
uals of PSR J0613−0200. The random gaussian deviation at each residual is given by the error
bar size, but does not include any low-frequency noise. The filled diamonds are the residuals
resulting from simulated observations taken with the CPSR2observing backend system; open
circles show the residuals resulting from simulated observations using other observing backend
systems. Neither of the simulated data sets shown here resemble the actual observed timing
residuals in Figure 2.8.
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Figure 2.10: The effective transfer function for the Verbiest et al. (2009) observations of PSR
J0613−0200. The abscissa gives the frequency, while the ordinate gives the effective transfer
function of theTEMPO2 parameter fitting process. See text for more details.

more pulsar parameters. It is therefore not usually possible to determine timing residuals that

do not have various signatures subtracted from them by theTEMPO2 parameter fit (see Figure

2.3). However, such residuals can be simulated26, which enables subsequent investigation of

the effect of theTEMPO2 fit on the data. The effect of the fitting is particularly important when

applied to observations affected by non-white noise. For instance, significant low-frequency

power will be removed when estimating the pulsar period, itsderivative (see Figure 2.3) or any

arbitrary phase offsets (see Figure 2.7).

Before simulating pre-fit residuals explicitly as a time series, we first simulate their power

spectrum. This requires an estimate of the average effect ofthe TEMPO2 pulsar parameter fit

on the particular set of observations being simulated. Thisestimate can be calculated using

the XFER FUNC plugin to TEMPO2. This plugin estimates the power spectrum – before and

after pulsar parameter fitting – of simulated white noise with the same sampling and ToA errors

as the input timing residuals (see Section 2.4.2). Dividingthe post-fit spectrum by the pre-fit

spectrum gives an estimate of the effective “transfer function” of the TEMPO2 fitting procedure

(e.g., Blandford et al., 1984; Hellings, 1989). This process is repeated 1000 times to find the

average effective transfer function.

26We later show how to simulate the timing residuals induced bya GW signal. The simulation creates ToAs
from an input timing model by adding user-defined noise levels and GW signals to pulse arrival times that are
predicted by the model. StandardTEMPO2 fits can then be applied to determine the post-fit residuals that would
actually be observed.
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The effective transfer function for the Verbiest et al. (2009) observations of PSR J0613−0200

is shown in Figure 2.10. A small value of the effective transfer function indicates a frequency

at which theTEMPO2 parameter fit removes most of the power. There are three prominent fea-

tures. First, at least 5% of the input power is lost at all frequencies during theTEMPO2 fit. This

is mainly caused by the fitting of two arbitrary phase offsetsto the ToAs. Second, a significant

loss of power occurs in the lowest two frequency channels because of theTEMPO2 fits for the

period, period derivative and arbitrary phase offsets. Third, near-total loss of power occurs at a

frequency of3.1× 10−8 Hz because of theTEMPO2 fit for the pulsar’s sky-position (see Figure

2.3).

To obtain the pre-fit power spectrum, we divide the measured power spectrum of the actual

residuals by the effective transfer function. The pre-fit power spectrum is shown in Figure 2.11,

along with the spectrum of the actual residuals and a model ofthe pre-fit spectrumPmodel(f) =

af b for the low-frequency portion of the spectrum. We aim to simulate a time series that is

consistent with this low-frequency spectral model. For thehigh-frequency noise in the residuals,

we use the ToA error bars in the same way as described in Section 2.4.2. After theTEMPO2 fit

is applied to the total time series, the post-fit simulated residuals will resemble the time series

of actual residuals in Figure 2.8.

We can simulate a time series with user-defined sampling thathas a power spectrum con-

sistent with a given spectral model. We first simulate an equally-spaced time series with the

required power spectral density (e.g., the dashed line in Figure 2.11). The power spectral den-

sity of a time seriesrn of Npts points with time-spanTobs at frequencyfk can be defined as27

P (fk) = 2Tobs|F(fk)|2 , (2.1)

whereF(fk) is the Discrete Fourier Transform (DFT) of the time series. To calculate the DFT,

we use the TKFFT function within the TKSPECTRUM library to TEMPO2. This function uses

the following definition of the DFT:

F(fm) =
1

Npts

Npts−1
∑

n=0

rne−2πimn/Npts , (2.2)

wherem is an integer between 0 and(Npts−1). The power spectral density defined in Equation

27See, e.g., equation (6.6) of Albrecht et al. (2003).
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Figure 2.11: Power spectra of the pre-fit residuals (solid trace) and the actual residuals (dotted
trace) from the Verbiest et al. (2009) observations of PSR J0613−0200. The abscissa gives the
frequency, while the ordinate gives the power level in unitsof yr3. The “pre-fit” spectrum is
obtained by dividing the power spectrum of the actual residuals by the transfer function plotted
in Figure 2.10. We can model the low-frequency portion of thepre-fit spectrum with a power-
law (dashed line).

(2.1) is one-sided, meaning that we only allow positive frequency channels betweenk = 1 and

k = (Npts − 1)/2, rounded down. We defineP (f0) = 0 because there is no information

contained in the mean of a set of pulsar timing residuals. TheDFT defined in Equation (2.2) is

two-sided.

Rearranging equation (2.1) yields

|F(fk)|2 =
P (fk)

2Tobs
. (2.3)

Since the DFT contains real and imaginary parts (Rk andIk respectively), we have

R2
k + I2

k =
P (fk)

2Tobs
. (2.4)

Our method for simulating a time series that has a random power spectral density consistent

with the inputP (fk) uses the following procedure:

• We create two arrays ofNpts normally distributed random numbers,Rn andIn. Npts is a

parameter that can be defined by the user and must be a power of two in our implementa-

tion.
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• We multiply each array by[Pmodel(f = fk)/4Tobs]
1/2, wherePmodel is the model for pre-

fit power spectrum andfk = k/Tobs. Rn now represents the real part of the DFT while

In represents the imaginary part. These arrays will now satisfy the identity in Equation

(2.4).

• We perform an Inverse DFT onRn + iIn to form a complex arrayrn. We define the

Inverse DFT as:

rn =

Npts−1
∑

k=0

F(fk)e
i2πkn/Npts . (2.5)

The time seriesrn will be regularly sampled with sampling intervaltn = t0 +nTobs/Npts,

wheret0 is the arbitrary start-time for the series. We shift the timeseries such thatt0 is

the time of the first observation in the actual data.

• We interpolate the residuals onto the arrival times in the observed time series using a

constrained cubic spline. This interpolation works well whenNpts is sufficiently large, as

shown in Figure 2.12.

• The power spectrum of these interpolated residuals will follow the input spectral model.

This procedure can be extended to provide a realistic simulation of a set of observed pulsar

timing residuals. We add white noise consistent with the measured error bars on the real data

to the values of the interpolated time series described above. This yields a new time series

affected by white noise and low-frequency noise that is uncorrelated between pulsars. This new

time series has exactly the same sample-times as the actual residuals. This means we can add

each value to a set of ideal ToAs – determined using the procedure described in Section 2.4.1 –

to form a simulated set of ToAs. Timing residuals formed fromthese simulated ToAs will have

the same power spectrum, ToA uncertainties and sampling as the actual residuals.

The required transformations described above are implemented in thePSD SIMULATOR

plugin, which is given in C-code in the Appendix. The implementation includes the fact

that the timing residuals are real, meaning that the DFT willbe Hermitian. This means that

R [F(fk)] = R
[

F(fNpts−k)
]

andI [F(fk)] = −I
[

F(fNpts−k)
]

, which can reduce the number

of computations required.

While theFAKE plugin described in Section 2.4.1 can simulate ToAs that yield gaussian red

noise in the timing residuals, it is restricted to simulating power-law models. ThePSD SIMULATOR
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Figure 2.12: Interpolation of the time series calculated inEquation (2.5) onto the actual obser-
vation times for PSR J0613−0200. Only a subset of the full time series of PSR J0613−0200
residuals is shown here. The time series (dots connected by solid line) is initially sampled regu-
larly once every 11.7 d. This is then interpolated onto the actual observation times for the ToAs
from PSR J0613−0200 in the Verbiest et al. (2009) data set (crosses).

plugin can simulate gaussian noise consistent with most spectral models. In Figure 2.13 we plot

an example of the residuals formed from simulated ToAs for PSR J0613−0200 created using

thePSD SIMULATOR plugin, cf. the actual residuals plotted in Figure 2.8.

With the ability to simulate realistic timing residuals, wenow seek to add a variety of signals

to these simulations. In this thesis we focus on the additionof different GW signals to the ToAs.

In the next Section, we describe methods for simulating GW sources and their effect on the

arrival times of pulses from a pulsar.

2.5 Simulating GWs with TEMPO2

TEMPO2 simulates the effect of GW signals on ToAs rather than timing residuals, creating data

sets that can be processed using exactly the same method as ToAs collected with a telescope.

For instance, the same processing tasks (such as parameter fitting, determining arbitrary phase

jumps or measuring DM variations) can be applied to the simulated ToAs in exactly the same

way as they are applied to the measured ToAs. As described in Section 1.5, ToAs will be

affected by GW signals from SMBHBs. The strain amplitude induced by GWs from SMBHBs
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Figure 2.13: Simulated timing residuals for PSR J0613−0200. These residuals were created
using thePSD SIMULATOR plugin, where the simulated data includes the same sampling, error
bar sizes and low-frequency noise as the observed residualsshown in Figure 2.8. The filled dia-
monds are the residuals resulting from simulated observations taken with the CPSR2 observing
backend system; open circles show the residuals resulting from simulated observations using
other observing backend systems.

will vary as a function of time, but for most pulsar timing experiments the variation will be over

such long timescales to cause negligible change in the GW signal (Lommen & Backer, 2001).

TEMPO2 treats the simulation of an evolving SMBHB differently from that of a non-evolving

SMBHB. We only consider non-evolving GW sources in this thesis. TEMPO2 assumes that non-

evolving GW sources have zero eccentricity. This assumption is valid because binary systems

tend towards zero eccentricity over a much shorter timescale than the orbital decay timescale

(Peters, 1964).

For a non-evolving source of GWs, the GW-induced ToA perturbation at the Earth28, Re(t),

at timet is given by (Detweiler, 1979; Lee et al., 2011)

Re(t) = Real

{
∫ t

0

P+A+(t) + P×A×(t)

2(1 − γ)
dt

}

(2.6)

28This will be a real number, because measured timing residuals are real-valued. However, the calculation of
Re(t) is greatly simplified by including an imaginary part in the integrand in Equation (2.6). This imaginary part
corresponds to another set of timing residuals that are out of phase with the real part and are not measured under
typical observing conditions.
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whereP+,× andγ are real-valued geometrical terms defined by

P+ =
(

k̂p · θ
)2

−
(

k̂p · φ
)2

(2.7)

P× = 2
(

k̂p · θ
)(

k̂p · φ
)

(2.8)

γ = k̂p · k̂g (2.9)

wherek̂p is a unit vector directed from Earth to the pulsar andk̂g is a unit vector directed from

Earth to the GW source (so the GW propagates in the direction−k̂g). In equations (2.7) - (2.9),

we have the following definitions

k̂p · θ = sin θp cos θg − cos θp sin θg cos(φg − φp) (2.10)

k̂p · φ = cos θp sin(φg − φp) (2.11)

k̂p · k̂g = sin θp sin θg + cos θp cos θg cos(φg − φp) (2.12)

In these equations, we define(φp, θp) to be the right ascension (RA) and declination (Dec) of

the pulsar, respectively, and(φg, θg) to be the RA and Dec of the GW source respectively.

Prior to this work,TEMPO2 was only capable of simulating GWs with real-valued polari-

sations; that is, a linear combination ofA+ andA× with real coefficients. However, in general

we expect SMBHBs to emit elliptically polarised waves (unless the SMBHB is exactly edge-on

with respect to our line-of-sight; e.g., Blanchet et al., 1996). Elliptical polarisation requires the

introduction of complex-valued coefficients ofA+ andA×.

The termsA+,× in Equation (2.6) are given by

A+,×(t) = A+,×ei(2πft+Φg) , (2.13)

where2πf is the GW angular frequency at the Earth andΦg is a constant phase offset. Assuming

thatf is constant over the duration of the observations, we can continue from Equation (2.6) as

follows:

Re(t) = Real

{

P+A+ + P×A×

2(1 − γ)
×

(

ei(2πft+Φg) − 1

i2πf

)}

=
{P+Real (A+) + P×Real (A×)} sin(2πft + Φg)

4πf(1 − γ)

+
{P+Imag (A+) + P×Imag (A×)} {cos(2πft + Φg) − 1}

4πf(1 − γ)
(2.14)
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The GW-induced ToA perturbation at the pulsar,Rp(t), is the same except for an additional

phase term due to the GW transit time between the pulsar and the Earth. This phase term is

(adapted from Hobbs et al., 2009; Lee et al., 2011):

∆Φg = (1 + k̂p · k̂g)
Dp2πf

c
, (2.15)

whereDp is the (in general, unknown) distance from Earth to the pulsar andc is the vacuum

speed of light, which is also the speed of the GW. Hence we can expressRp(t) as

Rp(t) =
{P+Real (A+) + P×Real (A×)} sin(2πft + Φg − ∆Φg)

4πf(1 − γ)

+
{P+Imag (A+) + P×Imag (A×)} {cos(2πft + Φg − ∆Φg) − 1}

4πf(1 − γ)
(2.16)

Hence, the total ToA perturbationR(t) induced by a GW passing the Earth and the pulsar is

R(t) = Re(t) − Rp(t)

=
{P+Real (A+) + P×Real (A×)} {sin(2πft + Φg) − sin (2πft + Φg − ∆Φg)}

4πf(1 − γ)

+
{P+Imag (A+) + P×Imag (A×)} {cos(2πft + Φg) − cos (2πft + Φg − ∆Φg)}

4πf(1 − γ)
(2.17)

The induced ToA perturbation in Equation (2.17) shows two distinct physical effects. The GW-

induced ToA perturbation at the Earth,Re(t), is given in Equation (2.14) and is called the “Earth

term”. The GW-induced ToA perturbation at the pulsar is given in Equation (2.16) and is called

the “pulsar term”. Equation (2.17) has been implemented in theTEMPO2 GW simulation engine

GWSIM.H.

We now use the techniques described in Section 2.4 to simulate data sets for a range of future

timing array projects. In the next Chapter, we will investigate the sensitivity of these simulated

data sets to individual GW sources that induce sinusoidal timing residuals as described above

in Equation (2.17).

2.6 Simulated Timing Array Observations

For analysis in Chapter 3 and Chapter 5, we have simulated several PTA projects with different

characteristics using theFAKE plugin, described in Section 2.4.1. Here, we assume that the

residuals are consistent with white noise with equal error bars. These assumptions will be
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Scenario Number of Residual Timespan of
Name Pulsars rms (ns) Observations (d)

Arecibo 1/5 10 1750 / 3500 / 5250
PPTA 20 100/500 1750 / 3500 / 5250
IPTA 40 20 @ 100 ns, 20 @ 500 ns1750 / 3500 / 5250
SKA 20/100 10/100 1750 / 3500 / 5250

Table 2.3: Parameters used to simulate different PTA projects.

relaxed in later Chapters. The characteristics of each dataset are given in Table 2.3. In every

simulated set of timing residuals, one observation is takenevery two weeks. In particular, 1750

days of observing produces 127 data points (including end-points), 3500 days produces 252 data

points and 5250 days produces either 377 or 378 data points depending on the pulsar parameter

file being used.

The characteristics of the “Arecibo” scenarios are intended to emulate the very precise tim-

ing but limited sky-coverage attainable with the radio telescope at the Arecibo Observatory.

The characteristics of the “PPTA” scenarios illustrate possible data sets that may be obtained by

the end of the project, though these data sets would serve equally well as a simulation of the

EPTA or NANOGrav data sets. The characteristics of the “IPTA” scenario are chosen to show

the large number of pulsars observed as part of the project, with some precisely timed pulsars.

The “SKA” scenarios correspond to simulated observations with the proposed Square Kilome-

tre Array telescope (SKA)29. While the SKA will improve timing precision and the number

of observable pulsars, the exact characteristics of any PTAproject using the SKA are hard to

predict.

To obtain 100 pulsars for the simulated PTA observed with theSKA, it was necessary to read

in pulsars from the pulsar catalogue that have properties consistent with those of the currently

known MSPs. In particular, most MSPs are in binary systems soit will be necessary to fit for

binary parameters for many of the SKA pulsars. All the pulsars withP < 60 ms andṖ < 10−17

are plotted on aP − Ṗ diagram in Figure 2.14. 100 of these pulsars were chosen for the SKA

simulation.

After choosing pulsars suitable for timing with the SKA, it was necessary to choose a stan-

dard list of pulsar parameters to include in a model for each of these pulsars. In subsequent

processing, every parameter measured for each pulsar was included in the timing fit, except for:

29Seehttp://www.skatelescope.org/ .
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Figure 2.14: AP − Ṗ diagram showing pulsars used in the SKA simulation (crosses). Other
symbols indicate the remaining known pulsar population.

• proper motion;

• dispersion measure (and any derivatives);

• 2nd and higher derivatives of rotational frequency;

• any post-Keplerian orbital terms, including the sine of theinclination angle, mass of the

companion and the 1st derivatives of the longitude of periastron, the projected semi-major

axis, the orbital period and the eccentricity;

For most pulsars used in the SKA simulation in Chapters 3 and 5, the timing parallax was also

excluded from the timing model. However, the timing parallax fit was performed for those

pulsars with a significant parallax measurement in the pulsar catalogue30.

Having simulated a range of PTA scenarios, we will analyse their sensitivity to individual

GW sources that induce sinusoidal residuals in Chapter 3. Bydetermining the sensitivity of the

different PTAs to such GW sources, it is possible to constrain the merger rate of SMBHBs as a

function of redshift and chirp mass. Such constraints can beused to rule out predicted models

for the formation and evolution of black-hole binaries.
30For the SKA simulation described in Section 4.3.4, the timing parallax was included in the timing model of

every pulsar.
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Chapter 3

Using Pulsar Timing to Detect Single

Sources of Gravitational Waves Embedded

in White Noise
Chapter Outline: In this Chapter, we:

• describe a technique for detecting GWs that induce sinusoidally varying perturbations in
the ToAs. This technique can only be applied to timing residuals that are consistent with
white noise.

• apply this technique to simulated and real pulsar timing observations. This provides
estimates of the sensitivity of different PTAs to individual sources of GWs that induce
sinusoidal residuals.

• constrain the coalescence rate of SMBHBs using these GW sensitivity estimates.

The results of this work (Section 3.3.4 below) were published in:
Wen Z. L., Jenet F. A., Yardley D., Hobbs G. B., Manchester R. N., 2011, ApJ, 730, 29

Some of the introductory work (Section 3.1) was published in§3.1 of:
Yardley D. R. B., Hobbs G. B., Jenet F. A., et al. 2010, MNRAS, 407, 669

In Chapter 2, we described methods for simulating pulsar timing observations (Section 2.4)

and showed how GWs affect the timing residuals (Section 2.5). In this Chapter, we introduce

a method to measure the sensitivity of pulsar timing observations to GWs from individual non-

evolving SMBHBs. Such GWs will induce sinusoidal variations with known amplitude in the

ToAs. Our algorithm can detect these sinusoidal variations, but can only be applied to timing

residuals that are consistent with white noise. In our algorithm, we perform a Monte Carlo sim-

ulation of the ToAs to determine the strength of the sinusoidthat is required to give a significant

detection at each GW frequency. We then inject sinusoidal GWsignals with different strain,hs,

and frequency,f , into the ToAs and measure the detection probability for each value ofhs and

f . This process gives the sensitivity of the observations to an individual non-evolving SMBHB
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that could be in any position on the sky and emits GWs with arbitrary polarisation (see Section

1.3), and a frequency in the nHz toµHz range.

We apply our method to simulated observations from the PTAs that are described in Section

2.6. We also analyse a set of real timing observations presented by Jenet et al. (2006) and

described in Section 2.3.1. The resulting estimate of GW-sensitivity as a function of frequency

and GW strain places a constraint on the rate of coalescence of SMBHBs (Wen et al., 2011).

3.1 Gravitational Waves from Supermassive Black-Hole Bi-

naries

In Section 2.5, we derived the timing residual induced by a GW. For this analysis, we assume

that the total GW-induced ToA perturbation is a sinusoid. This assumption is based on two

facts. The first is that, for most SMBHBs, the frequency of thesignal will not vary significantly

over the time-span of the observations. For an equal-mass binary, the lifetime of a SMBHB

scales as (adapted from Lommen & Backer, 2001):

τ = 5.1 × 104

(

M1 + M2

109 M⊙

)−5/3 (

Porb

1000 d

)8/3

yr , (3.1)

whereM1 andM2 are the black-hole masses andPorb is the orbital period31. For a SMBHB

with M1 + M2 = 109 M⊙ andPorb = 1000 d (which would emit GWs with a 500 d period), the

lifetime is four orders of magnitude larger than the typicaldata-span of pulsar timing observa-

tions. This means no significant chirping of the GW signal will occur over the duration of the

observations. Therefore, we assume that the GW frequency isconstant. In this case, Equation

(2.17) can be used to calculate analytically the expected GW-induced residual.

The second fact is that, for most SMBHBs, the light travel-time from the pulsar to Earth is

much smaller than the evolutionary timescale of the system.Evolution of the SMBHB over the

timescale of the light travel time from the pulsar to Earth was measured in simulations of the

proposed SMBHB in 3C66B (Jenet et al., 2004). This resulted in the sinusoid in the residuals

caused by the Earth term exhibiting a higher-frequency thanthe sinusoid caused by the pulsar

term (equations 2.14 and 2.16). We now determine whether such evolution will be significant

for a typical SMBHB. The observed frequency,f(t), of the GWs emitted by a SMBHB changes

31Note that for a binary in a circular orbit,2PGW = Porb, wherePGW is the period of the emitted GWs. This is
because the space-time metric for this binary system will beidentical at timest andt + Porb/2
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at a rate (Peters & Mathews, 1963; Wen et al., 2011):

df

dt
=

96

5

(

GMc

c3

)5/3

π8/3(1 + z)5/3f 11/3 , (3.2)

whereG is the gravitational constant,Mc = (M1M2)
3/5 (M1 + M2)

−1/5 is the chirp mass of

the SMBHB,c the vacuum speed of light, andz the redshift of the SMBHB. If we assume that

the orbital frequency isf1 at timet1, and isf2 at timet2, we can integrate this to obtain

∆t =
15

768

[

f
−8/3
2 − f

−8/3
1

]

(

c3

GMc

)5/3

π−8/3(1 + z)−5/3 , (3.3)

sinceMc andz are independent of time, and where∆t = t2−t1. As an example, we consider the

time taken for the observed GW frequency to shift by an amountequal to two frequency bins.

If this is less than the light travel time from the pulsar to the Earth, then the sinusoidal pulsar

term and the sinusoidal Earth term will have different frequencies, meaning our assumption that

the GW-induced ToA perturbation is sinusoidal would be invalid. For Tobs = 5 yr, whereTobs is

the time-span of the observations of the pulsar, the frequency resolution is1/5 yr ≈ 6.34 nHz.

Therefore we setf2 = 50 nHz (following Sesana & Vecchio, 2010b) andf1 = 50−12.7 nHz =

37.3 nHz. ForMc = 108.5M⊙ (a typical value for a resolvable SMBHB; Sesana et al., 2009;

Sesana & Vecchio, 2010b) andz = 0, we obtain∆t = 5 × 103 yr. A typical pulsar distance

for a PTA pulsar is 1 kpc, giving a light travel time of approximately3 × 103 yr, which is less

than∆t. Hence, we ignore this longer timescale evolution, meaningthat, in our model, the

Earth term and the pulsar term always have the same frequency. However, we have allowed the

two periodicities to be offset in phase. This alters the amplitude and phase of the signal in the

timing residuals. We hence reduce the problem of detecting ToA perturbations induced by a

non-evolving circular binary system to the problem of identifying the presence of a significant

sinusoid in the timing residuals. To confirm that such a sinusoid is caused by GWs, one would

need to ensure that the expected GW signature is present in the timing residuals of all pulsars

(Equation 2.17).

To determine the signal that a particular SMBHB will induce in our timing residuals, we

begin with the expected GW strain averaged over all orbital orientations of the binary,hs, for
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an individual SMBHB (Thorne, 1987):

hs = 4

√

2

5

(GMc)
5/3

c4D(z)
[πf (1 + z)]2/3 , (3.4)

whereD(z) is the comoving distance to the SMBHB, given by

D(z) =
c

H0

∫ z

0

dz′

E(z′)
, (3.5)

whereE(z) = H(z)/H0 =
√

ΩΛ + Ωm(1 + z)3 under a spatially flatΛCDM cosmological

model (White & Rees, 1978). For our analysis we assumeΩΛ = 0.7 (e.g., Komatsu et al.,

2009), givingΩm = 0.3.

Using equations (2.17) and (3.4), we can calculate the amplitude,Ares, of the sinusoidal

perturbation induced in the ToAs by a non-evolving SMBHB. The result is (Jenet et al., 2004,

and references therein):

AToA =
hs

2πf
(1 + cos θ) sin(2φ) sin

[

πfDp(1 − cos θ)

c

]

, (3.6)

where2πf = 2π/PGW is the GW angular frequency,θ is the angle between the direction from

which the GWs emanate and a vector from the Earth to the pulsar, φ is the GW polarisation

angle andDp is the (usually unknown) distance to the pulsar32. Equation (3.6) implies that

the signal amplitude in a pulsar GW detector depends on the location of the GW source. For

instance, GWs propagating along the line of sight from the Earth to the pulsar will not induce a

measurable sinusoid in the timing residuals.

However, the observed timing residuals can be significantlydifferent to the GW-induced

ToA perturbations after the fitting process has been carriedout. Figure 3.1 shows the effect this

can have on GW detection – a GW signal with a period of one year (top left panel) will be almost

completely removed after fitting (top right panel) because this signal mimics an error in the

pulsar position. A GW signal with a period of two years (bottom left) is only slightly attenuated

by fitting (bottom right). In order to simulate realistic post-fit residuals in the presence of a

GW signal, we add the GW-induced perturbation directly to a set of ideal ToAs as described in

Section 2.4.1. We then perform the standard pulsar timing fitting procedure on these modified

ToAs to determine the timing residuals.

32For the nearest PPTA pulsars,Dp can be measured using the parallax distance.
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Figure 3.1: Attenuation of GW signals in timing residuals caused by pulsar parameter fitting.
In each panel the abscissa is the MJD and the ordinate gives the timing residual in seconds.
The dashed lines indicate zero residual. The plotted residuals are formed by adding a simulated
GW signal to the timing observations for PSR J1909−3744 that are described in Section 2.3.2
and performing theTEMPO2 timing model fit. The top row shows a GW signal with a period
of one year (top left) being completely removed after fittingfor the pulsar timing model (top
right). The bottom row shows a GW signal with a period of two years (bottom left) being largely
unaffected by the fitting procedure (bottom right).
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We now describe an algorithm for detecting the presence of this GW-induced perturbation

in the timing residuals. In brief, the algorithm determinesthe sensitivity of any set of white

timing residuals from a PTA to the GW signals from individualnon-evolving SMBHBs.

3.2 Calculating the Sensitivity of a Pulsar Timing Array to

Individual Non-evolving Sources of Gravitational Waves

The detection of a sinusoid in the presence of noise with known statistics is a well-studied

problem with a simple optimal solution, the maximum likelihood estimator33. A number of

algorithms can be used, depending on the characteristics ofthe data. For our analysis in this

Chapter, we assume that each time series of residuals is consistent with white noise with varying

error bars and irregular sampling.

To detect the GW-induced sinusoid in the timing residuals, we use one of the most com-

mon spectral estimation tools: a normalised Lomb-Scargle periodogram (Lomb, 1976; Scargle,

1982; Press et al., 1992). The periodogram is normalised by the variance of the input timing

residuals. When processing multiple pulsars, we add the power measured in each frequency

channel to form a “summed periodogram”. Note that normalizing each power spectrum by the

variance of the residuals is equivalent to weighting each power spectrum by the inverse variance

when summing. Our “detection statistic” is the power level,Pi, in some frequency channeli

in the summed periodogram. IfPi exceeds the detection thresholdTi, then a detection of a

sinusoid has been made. We quantify the significance of this sinusoid using the “false alarm

probability”, Pf . The false alarm probability gives the probability that a detection is recorded

by our algorithm when no signal is present. For our analysis we usePf = 0.001.

We now describe analytic approximations of the detection thresholds. These analytic ap-

proximations are only valid for equally-spaced samples of white noise with constant variance.

To obtain detection thresholds for our pulsar timing data sets, we use Monte Carlo simulations

described in Section 3.2.2.

33E.g., Chapter VII, Section 9 in (Mood et al., 1974)
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3.2.1 Analytical Calculation of Detection Thresholds

We analytically determine the threshold power level for a givenPf for a set ofNpsr time series

of equally-spaced white noise. The power,Pi, in frequency channeli can be written as

Pi =

Npsr
∑

p=1

(

R2
i,p + I2

i,p

)

, (3.7)

whereRi,p andIi,p are the real and imaginary parts of the DFT of thep-th time series, respec-

tively (see Equation 2.4).Ri,p andIi,p are independent, normally-distributed random variables,

so Pi is distributed as aχ2 random variable with2Npsr degrees of freedom. If we assume

Npsr = 1, the cumulative distribution function (cdf) ofPi has a simple form:

Fcdf(Pi) = 1 − e−Pi/2 . (3.8)

Therefore, for an individual time series, the probability that the value ofPi is less than some

thresholdT1,i is 1 − e−T1,i/2. The probability thatPi exceedsT1,i is thereforePf,1 = e−T1,i/2.

We can expressT1,i as a function ofPf,1 as

T1,i = −2 ln(Pf,1) . (3.9)

ForPf,1 = 0.001, this yieldsT1,i = 13.8 for all i.

Equation (3.9) does not account for the fact that a false detection can occur at any fre-

quency in the power spectrum of the timing residuals. With real data, we calculate the summed

power spectrum ofNpsr time series and, as the frequency of a possible GW signal is usually

unknown, search for significant power at any frequency. For the caseNpsr = 1, the probability

that Pi is less than some thresholdTi for all i is
(

1 − e−Ti/2
)Nchan , whereNchan is the num-

ber of independent frequency channels in the power spectrum. For a time series consisting of

Npts measurements of white noise, we haveNchan = Npts/2 (e.g., Scargle, 1982). Hence, the

probability,Pf , thatPi ≥ Ti for at least one value ofi is

Pf = 1 −
(

1 − e−Ti/2
)Npts/2

. (3.10)

Rearranging (3.10) yields the detection thresholdTi as a function ofPf :

Ti = −2 ln
{

1 − (1 − Pf)
1/(Npts/2)

}

, (3.11)
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wherePf represents the probability of a false detection at any frequency in the power spectrum.

UsingPf = 0.001 means that, in a given data set, any detection is made with greater than 3-σ

confidence.

However, when analysing pulsar timing residuals, equations (3.9) and (3.11) cannot be di-

rectly applied to determine the detection threshold, for two reasons. First, the effect of parameter

fitting on the post-fit timing residuals must be accounted for. Second, the data sets are irreg-

ularly sampled, meaning that it is difficult to determine thenumber of independent frequency

channels in the DFT. Hence, equations (3.9) and (3.11) have been used in our analysis only to

confirm the accuracy of simulated estimates ofTi whenNpsr = 1. ForNpsr > 1, we confirmed

the accuracy of simulated estimates ofT1,i using computations of the cdf of aχ2-distribution

with 2Npsr degrees of freedom.

3.2.2 Calculating Detection Thresholds via Monte Carlo Simulation

To calculate the detection thresholds using simulations, we must be able to create simulated

timing residuals for each pulsar that are statistically equivalent to the input timing residuals.

For timing residuals that are consistent with white noise, we create statistically equivalent sets

of timing residuals by randomly rearranging, or “shuffling”, the input residuals for each pulsar.

Any shuffled set of timing residuals for a particular pulsar will have the same sample times,

error bars, mean and variance as the input residuals. An advantage of this shuffling technique is

that it assumes nothing about the distribution of the timingresiduals, it simply re-orders them.

We can thus calculate detection thresholds for white timingresiduals fromNpsr pulsars using

the following procedure.

1. We calculate the ideal ToAs (defined in Section 2.4.1) for each pulsar in the input data

set;

2. We create105 sets of observations by shuffling the residuals for each pulsar34 and adding

them to the ideal ToAs;

3. We carry out theTEMPO2 pulsar parameter fit for each realisation to create105 sets of

post-fit timing residuals that are statistically equivalent to the input residuals;

34This assumes that there are at least nine timing residuals for the pulsar, because8! < 105. As typical data sets
have∼200 observations, the 105 data sets are independent.
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4. We calculate the normalised Lomb-Scargle periodogram ofeach shuffled set of post-fit

residuals. For our analysis, the periodogram spans frequencies between1/(30 yr) and

1/(14 d). To sample this frequency range in the periodogram, we must over-sample each

pulsar’s periodogram by a factor of30 yr/Tobs,p, whereTobs,p is the time-span of the

observations of pulsarp.

5. We add the periodograms obtained for each pulsar in each data set, giving105 summed

periodograms;

6. In each frequency channel in the summed periodogram, we find the 100th-highest power

level across the105 power estimates for that channel. This is the detection threshold,T1,i,

corresponding toPf,1 = 0.001 in that frequency channel.

7. We increaseT1,i in each frequency channel by a fixed factorβ > 1, such that there are 100

power estimates higher thanβT1,i across all frequencies in the105 summed periodograms.

This higher thresholdTi = βT1,i gives a false alarm probability ofPf = 0.001 for false

detections at any frequency in the input data set.

In Figure 3.2, we show the detection thresholdsT1,i andβT1,i for a simulated set of pulsar

timing observations of PSR J1713+0747. The simulated observations span 5250 d with one

observation every two weeks. Simulating a data set with these parameters using theFAKE plugin

to TEMPO2 produces 378 timing observations35. The pre-fit timing residuals are samples of

white noise. In the detection thresholds, significant poweris absorbed at a range of frequencies

as described in Table 3.1. The left column gives the frequency range at which power is absorbed.

Each absorption is caused by theTEMPO2 fit for the pulsar timing model parameters named in

the right column.

Since the sampling interval in this set of timing residuals is14 d, the sampling frequency is

fs = 1/ (14 d). Thus, the Nyquist frequency isfNyq = 1/ (28d) = 0.0357 d−1. In an equally-

spaced time series, every sinusoidal component with frequencyf cannot be distinguished from

a sinusoid with frequencyfs−f . This effect is known as “aliasing”, and means that all sinusoids

with frequency larger thanfNyq are indistinguishable from a lower frequency equivalent. As we

have sampled our power spectra up to twice the Nyquist frequency, our power spectra exhibit

35With input parameters ofTobs = 5250 d and a sampling interval of14 d, FAKE produces 378 data points
spanning 5263.7d with a sampling interval of13.96 d.
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Table 3.1: Causes of significant power absorptions in the thresholds in Figure 3.2.
Frequency (d−1) Cause

fi < 0.0004 period, period derivative
fi = 0.003 sky-position
fi = 0.006 parallax
fi = 0.015 binary orbit period
fi = 0.029 other binary parameters36

Figure 3.2: Detection thresholds for a single pulsar corresponding toPf,1 = 0.001 andPf =
0.001 for 378 simulated observations sampled once every two weeks. The lower trace (solid line
connecting ‘+’ symbols) indicatesT1,i. The upper trace (dashed line connecting ‘×’ symbols)
indicatesTi. Both thresholds shown here have been calculated by simulation (see Section 3.2.2).

aliasing effects. This explains why power absorptions occur in pairs in Figure 3.2, reflected

around the frequencyf ≈ 0.036 d−1.

T1,i is plotted as the lower detection threshold in Figure 3.2. The value ofT1,i agrees with

the expected value from Equation (3.9) in frequency channels that are negligibly affected by the

TEMPO2 fitting procedure. This agreement has been shown to hold forthe simulated detection

thresholds for data sets including up to 100 pulsars. The upper detection threshold in Figure

3.2 representsβT1,i. The level of this threshold agrees with the prediction of Equation (3.11)
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within 10%. The discrepancy arises because the upper threshold calculated from simulation is

calculated using the factorβ. This factor essentially treats every frequency channel inthe same

way, whereas theTEMPO2 fitting affects the power in each channel in different ways.

3.2.3 Detecting Individual Non-evolving Gravitational-Wave Sources

Having obtained a set of detection thresholds for the observations, we inject simulated GW

signals into simulations of the input data set and measure the number of such signals that we

can detect. We use the following procedure to find the detection rate for a particular GW strain

and frequency:

1. We simulate103 sets of timing residuals for each pulsar that are statistically equivalent to

the input timing residuals using the shuffling technique.

2. We add the effect of a GW point source with angular frequency 2πfi, amplitudehs,

random sky-position and random polarisation to the ToAs of every pulsar (see Equation

3.6). This induces sinusoidal ToA perturbations in each pulsar. The distance to each

pulsar is assumed to be0.91 kpc, which is the current best estimate of the distance to PSR

J1857+0943 (Kaspi et al., 1994) and is typical for pulsars in the PPTA37.

3. We perform the standardTEMPO2 pulsar parameter fit.

4. We calculate the periodogram for each pulsar’s time series and add the periodograms to

form the summed periodogram. If the summed power in channeli is greater than the

detection thresholdTi in that channel, then the simulated GW signal has been detected.

5. We repeat the previous three steps for each of the103 realisations of the input data set and

find the detection percentage.

This process is repeated for 50 logarithmically-spaced values ofhs in the range10−16 ≤ hs ≤
10−10 and 51 GW frequenciesfi. The 51 frequencies include 50 logarithmically-spaced values

in the range(30 yr)−1 ≤ fi ≤ (14 d)−1 and the frequencyfi = 1/1 yr, enabling analysis of

the effect of the pulsar position fit on our sensitivity to GW sources. The result is a “sensitivity

37Assuming that the distance to each pulsar remains larger than the GW wavelength, varying the distance to each
pulsar would have little effect on the average detection rate in a Monte Carlo simulation because the GW source is
non-evolving. In some individual realisations, the last factor in Equation (3.6) may be exactly zero for particular
values of the pulsar distance.
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matrix”, which is a grid of the detection percentages for each GW strain and frequency. In

Section 3.3 and Chapter 4, we assume a 95% detection probability, enabling us to plot the GW

strain sensitivity of a PTA as a function of GW frequency.

3.3 Results and Discussion

In this Section, we present results from applying the methodof Sections 3.2.2 and 3.2.3 to

several PTA data sets. Each of the data sets analysed here is consistent with white noise. The

simulated PTA observations are discussed in Section 2.6. Inbrief, the timing residuals obtained

from the simulated PTA observations for each pulsar are equally-spaced and have equal error

bars. In a given simulated PTA data set, each pulsar has the same rms residual. For the actual

observations presented by Jenet et al. (2006) and summarised in Table 2.1, the ToA uncertainty

varies for each observation, meaning that the timing residuals do not have equal error bars. The

time-span of the observations and the variance of the residuals for each pulsar also vary.

First, we analyse a simulated PTA data set consisting of 20 pulsars timed with a rms of

500 ns over 10 yr. The results exhibit typical features of measurements of the GW sensitivity

of pulsar timing measurements, such as sensitivity losses caused by pulsar parameter fitting.

Second, we analyse several simulated PTA data sets to determine the dependence of the PTA

sensitivity on the number of pulsars, the observing time-span and the rms residual. Third, we

analyse the Jenet et al. (2006) observations (described in Section 2.3.1) and compare the results

to those obtained for a simulated set of optimistic PPTA observations. Finally, we present the

astrophysical implications of these results via the constraint that can be placed on the coales-

cence rate of SMBHBs (Wen et al., 2011).

3.3.1 Properties of the Sensitivity Curves

In Figure 3.3, we plot the 95% contour of the sensitivity matrix obtained for a simulated PTA

data set, consisting of observations of 20 pulsars with a rmsresidual of 500 ns, with one obser-

vation taken every two weeks over 10 yr. This contour is referred to as a “sensitivity curve”.

There are several frequencies at which the sensitivity is significantly reduced, as described in

Table 3.2. The left column gives the frequency range over which the sensitivity is reduced, while

the right column describes the cause of the reduction. For comparison, the lowest frequency in

the power spectrum of the timing residuals for this PTA simulation is1/10 yr ≈ 2.7×10−4 d−1.
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Figure 3.3: The sky-averaged sensitivity of a PTA data set (consisting of 20 pulsars timed with
a rms residual of 500 ns over 10 yr) to individual non-evolving sources of GWs. The abscissa
gives the observed GW frequency while the ordinate gives thestrain amplitude of the GW
source. The thick solid line indicates the level at which we detect 95% of the GW sources.
The thin solid lines and arrows indicate the regions where the timing parameter fit reduces the
sensitivity, as described in Table 3.2.
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Table 3.2: Causes of significant sensitivity losses shown inFigure 3.3.
Frequency (d−1) Cause

fi < 0.0004 fitting for period & period derivative of every pulsar
0.0023 < fi < 0.0033 fitting for sky-position of every pulsar

fi > 0.061 aliasing+ fitting for period & period derivative

The fitting and aliasing effects for this sensitivity curve,described in Table 3.2, are similar to

those described in Table 3.1 for the detection thresholds ofa single pulsar.

Fitting for the pulsar’s sky-position causes a sensitivityloss over arangeof frequencies38.

This is because of the frequency sampling in the sensitivitymatrix and the limited frequency

resolution of the residuals. Figure 3.3 also shows that, in our technique, a GW-induced sinusoid

in these simulated ToAs withf = 1/1 yr andhs > 10−12 can be detected in the residuals, even

after fitting for the pulsar sky-position.

The process of fitting for an individual pulsar’s orbital parameters will reduce the sensitivity

of its timing residuals to GWs, but this has only a small effect on the sensitivity of a PTA. This

is because the estimation of the orbital parameters (such asthe orbital period of a binary pulsar)

removes a sinusoid with a different frequency for every pulsar (see Figure 2.3).

At frequencies that are negligibly affected by pulsar parameter fitting, such as the range

4 × 10−3 d−1 < f < 5 × 10−2 d−1, the sensitivity curve in Figure 3.3 has unit slope. This

is because, as the GW frequency increases, the magnitude of the GW-induced sinusoid in the

ToAs decreases according to Equation 3.6. This means that the amplitude of the sinusoid in the

residuals decreases. If the timing residuals from the PTA are not consistent with white noise,

or if the PTA data set includes sets of timing residuals with different time-spans, then this slope

would not be constant across this frequency range. The maximum sensitivity is at a frequency

of f ≈ 1/(0.7 Tobs). This is because of the opposing effects of the pulsar parameter fitting

(which reduces the amplitude of the sinusoid in the residuals at low frequencies) and the low

frequency of the GW source (which increases the amplitude ofthe induced sinusoid).
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Figure 3.4: The sensitivity of two simulated PTAs as a function of the number of pulsars,
Npsr, in each array. The abscissa gives the number of pulsars (on alogarithmic scale), the
ordinate gives the logarithm of the minimum GW strain,hs, that yields a 95% probability
of detection. The first simulated PTA has all pulsars in the same location on the sky (solid
line), and the second has all pulsars spread over the sky (dashed line). The upper dotted line
represents a functionf(Npsr) = N−0.25

psr − 12.63, the lower dotted line represents a function
g(Npsr) = N−0.25

psr − 13.86.
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3.3.2 Scaling of the Sensitivity with Properties of the Observations

In this Section, we investigate the dependence of the PTA sensitivity on Npsr, Tobs and the rms

residual. In Figure 3.4, we show the effect on the sensitivity caused by increasingNpsr and/or

observing pulsars that are distributed evenly on the sky. The solid line shows the improve-

ment in sensitivity obtained by adding more pulsars to the timing array that are all in the same

position on the sky. The dashed line shows the improvement when observing pulsars that are

spread across the sky. The improvement occurs because the sky-position of the GW sources

is unknown (see Equation 3.6). However, the magnitude of theimprovement depends on the

specific PTA (Burt et al., 2011). For largeNpsr, the sensitivity improves asN0.25
psr , regardless of

the distribution of pulsars on the sky. This is consistent with a recent estimate of the sensitivity

of PTAs to individual sources of GWs (Lee et al., 2011)39.

In Figure 3.5, we plot the sensitivity curves obtained for a simulated PTA observed using the

SKA. For this analysis, we have assumed that the SKA will be able to observe 100 pulsars that

are suitable for timing. Pulsar ToAs measured using the SKA are expected to be a factor of∼100

more precise than current observations (Kramer & Wex, 2009). However, it is unlikely that

timing precision will reach the∼ns level because of pulse shape instabilities, calibrationeffects

and other noise sources (Cordes et al., 2004). Hence, we haveanalysed two SKA simulations

consisting of 100 observed pulsars. In one simulation, all pulsars are timed with a rms residual

of 10 ns. In the other simulation, all pulsars are timed with arms residual of 100 ns. The results

of these simulations are analysed in Section 3.3.4 to estimate the constraint on the coalescence

rate of SMBHBs that can be obtained with the SKA. They also enable us to investigate the

dependence of the PTA sensitivity to individual GW sources on the rms timing residual and on

the observing time-span.

The PTA sensitivity to a GW-induced sinusoid in the timing residuals is inversely propor-

tional to the rms residual for residuals that are consistentwith white noise (Lee et al., 2011).

This is because the S/N ratio of the detection of the sinusoidwill increase as the noise reduces.

In Figure 3.5, the “minimum detectable amplitude” (defined as the value ofhs indicated by the

38This loss in sensitivity could be avoided in cases where pulsar sky-positions are measured using a technique
other than pulsar timing, such as interferometry (Deller etal., 2008).

39These authors considered a coherent addition of the GW-induced sinusoidal signal from each pulsar, meaning
that their measured sensitivity improves asN0.5

psr . Our analysis simply adds the power spectrum of each pulsar,
meaning that the coherence of the GW-induced sinusoidal signals is lost. Hence, our measurement of the sensitivity
improves only asN0.25

psr for largeNpsr.
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Figure 3.5: The sensitivity curves for three simulations oftiming residuals obtained using the
SKA. The abscissa gives the observed GW frequency while the ordinate gives the strain ampli-
tude of the GW source. Each line indicates the level at which we detect 95% of the GW sources
in that particular simulated data set. The three data sets considered are: 100 pulsars timed with
100 ns rms residual over 10 yr (solid line); 100 pulsars timedwith 10 ns rms residual over 10 yr
(dashed line); and 100 pulsars timed with 100 ns rms residualover five yr (dotted line).
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sensitivity curve at a particular frequency) shown by the dashed line is a factor of 10 lower than

that shown by the solid line. This indicates that, as expected, the sensitivity is improved by a

factor of 10 when the rms residual is reduced by a factor of 10.

The minimum detectable amplitude is inversely proportional to N0.5
pts (Scargle, 1982). In

our case, increasingNpts has the same effect on the S/N ratio of a significant sinusoid in the

residuals40 as increasingTobs. This is because the sampling interval is fixed at 14 d, meaning

that Npts is proportional toTobs. Figure 3.5 shows the sensitivity curves for observations of

100 pulsars timed with a rms residual of 100 ns over five yr (dotted line) and over 10 yr (solid

line). As expected, increasing the time-span of the observations by a factor of 2 reduces the

minimum detectable amplitude by≈
√

2 for GW frequencies in the range4 × 10−3 d−1 <

f < 6 × 10−2 d−1. Other GW frequencies are significantly affected by the pulsar parameter

fit. The figure also shows that doublingTobs provides an even larger improvement in sensitivity

at low frequencies as it decreases the lowest GW frequency that can be detected using the

timing residuals. The PTA is more sensitive to lower frequency GWs, as they induce larger ToA

perturbations for a fixed value ofhs (see Equation 3.6).

3.3.3 Sensitivity of the Jenet et al. (2006) Observations and a Prediction

for the Full Parkes Pulsar Timing Array

The Jenet et al. (2006) observations differ in three ways from the simulated observations inves-

tigated in Sections 3.3.1 and 3.3.2. First, the observations are unequally spaced for each pulsar.

In Figure 3.6, we plot the detection thresholds for the Jenetet al. (2006) observations. They do

not exhibit the same symmetry aboutf = 0.036 d−1 as the simulated observations, indicating

that, as expected (Press et al., 1992), aliasing effects areinsignificant in the Jenet et al. (2006)

observations.

Second, the Jenet et al. (2006) observations have variable ToA uncertainties. This means

that theTEMPO2 parameter fitting in the Monte Carlo simulations can be carried out using two

approaches. One approach accounts for the error bar on each ToA by minimising the weighted

variance of the residuals. The other approach ignores the ToA error bars by minimising the un-

weighted variance of the residuals. The two approaches leadto different estimates of the pulsar

parameters and to different detection thresholds. In Figure 3.6, we plot the detection thresholds

40This is only true at frequencies that are not significantly affected by the parameter fit.
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Figure 3.6: Detection thresholds corresponding toPf = 0.001 for the Jenet et al. (2006) ob-
servations. The abscissa gives the frequency while the ordinate gives the power level. The
detection thresholds obtained when a weighted parameter fitwas carried out (upper trace) do
not show the power absorption features seen in the case of an unweighted parameter fit (lower
trace).

obtained from each approach. When using a weightedTEMPO2 fit, the power reductions in the

detection thresholds described in Table 3.1 are not present. This is not surprising, but adversely

affects our sensitivity at these frequencies, as shown in Figure 3.7. When using an unweighted

TEMPO2 fit, the detection thresholds are very low nearf = 1/1 yr and at low frequencies, as

expected. This is because the Lomb-Scargle periodogram does not account for the error bar on

each ToA when calculating each spectral estimate. We chooseto use unweighted pulsar param-

eter estimates because our spectral estimate is also unweighted. In Figure 3.7 we analyse the

sensitivity of both approaches.

Third, the Jenet et al. (2006) observations differ from the simulated observations as each

pulsar has been observed over a different time-span. This affects the shape of the sensitivity

curve, as can be seen by comparing the solid line in Figure 3.7to the dashed line. The inclusion

of long time-span observations of PSR J1857+0943 (spanning 20.3 yr) in the Jenet et al. (2006)

data set improves the sensitivity to GWs in the frequency range10−4 d−1 < f < 10−3 d−1 by a
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Figure 3.7: Sensitivity curves for real and simulated PPTA data sets. The abscissa gives the GW
frequency, while the ordinate gives the GW strain. Each lineindicates the level at which 95% of
GW sources with any sky-position and polarisation can be detected in that set of observations.
The solid line indicates the sensitivity of the Jenet et al. (2006) observations if we weight each
ToA equally when estimating the timing model parameters foreach pulsar. The dotted line
indicates the sensitivity when we account for the varying ToA uncertainties. The dashed line
shows the sensitivity for a simulation of a target PPTA data set, consisting of 20 pulsars timed
with a rms of 100 ns over five yr.
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factor of∼ 3. However, the PSR J1857+0943 observations have little effect on the sensitivity

for f > 10−3 d−1 because the timing residuals for this pulsar have a larger rms variation than

the residuals of the other pulsars.

The ToAs for the other six pulsars in the Jenet et al. (2006) data set have been measured over

much shorter time-spans (spanning∼2.6 yr) and have significantly lower noise levels. Hence,

as the GW frequency increases, the average induced sinusoidal signal becomes weaker (Equa-

tion 3.6) at the same time as the signal shifts into the detectable band for more of the pulsars.

These two effects alter the sensitivity of the PTA at each frequency in opposite directions. This

accounts for the much slower variation in the sensitivity ofthis data set with frequency, com-

pared with the other data sets we have considered. The sensitivity curve that uses a weighted

TEMPO2 parameter fit (the dotted line in Figure 3.7) has much lower sensitivity at low frequen-

cies than the curve obtained from an unweighted fit. This is because our calculated detection

thresholds are significantly higher when performing a weightedTEMPO2 parameter fit (Figure

3.6). Figure 3.7 also shows that the sensitivity curve that uses a weightedTEMPO2 parameter

fit is multi-valued at frequencies nearf = 4 × 10−4d−1. This is because theTEMPO2 weighted

parameter fit is numerically unstable when very large sinusoidal signals are present in the ToAs

that are not removed by this fit. As a result, the post-fit residuals can exhibit large noise levels

that obscure the large GW signal in more than 5% of cases. Thiscauses the detection percentage

to drop below 95% for GW amplitudes larger than some threshold, meaning that the resulting

sensitivity curve is multi-valued.

The most optimistic goal for the PPTA is the timing of 20 pulsars with a rms timing residual

of 100 ns over five yr. The dashed line in Figure 3.7 shows the sensitivity curve obtained for

a simulated data set with these properties. This simulated PPTA data set is a factor of∼15

more sensitive than the Jenet et al. (2006) data set. It is important to note that, when detecting

single sources of GWs, a few very precisely timed pulsars aremore likely to make a detection41

than many pulsars with less precise timing (Burt et al., 2011). For example, the addition of a

further 20 pulsars timed with a rms residual of 500 ns over fiveyr to the simulated PPTA data set

makes negligible difference to the sensitivity to individual GW sources. However, such a data

set would be very sensitive to the isotropic stochastic GWB,as will be described in Chapters 5

and 6.

41Recall that, while a single pulsar can be used to detect a significant sinusoidal signal, that signal can only be
attributed to a GW if the expected correlated signal is observed in other pulsars.

80



3.3.4 Constraining the Coalescence Rate of Supermassive Black-Hole Bi-

naries

It is proposed by Wen et al. (2011) that, if no GWs are detectedin a given data set, then it is

possible to place a constraint on the coalescence rate of SMBHBs. More specifically, we can

constrain the quantity[d2R/d log(Mc)d log(1 + z)], which gives the rate of coalescence,R,

per logarithmic chirp mass interval,d logMc, per logarithmic redshift interval, wherez is the

redshift. A constraint on the coalescence rate of SMBHBs constrains the merger rate of galaxies

and hence can rule out models of galaxy evolution (e.g., Jaffe & Backer, 2003).

The constraint on[d2R/d log(Mc)d log(1 + z)] depends directly on the sensitivity matrix

calculated in Section 3.2.3. In Figures 3.8 and 3.9, we show[d2R/d log(Mc)d log(1 + z)] as

a function of log(1 + z) for chirp masses of109M⊙ and 1010M⊙. The Jenet et al. (2006)

observations do not yet constrain the merging frameworks discussed by Jaffe & Backer (2003)

or Sesana et al. (2008) at either of the chirp masses we have considered. As shown in Figure

3.8, an extended PPTA project, which times 20 pulsars with a rms residual of 100 ns over 10 yr,

can constrain part of the Jaffe & Backer (2003) parameter space. However, only a PTA with

a rms timing residual of 10 ns can provide significant constraints on the merger rate predicted

by Sesana et al. (2008, 2009). In Chapter 5, we discuss the constraints obtained using upper

bounds on the amplitude of the isotropic stochastic GWB. Fora given set of white residuals,

these upper bounds provide more significant constraints on the SMBHB coalescence rate than

the sensitivity matrix for individual GW sources. The constraints obtained using upper bounds

on the GWB will significantly constrain galaxy evolution models in the near future, without

requiring timing accuracies near 10 ns on each pulsar.

3.4 Conclusion

We have presented a method for determining the sensitivity of a PTA to individual non-evolving

GW sources. Such measurements constrain the coalescence rate of SMBHBs as a function of

redshift and chirp mass. However, the technique presented in this Chapter has a few significant

shortcomings:

1. The technique can only be applied to sets of timing residuals that are consistent with

white noise. Many MSPs that are timed with sufficiently high precision over long time-
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Figure 3.8: Upper bounds on the coalescence rate of SMBHBs using the sensitivity matrices
calculated for different sets of PTA observations in Section 3.3. For calculating the abscissa,
z is the redshift of the SMBHB. The ordinate gives the logarithm of the differential rate of
coalescence per log redshift per log chirp mass. Here, we show the constraints provided by
the Jenet et al. (2006) data set (open triangles), 20 pulsarstimed with 500 ns rms residual over
10 yr (open squares), the same timed with 100 ns rms residual over five yr (crosses) and the
same timed with 100 ns rms residual over 10 yr (open circles).The grey region indicates the
expected coalescence rate with evolution index−1 < γ < 3 (see Section 1.6.2) assuming the
framework of Jaffe & Backer (2003) and using observations from the Sloan Digital Sky Survey
(Wen et al., 2009). The dashed traces indicate the maximum (thick line) and minimum (thin
line) coalescence rates predicted by Sesana et al. (2008, 2009). No bounds can be plotted for
chirp masses of109 M⊙ because of the low sensitivity of these data sets. [Image reproduced
from figure 4 of Wen et al. (2011)]
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Figure 3.9: All characteristics of this plot are the same as in Figure 3.8, except that we now
show the constraints obtained using 20 pulsars timed with a rms timing residual of 10 ns over
10 yr (stars), 100 pulsars timed with 10 ns rms residual over 10 yr (filled circles), the same timed
with 100 ns rms residual over 10 yr (filled squares) and the same timed with 100 ns rms timing
residual over five yr (filled triangles). [Image reproduced from figure 5 of Wen et al. (2011)]

83



spans show significant low-frequency noise in their timing residuals (Verbiest et al., 2009;

Manchester, 2011). This low-frequency noise must be accounted for.

2. The technique uses the sensitivity matrix to constrain the coalescence rate of SMBHBs.

However, this constraint only requires estimates of the largest GW signal that could be

present in the timing residuals, as opposed to the smallest GW signal that could be de-

tected using the residuals. Hence, a more stringent constraint could be found with the

same observations.

In Chapter 4, we develop a related detection technique that addresses these issues.
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Chapter 4

The Sensitivity of the Parkes Pulsar

Timing Array to Individual Sources of

Gravitational Waves

Chapter Outline: In this Chapter, we:

• describe a technique that can detect single sources of GWs innon-white pulsar timing
residuals;

• give the sensitivity of current and future GW detection experiments to single GW sources
spanning frequencies from nHz to kHz;

• place a sky-averaged constraint on the coalescence rate of nearby (z < 0.6) SMBHBs.

Many Sections in this Chapter are heavily based on sections from the refereed journal article:
Yardley D. R. B., Hobbs G. B., Jenet F. A., et al. 2010, MNRAS, 407, 669

In particular, Section 4.1 below is a summary of§2 of Yardley et al. (2010) and Sections 4.2, 4.3
and 4.4 below have been reworded from§3.2, §4 and§5 of Yardley et al. (2010) respectively.
Section 4.2 below and Appendix A of this thesis contain material from the appendix of Yardley
et al. (2010).

In this Chapter, we develop a new method for detecting individual non-evolving SMBHBs

in the residuals obtained from PTA observations. While the technique presented in Chapter 3

can detect these sources, it assumes that the timing residuals being analysed are consistent with

white noise. This assumption is only valid for a relatively small number of PTA data sets. Here,

we extend the method of Chapter 3, allowing it to be applied toa broader range of MSP timing

observations.

The method described in Section 4.2 below can be applied to most sets of timing residuals.

Full details of the implementation are described in Appendix A. We apply this method to timing

residuals from the PPTA published by Verbiest et al. (2008, 2009) and described in Section
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2.3.2. This results in a measurement of the sensitivity of the PPTA to individual non-evolving

GW sources as a function of frequency. The frequency range ofthe resulting sensitivity curve

complements the frequency range of the LISA and LIGO GW-sensitivity curves. A constraint

on the coalescence rate of nearby (z . 2) SMBHBs with chirp mass∼ 1010 M⊙ is determined

to be less than one coalescence every five years.

4.1 Observations

The observations used in this analysis are a subset of those described in Section 2.3.2, and

consist of observations of 18 pulsars42 using the Parkes and Arecibo radio telescopes. Many

of these pulsars exhibit a small amount of low-frequency noise in their timing residuals. These

pulsars have been timed with a weighted rms residual,σw, in the range0.17 µs < σw < 6.6 µs

for a period of∼10 yr.

4.2 Calculating the Sensitivity Curve and Limit Curve

The detection of a sinusoid in the timing residuals is complicated by the fact that the residuals

are irregularly sampled and the noise that affects the residuals consists of at least two compo-

nents. The noise has a white component that varies from sample to sample. This component is

well-understood and the square of the error bar gives a variance estimate for the white noise on

each residual43. The noise also has a non-white component for which the source is unknown.

The non-white noise could be due to calibration errors, timing noise intrinsic to the pulsar, a

GWB signal or other effects. The spectrum of low-frequency noise in pulsar timing residuals

is often modelled using a power-law (e.g., Hobbs et al., 2010b). We make the less-stringent

assumption that the non-white noise has a smoothly-varyingpower spectrum. In all cases, we

have estimated the power spectrum from the actual residualsand have shown that the noise can

be modelled sufficiently well for our purposes using a smoothly-varying function.

We estimate the power spectrum using a Lomb-Scargle periodogram that, for this analysis,

is not normalised by the variance of the residuals. This periodogram technique would not give

42We choose to remove the observations of PSRs J1824−2452 and J1939+2134 from our data set because their
timing residuals are dominated by low-frequency noise. This low-frequency noise complicates the spectral analysis
for little gain in sensitivity.

43The timing residuals analysed in Chapter 3 contain only thiswhite component of the noise.
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accurate spectral estimates for data sets that exhibit a steeply sloping spectrum. All the data

sets used in this Chapter do not exhibit steep power spectra and so this technique is valid. We

briefly describe our approach for producing a sensitivity curve here; full details are provided in

Appendix A.

To make a detection of a significant sinusoid in our timing residuals, we make a simple

model of the noise across all frequencies in the Lomb-Scargle periodogram of the residuals.

This model is used to define a set of detection thresholds. These thresholds are set such that

the probability of a false detection at any frequency acrossthe entire observed periodogram

when no signal is present isPf = 1%. In practice, the detection thresholds are given by the

noise model multiplied by some fixed factor that is determined from simulation, as described in

Appendix A. We then add the effect of sinusoidal GW signals tothe ToAs in the same manner

as described in Section 3.2.3. We calculate the periodogramof the residuals and make a simple

model of the noise. Using the technique described in Appendix A, we ensure that the signal

that we aim to detect is not modelled as part of the noise in theperiodogram. We adjust the

GW strain until we can detect 95% of the GW-induced sinusoidsin our timing residuals. This

process gives the sky- and polarisation-averaged sensitivity as a function of GW frequency over

the rangef ∼ (10 yr)−1 to f ∼ (10 d)−1.

In Figure 4.1, we show the periodogram (thin trace) of the timing residuals for three pulsars

where their ToAs are affected by a low-frequency GW source. We also show the noise mod-

els for each pulsar (thick line). Details on the calculationof these noise models are given in

Appendix A.

There are two aspects to our detection strategy, namely the false alarm probability (1%)

and the probability of making a detection (95%). UsingPf = 1% means that any detection

made will be a 2.6-σ detection. Hence, our sensitivity curves give the GW amplitude at which

the probability of making a 2.6-σ detection at a random position on the sky for a randomly

polarised GW is 95%. For a single pulsar, when the GW source has favourable sky-location

and polarisation, the minimum detectable strain is a factorof ∼ 10 − 15 smaller than the sky-

averaged case (see Section 4.3.1).

We are interested in answering two questions. The first is “What is the largest GW source

at a particular frequency that could be present in the timingresiduals?” This will give an upper

bound on the amplitude of non-evolving individual GW sources in our data set at that frequency.
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Figure 4.1: The periodogram of each of three sets of timing residuals, where we have added
a low-frequency sinusoid to each set of ToAs. The abscissa gives the frequency, the ordinate
gives the power in arbitrary units, where we include constant offsets in the periodograms of
PSRs J1857+0943 and J1713+0747 to make this plot. The ordinate in each periodogram is
scaled by independent values to make this plot. The thin trace is the periodogram, the thick
dark line is the adopted model for each periodogram.
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This question is answered by comparing simulated GW sourcesto our observed timing residu-

als. We simulate a GW source at a given frequency with a randomsky-location and polarisation.

We adjust the amplitude of this source until the power of the GW sinusoid exceeds the power in

the observed timing residuals at that frequency in 95% of simulations. This approach gives the

most conservative upper limit, since it allows for the possibility that all the power we observe

at this frequency results from one GW-induced sinusoid. This process can be repeated to deter-

mine the upper limit as a function of frequency, yielding a “limit curve”. We will determine the

limit curve for our 18-pulsar data set in Section 4.3.

The second question is: “If there were a GW source with a particular frequency somewhere

on the sky, what is the minimum strain amplitude that would produce a detectable signal at that

frequency in our data set?” This is similar to the question that was addressed by the sensitivity

curves in Section 3.3. To answer this question, we add simulated sinusoidal GW signals to

our ToAs and perform the standard pulsar timing analysis. Wethen calculate the minimum

amplitude at which we would detect a significant sinusoid at the input GW frequency in our

dataif we had collected that data set at a telescope. Hence, we must account for all the sources

of noise in our pulsar detector44. The answer to this second question yields our sensitivity

for detecting the GW-induced sinusoids, rather than just limiting their amplitude. For large

amplitude sinusoids with period& Tobs, a signal will often be detectable at a higher frequency

than the input frequency because we can detect the side lobesof the large input signal. In

contrast to the approach of Chapter 3, we have not allowed detections at different frequencies

to the input GW frequency in this implementation. The sensitivity curves for each of our data

sets are calculated in Section 4.3.

The periodogram frequency range is from1
Tobs

to Npts

2Tobs
for a single pulsar45. Note that Npts

2Tobs

would be the Nyquist frequency for that pulsar if its timing residuals were equally-spaced. If

we are processing multiple pulsars then we can perform a weighted sum of their periodograms

to increase our sensitivity. To perform the sum, we calculate the periodogram at a list of fre-

quencies that is identical for all pulsars. The frequenciesare equally spaced from(30 yr)−1 to

(28 d)−1.

To perform the detection, we first make a simple frequency-dependent model of the noise in

44The threshold for detection at any frequency across the observed periodogram will often be∼3 times greater
than the locally-averaged power level.

45The power at a frequency of zero is arbitrary for pulsar timing residuals.
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the periodogram for each pulsar (see Figure 4.1) and then weight each pulsar by the inverse of

the noise model for that pulsar46. This simple weighting scheme gives a factor of∼5 improve-

ment in sensitivity over a simple, non-weighted addition ofthe periodogram of each pulsar.

4.3 Results and Discussion

We now present the sensitivity of the PPTA to GW-induced sinusoidal signals in the ToAs using

the data set described in Section 4.1. We account for all the observed features in the sensitivity

curves. We also calculate the constraint on the coalescencerate of SMBHBs implied by the

non-detection of GWs in the ToAs. Finally, we give a prediction for the sensitivity of a future

PTA project using the SKA.

4.3.1 The Sensitivity of Some Individual Pulsars

In Figure 4.2, we plot the sky- and polarisation-averaged sensitivity curves for PSRs J0437−4715

(thin solid line), J1713+0747 (dashed line) and J1857+0943 (dot-dashed line) where each pul-

sar has been analysed individually. The open triangles on the plot indicate that the plotted

“detectable” amplitude at that frequency value is a lower bound. The thin dotted line indicates

the sensitivity of PSR J0437−4715 to a hypothetical SMBHB located at a RA of 4h37m and

a Dec of+42◦45m and emitting purely ‘plus’ polarised GWs. This line indicates the much

greater sensitivity obtainable with the timing residuals of PSR J0437−4715 when the position

and polarisation of the simulated GW source are favourable.The ratio of this thin dotted line

to the thin solid line gives the factor of∼ 10 − 15 improvement in sensitivity for favourable

sky-location and polarisation discussed in Section 4.2. Also shown are the expected signals at a

range of frequencies from two hypothetical SMBHB systems atthe mean distance of the Virgo

cluster (taken to be 16.5 Mpc, from Mei et al., 2007), with equal member masses of109M⊙ or

1010M⊙.

The reduction in sensitivity caused by fitting for the pulsar’s position is at the same fre-

quency of(1 yr)−1 for all pulsars. Fits for orbital parameters also reduce sensitivity to GWs, but

at different frequencies for each pulsar. For example, the orbital period of PSR J1857+0943 is

12 days (corresponding to a frequency of9.6 × 10−7 Hz), which is above the average Nyquist

46For spectrally-white timing residuals, this is equivalentto weighting by the inverse variance of each set of
residuals, as done in Section 3.2.
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Figure 4.2: Sensitivity curves for PSRs J0437−4715 (thin solid line), J1713+0747 (dashed),
J1857+0943 (dot-dashed) and the 18-pulsar timing array using our detection scheme (thick
solid line). The abscissa gives the GW frequency, the ordinate gives the minimum detectable
strain amplitude of an individual non-evolving GW point source with a random polarisation,
phase and sky-position. The thin dotted line is the sensitivity obtained using PSR J0437−4715
and assuming favourable sky-location and polarisation of the GW source. An open triangle
indicates that the plotted value is a lower bound on the detectable amplitude at that frequency.
The straight triple-dot-dashed lines indicate the expected signal from an individual SMBHB
with equal member masses of109M⊙ or 1010M⊙ if it were located at the mean distance of the
Virgo cluster. The ‘×’ symbols are the expected signals at the Earth in the year 2004 and at
PSR J1857+0943∼ 3000 yr ago caused by the proposed SMBHB at the core of the radio galaxy
3C66B. The ‘∗’ symbol is the expected signal caused by the proposed SMBHB at the core of
OJ287. The ‘+’ symbol is the GW strain and frequency emitted by a typical resolvable SMBHB
as plotted in figure 2 of Sesana et al. (2009). Also shown on theplot is the 95%-confidence
limit curve for the 18-pulsar timing array (thick dotted line); in this case the ordinate gives the
maximum amplitude GW source that could be present in our data.
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frequency for this pulsar. We therefore do not see the corresponding loss in sensitivity at this

frequency in the PSR J1857+0943 sensitivity curve. All pulsars exhibit a reduction in sensi-

tivity at low frequencies, which is mainly caused by two effects. First, the fit of a quadratic

polynomial to the ToAs to model the pulsar spin-down removessome GW signal. Second, the

fitting of arbitrary phase offsets to many of the data sets to connect the timing residuals obtained

with different backend systems removes some GW signal (see below). Greater sensitivity is ob-

tained at the lowest frequencies if we allow for detection ofa sinusoid atany frequency in the

timing residuals, regardless of the input GW frequency47. This is because the pulsar spin-down

and phase offset fits do not remove a pure sinusoid from the residuals. This means that not all

of the input GW signal is removed by the pulsar parameter fit. However, in this implementation

we have only allowed the GW signal to be detected at the input GW frequency.

As the GW frequency increases, the induced signal in the ToAsbecomes weaker for a given

strain, as described by Equation (3.6). At the highest frequencies, our sensitivity is limited by

the sampling of the timing residuals. This is particularly evident in the sensitivity curve for the

18-pulsar timing array where there is a turn-up in the sensitivity curve at the last few frequency

values, corresponding to a decrease in sensitivity.

The periodogram of irregularly-sampled residuals will be affected by leakage. There is no

clear way to distinguish between spectral leakage from low-frequency GW-induced sinusoids

and the red noise seen in many MSPs. Hence, the sensitivity ofour detection technique to

low-frequency sinusoidal GWs (where the GW period is similar to the data-span) is reduced

compared to analysing equally-spaced data. Some pulsars inour sample do not exhibit excess

low-frequency noise (e.g., PSR J1857+0943), so the power spectrum with no GWs added may

be modelled with a constant. However, our model of the power spectrum must account for the

confusion between the spectral leakage from a low-frequency GW signal and red noise. In an

equally-spaced time series with weak red noise, spectral leakage is less severe and thus there is

no such confusion.

In the sensitivity curve for PSR J0437−4715 there is a loss of sensitivity at a frequency

of (540 days)−1, or ∼21 nHz. This is caused by the fitting of several arbitrary phase offsets

between the ToAs collected using different observing backend systems, as described in Section

2.3.2. If overlapping data exist between the different observing backends, these offsets can be

47This approach was taken in Chapter 3.
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precisely determined and held fixed in subsequent processing. Even if no overlapping data exist,

it is sometimes possible to eliminate these arbitrary offsets without losing phase connection in

the timing solution. Our analysis takes into account all of the offsets fitted by Verbiest et al.

(2009). There is also a loss in sensitivity just above the(1yr)−1 frequency for this pulsar. This

is caused by the sampling of the observations – a sinusoid at this frequency induces power in

many adjacent frequency channels, depending on the phase ofthe GW source. This increases

the apparent noise level in this region of the periodogram, which increases the noise model and

thus also the detection threshold sufficiently to prohibit 95%-confidence detection. In the best-

case sensitivity curve for PSR J0437−4715 (thin dotted line in Figure 4.2), there is a decrease

in sensitivity at a frequency of∼ 150 nHz. This decrease is caused by significant leakage of the

input sinusoid into adjacent frequency channels. This sensitivity decrease is less significant in

the sky-averaged case because the variation in the amplitude of the GW-induced sinusoid due

to the sky- and polarisation-averaging is a much greater effect.

4.3.2 The Sensitivity of the Parkes Pulsar Timing Array and Probable

Single Sources

The thick solid line in Figure 4.2 shows the sensitivity of the 18 pulsars in our data set assuming

the GW source position and polarisation are unknown. This sensitivity curve is the first mea-

surement of the sensitivity of a full PTA experiment to individual GW sources. The frequency

range analysed(30 yr)−1 – (28 d)−1 is chosen to demonstrate the high- and low-frequency sensi-

tivity limits for our pulsar timing data sets. At the lowest frequencies, our sensitivity is limited

by the period derivative and jump fits, as well as the fact thatour longest data set is shorter

than 30 yr. At the highest frequencies, the sensitivity is limited by the sampling of our timing

residuals; that is,(28 d)−1 is the nominal Nyquist frequency for the PPTA.

Figure 4.2 also shows the upper limit attainable using our 18-pulsar data set (thick dotted

line). This limit curve was obtained with 95% confidence using the technique described in

Sections 4.2 and Appendix A. For some pulsars, a different-order polynomial model to the

detection case was chosen in order to accurately model the power spectrum with no GWs added.

Lommen & Backer (2001) placed a 99% confidence limit showing that they could rule out signal

amplitudes as small as 150 ns in their residuals at a period of53 days, corresponding to SMBHB

orbital periods of 106 days. Using our longer data sets and the same 99% confidence level, we
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can place a better limit of around 120 ns at this frequency. Atsignal periods of 1000 days

(where some of our sets of timing residuals exhibit excess low-frequency noise), we obtain a

99% confidence limit of 190 ns. This limit is worse than the Lommen & Backer (2001) limit

of 170 ns. However, there is no evidence that their analysis takes into account the effects of red

noise present in their residuals.

The two ‘×’ symbols in Figure 4.2 indicate the expected strain amplitude and frequency of

the proposed SMBHB at the core of the radio galaxy 3C66B (Sudou et al., 2003). In order to de-

termine the expected strain amplitude, we use Equation (3.4) with the redshift and masses given

in the original paper (M1 = m1 = 4.91 × 1010 M⊙, M2 = m2 = 4.91 × 109 M⊙, z = 0.0215).

The distance to the GW source is assumed to be90 Mpc, implied by the low-redshift distance

approximationD = cz/H0. The frequencies of the signal at the Earth and at PSR J1857+0943

(fEarth = 1/0.88 yr, fJ1857+0943 = 1/6.24 yr) were obtained by Jenet et al. (2004). The signal

occurs at two frequencies because of the evolution of the SMBHB in the time interval between

the interaction of the GWs with the Earth and the receipt of the GW-affected EM waves from

the pulsar (see Equation 3.3). However, according to Equation (3.1), the timescale for evolu-

tion of the SMBHB is much longer than the span of the observations, so we assume that the

frequency of each signal is constant over the observations.The GW signal at the pulsar will,

in general, have a different frequency and amplitude for each pulsar in our array, whereas the

Earth term will have the same frequency for observations of all pulsars. This system was ruled

out with 95% confidence by Jenet et al. (2004). Our results show that, even with a blind search

of the Verbiest et al. (2008, 2009) observations, where we know neither the sky-position nor the

frequency of the GWs, we would detect the GW-induced oscillations at the Earth caused by this

source. The expected signal is well below the plotted sensitivity curve for PSR J1857+0943

even though Jenet et al. (2004) only used the publicly-available ToAs for PSR J1857+0943.

However, their technique is analogous to our limit technique, whereas the sensitivity curve plot-

ted for PSR J1857+0943 in Figure 4.2 assumes we are aiming todetectsuch sources of GWs.

Furthermore, our sensitivity curve is sky-averaged whereas they used the known position and

frequency of the proposed GW source in their analysis (by chance it had a very favourable sky-

location with an angle of 81.5◦ between the Earth-pulsar vector and the Earth-3C66B vector)48.

Furthermore, if the frequency of the GW signal is knowna priori, the false alarm probability

48Jenet et al. (2004) also underestimated the distance to the proposed GW source in 3C66B by around 8% by
assuming that its redshift wasz = 0.02.
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is considerably decreased, meaning that the detection threshold is around a factor of two lower,

increasing the probability of detection. Jenet et al. (2004) also assumed that they were analysing

spectrally white timing residuals, an assumption which increases sensitivity, particularly at low

frequencies.

The ‘∗’ symbol in Figure 4.2 indicates the expected GW strain and frequency for the can-

didate SMBHB in the blazar OJ287. A∼12 yr-periodic signal has been identified in its optical

outbursts (Sillanpää et al., 1996), but other parametersof the system are not well-constrained.

We parametrise the SMBHB as follows: member masses1.3 × 108 M⊙ and1.8 × 1010 M⊙, in-

trinsic orbital period 9 yr (observed GW period6 yr because of redshifting), eccentricity zero49,

redshift 0.306, distance1.3 Gpc. The distance was again obtained usingD = cz/H0, which is

an acceptable approximation given the imprecision in the other parameter measurements and

the fairly low redshift of this system (see footnote 1 of Davis & Lineweaver, 2004). The GW

signals emitted by this system induce timing residuals of around 6 ns that are below current

limits.

A study was presented by Sesana et al. (2008) of the generation of the stochastic GWB

from the cosmic population of SMBHBs. This work showed that the stochastic background

of GWs is likely to be detected using a PTA in the near future. In Sesana et al. (2009) the

individual resolvable SMBHBs were considered. They predicted that at least one SMBHB will

induce ToA perturbations around 5− 50 ns, which is below our current sensitivity. We choose

(from the upper left panel of their figure 2) a representativeresolvable single source from their

simulations. This source has an emitted GW frequency of2 × 10−8 Hz and a characteristic

induced timing residual of 25 ns. The signal from this sourceis indicated by the ‘+’ symbol in

Figure 4.2. This is a typical resolvable SMBHB, thus it is likely that several sources will emit

GWs with a larger amplitude than this. We emphasise that we donot yet have long data-spans

with sufficiently low rms residual to detect such sources.

SMBHBs may form in galaxy clusters. The nearest galaxy cluster to Earth is the Virgo

cluster. In Figure 4.3 we examine the possibilities for pulsar timing to detect GWs generated by

SMBHBs in the Virgo cluster. The mean sky-position of this cluster is at a RA of 12h30m and

a Dec of +12◦ (Mei et al., 2007); to produce the curve in Figure 4.3, all simulated GW signals

come from this direction. The plotted sensitivity curve indicates that we have a better than 95%

49Valtonen et al. (2009) estimate the eccentricity to be 0.7, but we do not consider eccentric SMBHBs in this
thesis.
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Figure 4.3: Sensitivity of the PPTA using the 18-pulsar Verbiest et al. (2008, 2009) data set
for detecting signals from SMBHBs located at the sky-position and mean distance of the Virgo
cluster. The abscissa gives the GW frequency. The ordinate gives the minimum detectable
strain amplitude of GWs emanating from a non-evolving individual source in the direction of
the mean sky-position of the Virgo cluster with a random polarisation and phase. The open
triangles indicate that the plotted value is a lower bound onthe detectable amplitude at those
frequencies. The dot-dashed lines indicate the expected signals from three different types of
SMBHB if they were located in the Virgo cluster, with equal member masses109M⊙, 1010M⊙

and1011M⊙ as labelled.
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probability of detecting sinusoidal signals in our timing residuals caused by SMBHBs with

member massesM1 = M2 = 1010 M⊙ in the Virgo cluster. These SMBHBs could emit GWs

with any polarisation, but our detectable frequency range for such sources is3×10−9 Hz < f <

4 × 10−7 Hz. We could marginally detect SMBHBs withM1 = M2 = 109 M⊙ if the emitted

GWs have favourable polarisation.

The PPTA sensitivity is complementary in GW frequency to theLIGO, VIRGO and LISA

sensitivities. In Figure 4.4 we give the detection sensitivity of some current and future GW de-

tection experiments50. Also shown on the plot are some likely sources in each of the detectable

bands. The combination of the PTA and LISA sensitivity curves almost covers the full GW

frequency range from∼ nHz through to∼mHz. This GW frequency coverage will enable the

study of the evolution of GW-emitting systems.

4.3.3 Constraining the Coalescence Rate of Supermassive Black-Hole Bi-

naries

As described in Section 3.3.4, the non-detection of GWs fromSMBHBs in pulsar timing obser-

vations enables an upper bound to be placed on the coalescence rate of SMBHBs (Wen et al.,

2011). However, the upper bounds in Section 3.3.4 were calculated using a sensitivity matrix

that gives the probability of detection of a GW source as a function off andhs for a given data

set. Here, we calculate upper bounds on the SMBHB coalescence rate using a “limit matrix”

that gives the probability that a GW source is ruled out by theobservations as a function of

f andhs. For the same data set, the use of the limit matrix provides anupper bound on the

SMBHB coalescence rate that is more constraining than the upper bound provided by the sensi-

tivity matrix. We use the limit technique described in Sections 4.2 and Appendix A to calculate

the limit matrix element at eachf andhs.

We calculate the limit matrix on a grid of 51 GW frequency values and 50 GW strain values.

The 51 frequency values consist of 50 logarithmically-spaced frequencies between(30 yr)−1

and(28 d)−1, and alsof = 1/(1 yr). The 50 strain values were logarithmically-spaced between

10−16 and10−10. 1000 Monte Carlo iterations were used at each value off andhs to determine

the fraction of such GW sources that are ruled out by the data set. For the Verbiest et al. (2008,

50To obtain the LISA sensitivity curve, we have assumed the standard parameters for the LISA design and that it
aims to detect sources at a signal-to-noise ratio of three. The LIGO sensitivity curves are obtained from the stated
design goals of the project.
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Figure 4.4: Sensitivity of some current and future GW observatories to individual GW sources
as a function of frequency. The abscissa gives the GW frequency, the ordinate gives the mini-
mum detectable strain amplitude of a sinusoidal GW point source with a random polarisation,
phase and sky-position. The open triangles indicate that the plotted sensitivity at that frequency
is a lower bound. The plot also shows potentially detectablesources in the three frequency
bands. The straight lines indicate the expected signals from two different types of SMBHB if
they were located in the Virgo cluster, with equal member masses109M⊙ and1010M⊙ as la-
belled. The ‘×’ symbol is the expected signal at the Earth caused by the proposed SMBHB at
the core of the radio galaxy 3C66B. The ‘∗’ symbol is the expected signal caused by the candi-
date SMBHB at the core of OJ287. The ‘+’ symbol is the GW strain and frequency emitted by
a typical resolvable SMBHB as plotted in figure 2 of Sesana et al. (2009). “Unresolved Galac-
tic binaries” include white-dwarf and neutron-star binaries. “Coalescing massive black-hole
binaries” correspond to the final inspiral of black-hole binary systems. The “Current” LIGO
sensitivity shows the capabilities of existing data sets, while “Advanced” LIGO expects to im-
prove GW sensitivity by two orders of magnitude. “SN [supernova] core collapse” and “NS-NS
[neutron star] coalescence” are typical signals that LIGO expects to detect.
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Figure 4.5: Upper bound on the coalescence rate of SMBHBs as afunction of redshift. The
open triangles give the upper limit on the SMBHB merger rate for the Verbiest et al. (2008,
2009) data set and the open squares give the limit for the simulated SKA data sets. The shaded
region indicates the expected coalescence rate obtained from Jaffe & Backer (2003) as well as
data from the Sloan Digital Sky Survey (Wen et al., 2009) for SMBHB systems of chirp mass
as labelled in each panel. The dashed line indicates the average coalescence rate based on the
analysis by Sesana et al. (2008).

2009) observations, the 95% confidence contour of the limit matrix is consistent with the thick

dotted line in Figure 4.2.

The resulting constraint on the SMBHB coalescence rate is shown in Figure 4.5 as a function

of log(1 + z). The plot shows that the coalescence rate of SMBHBs withz . 2 with chirp

mass∼ 1010 M⊙ is less than one merger every five yr. Our observations do not yet constrain

the merging frameworks discussed by Jaffe & Backer (2003) orSesana et al. (2008) at the

range of chirp masses we have considered. However, some of the high-mass and high-redshift

predictions may soon be ruled out or confirmed using pulsar timing. Furthermore, the limit on

the amplitude of the isotropic stochastic GWB obtainable from the Verbiest et al. (2008, 2009)

observations may provide a more constraining upper bound onthe SMBHB coalescence rate

(see Chapter 5).
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4.3.4 A Predicted Sensitivity Curve for the Square Kilometre Array

Figure 4.4 also gives a predicted sensitivity curve for the SKA. To produce this figure we used

simulated observations for the 100 pulsars described in Section 2.6. We have assumed we can

time each pulsar with an accuracy of 20 ns over five yr, obtaining one observation per pulsar

every 14 d. We have also assumed that their power spectra willbe statistically white. It is un-

likely that pulsar timing residuals will exhibit a white power spectrum at this timing precision

and, hence, the plotted sensitivity is a lower bound on what is achievable with the SKA. In

particular, the sensitivity at low frequencies is expectedto be worse than that shown here, be-

cause we expect higher noise levels caused by the GWB, intrinsic pulsar timing noise and other

unmodelled effects.

The simulated SKA data are equally-spaced, which causes thelevel of spectral leakage

to be much lower than that observed in irregularly-sampled data sets. Hence, the confusion

between red noise and low-frequency signal is no longer an issue in these simulations because

a sinusoidal GW signal will induce a very narrow peak in each pulsar’s periodogram, even at

low frequencies. We have therefore modelled each pulsar power spectrum with a constant.

There are three prominent losses in sensitivity - at frequencies smaller than(Tobs)
−1 and at

periods of one year and six months. The partial loss in sensitivity at a period of six months

(∼ 6 × 10−8 Hz) is caused by fitting for the pulsar parallax. The total loss in sensitivity at GW

periods of one yr could be mitigated using independent measurements of the position of the

pulsar, for example using very-high-precision interferometry; such precision may be available

in the SKA era (Smits et al., 2011). The SKA sensitivity curvediffers from that shown in Figure

3.5 because the noise level in the residuals is different, and we have only allowed detection of

the GW-induced sinusoid at the input GW frequency.

The SKA sensitivity curve shown in Figure 4.4 is calculated assuming we do not know the

location or frequency of a potential GW source. Using these two additional pieces of informa-

tion it may be possible to confirm or deny the binarity of the massive dark object at the core of

OJ287. It may also be possible to detect many of the resolvable SMBHBs predicted by Sesana

et al. (2009). Using the SKA and LISA, it may be possible to observe the full evolution of SMB-

HBs from emitting GWs in the pulsar timing band (during the early phases of coalescence) to

emitting GWs in the LISA band (during coalescence) (e.g., Pitkin et al., 2008).
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4.4 Conclusion

We have presented the strain sensitivity of the PPTA to non-evolving point sources of GWs as

a function of frequency. The sources most likely to produce adetectable sinusoid in the pulsar

timing frequency range are SMBHB systems in the early phasesof coalescence at the cores of

merged galaxies. The sensitivity curve is analogous to the LIGO, VIRGO and LISA sensitivity

curves and shows the unique GW frequency range accessible with pulsar timing. These results

can be used to place an upper bound on the number of coalescingbinary systems of a given chirp

mass as a function of redshift. Current observations do not yet rule out any recently proposed

models of galaxy evolution.

However, the isotropic stochastic GWB is expected to provide a larger amplitude signal in

the ToAs than most individual sources (Sesana et al., 2008).If the amplitude of the GWB signal

remains large after the pulsar parameter fit, then it may be detectable in the timing residuals

from a PTA. Furthermore, non-detection of the expected GWB signal provides a constraint on

the coalescence rate of SMBHBs (Wen et al., 2011). Therefore, in the next two Chapters, we

examine the GWB signal using simulated and real observations of a PTA.
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Chapter 5

Limiting the Amplitude of the

Gravitational-Wave Background

Chapter Outline: In this Chapter, we:

• describe the method for simulating a GWB as implemented inTEMPO2.
• briefly describe the technique for placing an upper limit on the GWB amplitude developed

by Jenet et al. (2006).
• apply this technique to the same white data sets used in Chapter 3.
• calculate the constraints on the SMBHB coalescence rate using the technique published

by Wen et al. (2011).
• briefly describe which models of galaxy evolution are ruled out by the limits obtained

with different simulated data sets.

As described in the text, a more detailed version of Section 5.1 was published as
Hobbs G., Jenet F., Lee K. J., et al. 2009, MNRAS, 394, 1945
In Section 5.2, I created the simulated data sets and measured the limit on the amplitude of the
GWB for each data set. The constraints on the coalescence rate of SMBHBs (Section 5.2.1)
were calculated by Zhonglue Wen and published as
Wen Z. L., Jenet F. A., Yardley D., Hobbs G. B., Manchester R. N., 2011, ApJ, 730, 29

In Chapter 4, we showed that it is likely that the GWs emitted by an individual non-evolving

SMBHB will induce ToA perturbations that are below current sensitivity levels. A stronger

signal may be induced in pulsar ToAs by an isotropic stochastic background of GWs. Such

a background is formed from the incoherent sum of many individual SMBHBs with different

frequencies, amplitudes and phases (see Section 1.5).

In this Chapter, we calculate upper limits on the GWB amplitude using the technique pre-

sented by Jenet et al. (2006). This technique requires simulation of the effect of a GWB on

ToAs. We apply this technique to real and simulated PTA observations that are consistent with
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white noise51. The results indicate that it is likely that a variety of models of galaxy evolution

may be ruled out using PTA observations in the near future.

A new technique for detection of the GWB due to SMBHBs will be described in Chapter

6. While the direct detection of GWs will have significant consequences for astrophysics and

cosmology, the sensitivity of current PTA data sets is insufficient for making such a detection52.

However, upper limits on the GWB amplitude can be obtained with any set of PTA observations.

These upper limits constrain the coalescence rate of SMBHBsas a function of redshift (Wen

et al., 2011) and models of galaxy evolution (Jaffe & Backer,2003; Wyithe & Loeb, 2003;

Sesana et al., 2008).

5.1 Method

5.1.1 The Expected Signal Induced by a Gravitational-Wave Background

in Timing Residuals

The signal induced by a GWB in pulsar ToAs is described in Section 1.6.1. For this work, we

assume that a GWB due to SMBHBs has characteristic strain spectrum of the form

hc(f) = A(f/f1 yr)
−2/3 . (5.1)

This is consistent with most models in Section 1.5. The Sesana et al. (2008) model predicts

a more complicated form for the strain spectrum of the GWB (given in Equation 1.13 of this

thesis). This model shows significant deviation from a simple power law forf > 10−8 Hz.

However, our analysis probes GWB frequenciesf . 10−8 Hz (see Figure 1.6), where the dif-

ference between Equation (1.13) and Equation (5.1) is insignificant.

A GWB of the form given in Equation (5.1) will induce perturbations in the ToAs of each

pulsar with the following power spectrum (Hobbs et al., 2009):

Pg(f) =
A2

12π2

(

f

f1 yr

)−13/3

. (5.2)

In order to use the technique of Jenet et al. (2006) describedin Section 5.1.3, we must be able to

simulate a GWB that reproduces this expected signal. This isdone usingTEMPO2. We briefly

51These are the same observations that were analysed in Chapter 3 to detect individual non-evolving SMBHBs.
52As described in Section 1.6, a detection of a GWB signal is expected within the next decade.
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describe the GWB simulations in the next section; full details were published by Hobbs et al.

(2009).

5.1.2 Simulating a Background of Gravitational Waves With TEMPO2

TEMPO2 simulates a GWB using many individual monochromatic GWs. For each GW source,

the phase,Φg, the right ascension,φg, and the sine of the declination are each chosen from

uniform probability distributions:

Prob(Φg) = 1/2π , (5.3)

Prob(φg) = 1/2π , (5.4)

Prob(sin θg) = 1/2 (5.5)

respectively, whereθg is the declination of the GW source, as in Section 2.5. The GW frequency

f is chosen from a uniform distribution inlog(f)53:

Prob(f) =











1

f log(
fh
fl

)
fl ≤ f ≤ fh

0 otherwise
(5.6)

wherefl andfh are the lowest and highest frequencies for the simulated GWs, respectively. In

this thesis, we usedfl = 0.05/Tobs andfh = 1d−1.

The imaginary parts ofA+ andA× are set to zero for every GW because the GWB will be

unpolarised. The real parts are each normally distributed with zero mean and standard deviation

given by:

σA(f) =

√

log(fh/fl)

N
hc(f) , (5.7)

wherehc(f) is given in Equation (5.1) andN is the number of GW sources simulated. In

general,N ∼ 1000.

The resulting set ofN GWs forms an isotropic, unpolarised GWB with a gaussian amplitude

distribution with mean characteristic strainhc(f), as given in Equation (5.1). It is essential for

the work both in this Chapter, and Chapter 6, that we can simulate a realistic GWB signal. In

order to provide confidence in the accuracy of the GWB simulations, we reproduce work that

53This choice is motivated by the large spread of simulated GW frequencies over many orders of magnitude. We
suspect that the exact form of the distribution has little effect on our sensitivity to the GWB signal.
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Figure 5.1: Timing residuals for PSR J1939+2134 obtained from simulated ToAs that are af-
fected by 100 ns of white noise and a GWB signal withA = 10−14. The abscissa gives the
MJD, the ordinate gives the residual after estimating the pulsar’s period and period derivative.
The uncertainty in each simulated ToA (error bars) is 100 ns.[Image reproduced from Hobbs
et al. (2009)]

was first shown by Hobbs et al. (2009).

First, Hobbs et al. (2009) simulated ToAs for PSR J1939+2134 that have been sampled once

every two weeks over 3000 d. The ToAs consist of ideal ToAs (that is, the ToAs predicted by

the timing model; see Section 2.4.1) that are then perturbedby 100 ns of white gaussian noise

and a GWB signal. After carrying out aTEMPO2 fit to estimate the pulsar’s period and period

derivative, the resulting post-fit timing residuals are shown in Figure 5.1.

Second, Hobbs et al. (2009) calculated the average power spectrum of 1000 realisations of a

set of 512 GWB-induced ToA perturbations. The 512 simulatedToAs occur at weekly intervals

and consist of ideal ToAs that are then perturbed by a simulated GWB withA = 10−15. The

predictions of the timing model are then subtracted from thesimulated ToAs, without carrying

out aTEMPO2 fit. In this case, the pre-fit residuals are identical to the post-fit residuals. The

average power spectrum of the residuals is plotted in Figure5.2. Also shown is the theoretical

level of the GWB power spectrum assumingA = 10−15 in Equation (5.2). At high frequencies

in the plot, the average spectrum of the simulated residualsis not consistent with the theoretical

spectrum. This is because of rounding errors in theTEMPO2 processing that, in this case,

induce noise with a standard deviation of 0.2 ns. Given thatTEMPO2 was designed to maintain
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Figure 5.2: The power spectrum of GWB-induced ToA perturbations. The abscissa gives the
frequency, the ordinate gives the power spectral density. The spectrum of 512 weekly-spaced
ToA perturbations averaged over 1000 GWB simulations (solid trace) reproduces the theoretical
spectrum (solid diagonal line) at all but the highest frequencies. [Image reproduced from Hobbs
et al. (2009)]

1 ns precision, and the smallest observed residuals are currently greater than 20 ns, this noise

can be neglected. Thus we conclude that the GWB simulation engine inTEMPO2 induces ToA

perturbations caused by a GWB that reproduce the theoretical power spectrum.

5.1.3 Calculating an Upper Bound on the Amplitude of the Gravitational-

Wave Background

We now use theTEMPO2 GWB simulation engine to calculate an upper bound on the GWB

amplitude using timing residuals that are consistent with white noise. We use the technique

published by Jenet et al. (2006). These authors aim to calculate an upper bound on the GWB by

finding an upper bound on the level of red noise present in the timing residuals. Red noise is one

of the characteristic signatures of GWB-induced residuals(see Figure 5.1). Jenet et al. define a

statistic,Υ, that can detect red noise in timing residuals. We briefly describe the calculation of

Υ here; full details are given by Jenet et al. (2006) and Hobbs et al. (2009).

Υ is the sum of the power in the first seven channels of the weighted average “polynomial

spectrum” for the data set. For each pulsar, thel-th channel of the polynomial spectrum is
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defined by the result of a fit of an orthonormal polynomial of order l to the residuals. The

average is calculated over all pulsars in the data set and is weighted by the square of the weighted

rms residual. For residuals that are dominated by a GWB signal of the form of Equation (5.2),

the sum of the first seven channels of the polynomial spectrumcontains 95% of the power in

the GWB signal (Jenet et al., 2006). In practice, the remaining 5% of the GWB power in higher

channels will be negligible compared to other noise sourcesin the residuals. If these higher

channels were to be included in the sum, then the detection statistic would be less sensitive to a

GWB.

The limit on the GWB amplitude for a given white data set is obtained using two Monte

Carlo simulations. The process is very similar to that used in Chapter 3 for individual GW

sources. The first simulation calculates a particular valueof the statistic,Υ0, such that any

measuredΥ that exceedsΥ0 indicates that significant red noise is present in the data set. We

use the following procedure:

• We determine a set of ideal ToAs predicted by the timing modelof each pulsar in the data

set.

• We randomly rearrange the input residuals and then add them to the ideal ToAs.

• We perform theTEMPO2 parameter fit to obtain a new set of post-fit timing residualsthat

are statistically equivalent to the input residuals.

• We calculateΥ for this new set of residuals.

• We repeat the previous five steps104 times and find the 10th highest value ofΥ, which

we set asΥ0. The probability that a statistically-equivalent data setwould yield a value

of Υ larger thanΥ0 when no red noise is present is 0.1%.

The second Monte Carlo procedure obtains the limit on the GWBamplitude as follows:

• We add GWB-induced perturbations and a shuffled set of the original residuals to the

ideal ToAs. The GWB has amplitudeA = Atest in Equation (5.2).

• We perform theTEMPO2 parameter fit, which absorbs some of the GWB signal in the

post-fit residuals.

• We calculateΥ for this new set of residuals.
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Table 5.1: The upper bound onA obtained from each set of observations.
Data set Aup

(Npsr-rms residual-Tobs)
20 PSRs-500 ns-10 yr 1.1 × 10−15

20 PSRs-100 ns-5 yr 9.9 × 10−16

20 PSRs-100 ns-10 yr 2.2 × 10−16

20 PSRs-10 ns-10 yr 2.0 × 10−17

100 PSRs-100 ns-5 yr 5.7 × 10−16

100 PSRs-100 ns-10 yr 1.3 × 10−16

100 PSRs-10 ns-10 yr 8.8 × 10−18

Jenet et al. (2006) observations1.1 × 10−14

• We repeat the previous three steps104 times and measure the percentage ofΥ values that

exceedΥ0.

• If the percentage is more than 95%, then we repeat the previous four steps with a smaller

value ofAtest. If less than 95%, repeat the previous four steps with a larger Atest.

• When a value ofAtest is found such that 95% of the measured values ofΥ exceedΥ0,

thenAup = Atest is the 95%-confidence upper limit on the GWB amplitude.

This procedure calculates statistically-rigorous upper bounds on the amplitude of the GWB

(Jenet et al., 2006). However, if it is applied to data sets that contain some red noise, then the

resulting GWB limit is lower than the value that the data set actually implies (Hobbs et al.,

2009). We now apply this method to each of the white-noise data sets analysed in Chapter 3 to

determine the upper bound onA from each set of observations.

5.2 Results and Discussion

In the first column of Table 5.1, we describe the data sets used. The second column gives

the corresponding upper bound,Aup. The upper bound we obtain for the Jenet et al. (2006)

observations is equal to the upper bound published by Jenet et al. (2006). Jenet et al. also

analysed a simulated white-noise data set consisting of fiveyears of observations of 20 pulsars

with a rms residual of 100 ns, and obtainedAup = 6.5 × 10−16. This is significantly less than

the upper bound ofAup = 9.9 × 10−16 shown in Table 5.1 for a fortnightly-sampled data set. It

turns out that the simulated observations presented by Jenet et al. (2006) were sampled weekly
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(Hobbs & Jenet, private communication). We obtainedAup = 6.6 × 10−16 for a simulated

data set consisting of weekly-sampled observations of 20 pulsars with a rms residual of 100 ns

over five years. Hence, we conclude that our results are consistent with the work of Jenet et al.

(2006).

5.2.1 Constraining the Coalescence Rate of Supermassive Black-Hole Bi-

naries

Wen et al. (2011) derive a constraint on the coalescence rateof SMBHBs for a given upper

bound on the GWB amplitude. This constraint is calculated byassuming that there are many

SMBHBs emitting GWs in each frequency channel of the residuals. However, if the residuals

have been timed accurately or over a long period of time, thenthe constraint on the coalescence

rate is sufficiently low that this assumption is violated at some redshifts. This means that the

constraint for a given chirp mass is only valid over certain ranges of redshift for which the

induced timing residual is low for each SMBHB (Wen et al., 2011).

In Figures 5.3 and 5.4, we plot the upper bound on the SMBHB coalescence rate as a func-

tion of redshift for our data sets. Valid constraints can be obtained at all redshifts for these data

sets using the methods presented in Chapter 3 or Chapter 4, because these methods allow for an

arbitrarily small number of GW sources in each frequency bin. However, these methods also

give a higher upper bound on the coalescence rate compared tothe method presented in this

Chapter, so the method of this Chapter should be used whenever it provides a valid constraint.

In Figure 5.4, we show that no valid constraints can be obtained with this method forMc =

109M⊙ with either of the simulated data sets that have a rms timing residual of 10 ns. However,

these data sets provide significant constraints on the merger rate of SMBHBs with smaller chirp

masses. We do not present such constraints here because the precision of current data sets is not

at the required 10 ns level for more than a few pulsars.

5.2.2 Predictions of Galaxy Evolution Models

Wyithe & Loeb (2003) predict that the amplitude of the GWB could be as high asA = 10−14.

This prediction has recently been ruled out by van Haasterenet al. (2011) using a Bayesian

analysis technique. Our results indicate that this prediction could also be ruled out by applying

the Jenet et al. (2006) technique to the “20PSRs-500 ns-10 yr” data set.
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Figure 5.3: Upper bounds on the coalescence rate of SMBHBs using the values ofAup calcu-
lated for different sets of PTA observations given in Table 5.1. For calculating the abscissa,z is
the redshift of the SMBHB. The ordinate gives the logarithm of the differential rate of coales-
cence per log redshift per log chirp mass. The solid horizontal bars indicate that the constraint
is valid in that redshift interval, while the dotted horizontal bars indicate that the constraint is
invalid. The plot includes the constraints provided by the Jenet et al. (2006) observations (open
triangles), 20 pulsars timed with 500 ns rms residual over 10yr (open squares), the same timed
with 100 ns rms residual over five yr (crosses) and the same timed with 100 ns rms residual over
10 yr (open circles). The grey region indicates the expectedcoalescence rate with evolution
index−1 < γ < 3 (see Section 1.6.2) assuming the framework of Jaffe & Backer(2003) and
using observations from the Sloan Digital Sky Survey (Wen etal., 2009). The dashed traces in-
dicate the maximum (thick line) and minimum (thin line) coalescence rates predicted by Sesana
et al. (2008, 2009). [Image reproduced from Figure 2 of Wen etal. (2011).]
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Figure 5.4: Lines and regions on this plot are the same as in Figure 3.8, except that we now
show the constraints obtained using 20 pulsars timed with a rms timing residual of 10 ns over
10 yr (stars), 100 pulsars timed with a rms residual of 10 ns over 10 yr (filled circles), the same
timed with a rms residual of 100 ns over 10 yr (filled squares) and the same timed with a rms
residual of 100 ns over five yr (filled triangles). [Image reproduced from Figure 3 of Wen et al.
(2011).]
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Jaffe & Backer (2003) and Enoki et al. (2004) predict that theGWB amplitude is around

A = 10−15. If the timing residuals are white, then this prediction could be ruled out using the

most optimistic prediction for the full PPTA observations,which is the “20PSRs-100 ns-5 yr”

data set. An improved technique for calculating an upper bound on the GWB amplitude could

rule out this prediction with the “20PSRs-500 ns-10 yr” dataset.

Sesana et al. (2008) predict that the characteristic strainof the GWB is in the range10−16 <

hc < 3 × 10−15 at f = f1yr. While any of the simulated data sets shown in Table 5.1 could

constrain part of this parameter space, the whole range ofhc(f = f1yr) can only be ruled out

by the simulated SKA timing observations that yield a rms residual of 10 ns on≥20 pulsars.

However, a timing program that observed a PTA with at least 20pulsars at a timing precision

of ∼100 ns for more than 10 years could significantly constrain the predicted range.

If a significant upper bound on the GWB amplitude is obtained,several characteristics of

SMBHB formation and evolution may be constrained (see Sesana et al., 2008, and references

therein). Aside from the constraints on the coalescence rate described in Section 5.2.1, a smaller

GWB amplitude could mean that the proportion of SMBHBs that proceed to coalescence may be

less than 100%. The BH mass function could also be over-estimated currently, which would lead

to inflated predictions of the GWB amplitude. Alternatively, the gravitational recoil experienced

by each SMBH during merger could be larger than currently predicted, meaning that fewer

SMBHBs would form. These parameters are difficult to measureusing direct observations of

SMBHBs.

5.3 Conclusion

We have applied the technique of Jenet et al. (2006) to both real and simulated observations to

determine upper bounds on the GWB amplitude. We have also briefly described the astrophys-

ical consequences of such limits. However, the technique can only be applied to sets of timing

residuals that are consistent with white noise, which is only the case for a relatively small num-

ber of data sets. Most current sets of pulsar timing residuals show evidence of red noise. Also,

the Jenet et al. (2006) technique cannot easily be extended to provide a direct detection of a GW

signal. In Chapter 6, we develop a technique that can detect aGWB signal and can be applied

to almost any set of pulsar timing residuals.
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Chapter 6

On Detecting the Gravitational-Wave

Background Using a Pulsar Timing Array

Chapter Outline: In this Chapter, we:

• correct minor errors in the Verbiest et al. (2008, 2009) dataset and also adjust the ToA
uncertainties.

• develop a frequency-domain correlation technique to search for a GWB signature in the
PPTA residuals.

• apply this technique to the corrected Verbiest et al. data set and find no detectable GWB
signal.

• discuss characteristics of the PPTA residuals and the GWB signal that affect the GWB
analysis.

• examine the effect of instabilities in a realisation of Terrestrial Time and errors in the
solar system ephemeris on the GWB detectability.

Sections 6.1, 6.2, 6.3, 6.4 and 6.5 are adapted from sectionsin the following journal article:
Yardley D. R. B., Coles W. A., Hobbs G. B., et al. 2011, MNRAS, 414, 1777

Figure 6.5 and its associated text are from the following conference proceedings:
Yardley D. R. B., Coles W. A., Hobbs G. B., Manchester R. N., 2011, in Burgay M.,

D’Amico N., Esposito P., Pellizzoni A., Possenti A., eds, Radio Pulsars: An Astrophysical
Key to Unlock the Secrets of the Universe, Vol. 1357 of AIP Conference Series. American
Institute of Physics, Melville, New York, p. 77

In this Chapter, we attempt to detect a GWB signal caused by SMBHBs in an updated ver-

sion of the PPTA observations presented by Verbiest et al. (2008, 2009) (introduced in Section

2.3.2). While an upper bound on the GWB amplitude can rule outmodels of galaxy evolution

(see Section 5.2.2) and cosmic strings (see Section 1.6.2),a detection of the GWB would lead

to increased understanding of physics and cosmology. In order to confirm that any signal ob-

served in a data set is caused by a GWB, it is essential to detect (unambiguously) the expected

correlation in the timing residuals of pairs of pulsars, as shown in Figure 1.8
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Several techniques have already been proposed in the literature to detect the GWB (see

Section 1.6.1). However, most methods have not taken into account all the details of analysing

pulsar timing data, or are restricted to particular observations.

The GWB detection technique we present in this Chapter is based on the method of Jenet

et al. (2005). It improves on their technique in a number of ways:

• we study the pairwise correlation described by Hellings & Downs (1983) in the form of

pairwise cross-power spectra;

• we obtain independent estimates of the GWB from each frequency component in each

cross-power spectrum;

• we use an optimally-weighted linear combination of the cross-power estimates as the

detection statistic;

• we account for the effect of different overlapping time-spans between the pulsar pairs;

• we calibrate the cross-power spectra and their estimated errors using simulations that

completely account for the fitting of the pulsar timing model.

In this Chapter, we discuss a number of issues that are commonto both the Jenet et al.

(2006) limit technique and any limit technique based on measuring the GWB-induced correla-

tion between pulsars. Such issues include the estimation ofpower spectra when the sampling is

irregular and the ToA uncertainties are variable, and the effects of fitting the timing model.

In Section 6.1 we describe the observations and the analysisthat led to the timing residuals

we use in this Chapter. Section 6.2 describes the theoretical background and our method for

making a detection of the isotropic stochastic GWB. Section6.3 describes the results obtained,

Section 6.4 describes their implications and the outstanding issues for GWB detection via pulsar

timing, and Section 6.5 summarises our conclusions.

6.1 Observations

High-precision timing observations of 20 MSPs over∼10 yr were presented by Verbiest et al.

(2008, 2009). The timing residuals for all pulsars obtainedfrom these observations are shown in

Figure 2.5 and Figure 2.6 and described in Section 2.3.2. However, to form the data set we use in
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Table 6.1: Basic information for our corrected version of the Verbiest et al. data set.

PSRJ Period DM Pb Weighted RMS Span No. of
(ms) (cm−3 pc) (d) Residual (µs) (years) Observations

J0437−4715 5.757 2.65 5.74 0.20 9.9 2847
J0613−0200 3.062 38.8 1.20 1.52* 8.2 190
J0711−6830 5.491 18.4 – 3.24* 14.2 227
J1022+1001 16.45 10.3 7.81 1.63* 5.1 260
J1024−0719 5.162 6.49 – 4.17* 12.1 269
J1045−4509 7.474 58.2 4.08 6.80* 14.1 375*
J1600−3053 3.598 52.2 14.3 1.11* 6.8 474*
J1603−7202 14.84 38.1 6.31 1.98* 12.4 212
J1643−1224 4.622 62.4 147 1.94* 14.0 241
J1713+0747 4.570 16.0 67.8 0.20 14.0 392
J1730−2304 8.123 9.61 – 2.52* 14.0 180
J1732−5049 5.313 56.8 5.26 3.23* 6.8 129
J1744−1134 4.075 3.14 – 0.62 13.2 342
J1824−2452 3.054 120 – 1.63* 2.8 89
J1857+0943 5.362 13.3 12.3 1.14* 22.2a 376
J1909−3744 2.947 10.4 1.53 0.17 5.2 893
J1939+2134 1.558 71.0 – 15.0b 23.3c 588
J2124−3358 4.931 4.62 – 4.01* 13.8 415*
J2129−5721 3.726 31.9 6.63 2.19 12.5 177*
J2145−0750 16.05 9.00 6.84 1.88* 13.8 376*

aThere is a gap of∼11 years between the end of the observations presented by Kaspi et al. (1994) and the
beginning of observations with the Parkes telescope. In ouranalysis we use the Arecibo observations of PSR
J1857+0943 only to assist in the estimation of the pulsar parameters and then discard the Arecibo residuals in
further processing.

bWe have altered the value of the phase offsets between different observing systems for these timing residuals
compared with the analysis of Verbiest et al. (2009), which lowers our measured rms.

cThis time series features several large gaps and includes the Kaspi et al. (1994) data.
*These values differ slightly from those presented by Verbiest et al. (2009) because we have removed duplicated

observations in five pulsars, and corrected a minor processing error involving the uncertainties on observations
made with different observing systems.
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this Chapter, we have made minor corrections to the originalVerbiest et al. observations. While

we have not repeated the ToA estimation process already described and performed by Verbiest

et al. (2008, 2009), we have removed erroneous duplicated ToAs from some pulsars in the data

set. Also, in forming the timing residuals, we have treated the observations of every pulsar in the

same manner when measuring the arbitrary phase offsets between different backend systems.

This caused the PSR J1939+2134 timing residuals to exhibit a lower rms than in the original

Verbiest et al. data set because the value of these offsets changed. A summary of the data set

used in this Chapter is given in Table 6.1.

In our data set, the data-spans vary widely, ranging from 2.8years for PSR J1824−2452

to 23.3 years for PSR J1939+2134. The weighted rms residual also varies over two orders of

magnitude, from 170 ns for PSR J1909−3744 to 15µs for PSR J1939+2134. The residuals are

unequally spaced and the sample times are different betweenpulsars. As described in Section

2.2.3, for some pulsars the average magnitude of the ToA error bar changes discontinuously at

a particular point in the time series because of upgrades in the observing hardware. For most

pulsars, the upgrade that caused the most significant changein the ToA uncertainty was the

transition from the FPTM backend system to CPSR2 in the year 2002. For pulsars whose ToA

uncertainties significantly improved after this upgrade, aweighted fit to the residuals would

be mostly influenced by the most recent observations, thus reducing the GWB sensitivity of

such data sets. To ameliorate this effect, we attempt to reduce the variation in the magnitude of

the ToA uncertainties so that, in subsequent weighted estimates using the timing residuals, the

weights are spread more evenly across the data set.

In Table 6.2, we provide a list of the pulsars whose ToA uncertainties exhibit a “step-change”

in average magnitude. For these pulsars, we have calculatedthe unweighted variance of the

residuals both before and after the upgrade that caused thisstep-change. These variances are

added in quadrature with the original error bars in each portion of the time series before com-

mencing any further processing. For all other pulsars, there was no significant change in data

quality at the epoch of the hardware change. We thus calculate the unweighted variance of the

whole time series and add it in quadrature with the original error bars before any further pro-

cessing. This simple process increases the uncertainty on all ToAs54. However, the uncertainty

54This process of augmenting the error bar on each residual is ad hoc because we do not have a good error model
for the PPTA timing residuals. Improving the white noise model is an important goal of PPTA research at present.
The basic problem is that we know that there are other white noise processes that affect the timing residuals in
addition to radiometer noise, such as pulse jitter (Cordes &Shannon, 2010; Oslowski et al., 2011). However,
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Table 6.2: Pulsars with non-stationary timing residuals. For these pulsars, we estimate the
unweighted rms of the residuals before and after an important hardware change at the telescope.

PSRJ Type of Epoch RMS before RMS after
change (MJD) change (µs) change (µs)

J1600−3053 backend 52654.0 9.61 1.31
J1713+0747 backend 52462.5 1.24 0.48
J1732−5049 backend 52967.5 7.57 4.03
J1744−1134 backend 52462.6 1.54 1.29
J2124−3358 backend 52984.5 9.74 4.64
J2129−5721 receiver 51410.0 5.47 3.48
J2145−0750 backend 52975.5 4.14 3.17

on the most precise ToAs will increase by more than the corresponding increase for less precise

ToAs, meaning that there will be less variation in the weightof each residual across the time

series.

6.2 Method

The GWB-induced residuals are correlated between different pulsar pairs as shown in Fig-

ure 1.8. Although limits on the amplitude of the GWB can be obtained from the residuals of

a single pulsar (e.g., Kaspi et al., 1994), the GWB can only bedetected with confidence by

observing this pairwise correlation. We now describe our technique for detecting a GWB signal

in pulsar timing residuals.

6.2.1 Detecting the Gravitational-Wave Background Signal

The expected GWB signal in pulsar timing residuals was described in Section 5.1.1. For this

analysis, we assume that the GWB due to SMBHBs is described byequations (5.1) and (5.2).

In this case, the cross-power spectrum between the induced ToA perturbations in pulsarsi and

j is

Xij(f) = Pg(f)ζ (θij) , (6.1)

whereXij(f) is the value of the cross-power spectrum at frequencyf , Pg(f) is the power

spectrum of the GWB-induced ToA perturbations given in Equation (5.2) andζ (θij) is given in

Equation (1.15).

we don’t yet know what processes are involved or how much theycontribute to the timing residuals. An interim
solution is now available in the form of theFIXDATA plugin toTEMPO2.
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In order to detect the GWB signal, we estimateXij(f) for each pair of pulsars. As the

spectrum of the GWB is very steep, only the lowest frequencies are of interest. Also, because

we want to detect the correlated GWB signal between pulsars,we will focus on the overlapping

portion of each pair of pulsars. The observations of each pair of pulsars overlap over some

time-span,Toverlap. For Npsr = 20 there areNpairs = 190 pairs. For each pair we estimate the

cross-power spectrum at harmonics off = 1/Toverlap. If the sampling were uniform and the ToA

uncertainties were equal, these estimates would be uncorrelated. In practice we find that they

are not uncorrelated and this reduces the sensitivity of ourdetection algorithm. It is probable

that the independence can be restored using the Cholesky spectral estimation procedure recently

discussed by Coles et al. (2011). However, this is beyond thescope of this thesis.

For some pairs,Toverlap can be much smaller than the length of one or both time series.

For our time series,Toverlap ranges from just 0.8 yr for PSRs J0437−4715 and J1824−2452,

to 14.1 yr for PSRs J0711−6830 and J1939+2134. The use of only the overlapping residuals

causes a bias in the cross-power spectral estimates, the cause of which is currently not known.

We correct this bias by removing a quadratic function from the overlapping section of the two

time series using a weighted least-squares (WLSQ) fit, as shown in Figure 6.6. This fit is in

addition to the standard timing model fit that estimates the pulsar parameters. We estimate the

cross-power spectrum using:

Xij(f) = Fi(f)F∗
j (f)/Toverlap , (6.2)

whereFi denotes the DFT of the timing residuals of pulsari and∗ denotes complex conjugation.

We use the following standard definition of the one-sided DFT(a factor of two larger than the

two-sided DFT given in Equation 2.2):

F(fk) =
2

Npts

Npts−1
∑

n=0

rne−2πikn/Npts, (6.3)

wherei =
√
−1 in this particular equation,rn is then-th residual andk is an integer between

1 and(Npts − 1)/2, rounded down. Calculating the DFT is not trivial because ofthe uneven

sampling and variable error bars. We calculatedFi(fk) for every pulsar using a WLSQ fit of a

sine term plus a cosine term at eachfk = k/Toverlap. This gives identical results to a weighted

Lomb-Scargle estimate of the spectrum (Scargle, 1982; Zechmeister & Kürster, 2009). The
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variance of each cross-power spectral estimate is

σ2
Xij

(f) = 〈Pi(f)〉〈Pj(f)〉/2 , (6.4)

where〈...〉 indicates an expectation value andPi(f) is the spectral estimate of the residuals of

pulsari at frequencyf . In practice, we calculate these expectation values using apower-law fit

to the lowest frequencies in the periodogram of each pulsar.This power-law fit gives a spectral

model for low frequencies in this pulsar.

We account for the effects of fitting the timing model to the observations using two Monte

Carlo simulations. The first simulation estimates the effective transfer function for each pulsar

(see Section 2.4.3). The transfer function for each pulsar is similar to that shown in Figure 2.10

for PSR J0613−0200. We then correct the measured cross-power spectrum foreach pulsar

pair at each frequency by dividing by the geometric mean of the transfer functions of the two

pulsars at that frequency. This correction is common between our analysis and that of Verbiest

et al. (2009), but this is the only pulsar parameter fitting correction performed by Verbiest et al.

(2009).

However, this process of correcting the cross-spectrum usingTEMPO2 transfer functions can

only correct the effects of the timing model fit as it acts on white noise in the residuals. This is

because, although fitting the timing model is a linear operation, it is not a filter. In particular, this

means the effect of the timing model fit will be different whenthe residuals are contaminated

by red noise, compared to the case where the residuals are consistent with white noise. When

a set of residuals with time-spanTobs is affected by red noise, fitting the full timing model

to the residuals reducesP (f = 1/Tobs) by significantly more than the white noise transfer

function. This is easily confirmed by simulation. A second correction is therefore necessary

to measure the effect of the full timing model fit on the non-white GWB contribution to the

residuals. We simulate∼10000 realisations of the residuals and add a simulated GWB signal

with A = 3× 10−15 andα = −2/3 to all pulsars using the methods described in Sections 2.4.3

and 5.1.2. This value ofA was chosen because it gives the largest GWB signal that is still small

compared with the noise, hence reducing the number of required simulations. We further reduce

the number of simulations by fixing every pulsar to be at the same position and distance, giving

the maximum correlated GWB signal between pulsars. We perform the full pulsar parameter

fit usingTEMPO2, estimate the cross-power spectrum in each realisation and apply the transfer
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function correction described above. We divide the averagecorrected cross-power spectrum of

each pulsar pair by the theoretical level of the cross-powerspectrum given in Equation (6.1).

This process defines a set of “calibration factors”,γij(fk). When forming subsequent estimates

of the cross-power spectrum using Equation (6.2), we calibrate each estimate at the lowest

three frequencies of the cross-power spectrum by dividing the cross-power-spectral estimate for

pulsarsi andj at frequencyfk by γij(fk).

After performing both of these corrections, we estimateA2. For each frequency channel,

fk, of the cross-power spectrum (measured in yr−1), we have (see equations 1.14 and 6.1)

[

A2
ijζ (θij)

]

k
= 12π2f 3−2α

k Real[Xij(fk)] (6.5)

whereA2
ij indicates the measurement ofA2 obtained from pulsarsi andj and Real[Xij(fk)] is

the real part55 of the cross-power spectrum. The variance ofA2
ijζ (θij) is then proportional to

the variance ofXij .

To compare directly with the technique of Jenet et al. (2005), we perform a weighted sum

of theA2
ijζ (θij) estimates over cross-spectral frequency to obtain a singleestimate ofA2

ijζ (θij)

for each pulsar pair. This gives

A2
ijζ (θij) =

12π2
∑

k Xij(fk)k
2α−3/σ2

Xij
(fk)

(Toverlap)
3−2α ∑

k k4α−6/σ2
Xij

(fk)
(6.6)

where both summations range fromk = 1 to Nspec,ij, and whereNspec,ij is the number of

cross-spectral frequencies for pulsarsi andj. This final estimate ofA2
ijζ (θij) is similar to the

unnormalised covariance between the residuals of pulsarsi andj. We also use the observed

scatter in estimates ofA2
ijζ (θij) obtained from simulated observations to estimate the uncer-

tainty δA2
ijζ (θij) for each pulsar pair.

Having fully calibrated our technique using simulations, we estimate the squared amplitude

of the GWB,Â2, by forming an average of theA2
ijζ (θij) estimates weighted by the inverse

variance of each estimate. In practice this average is done by performing a WLSQ fit to find

the amplitudeÂ2 (and its corresponding uncertainty) for which the quantityÂ2ζ best fits the

observed values ofA2
ijζ (θij). For ease of notation, we index over all possible pulsar pairs using

m, wherem is an index running from 1 toNpairs and we setζm ≡ ζ (θij). In this case, the

55The imaginary part of the cross-power spectrum contains uncorrelated terms and is discussed in Section 6.4.
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expression forÂ2 is

Â2 =

∑

m [A2
mζm] ζm/σ2

A2
mζm

∑

m ζ2
m/σ2

A2
mζm

=

∑

m A2
m/σ2

A2
m

∑

m 1/σ2
A2

m

(6.7)

and its unweighted variance is

σ2

Â2
=

1
∑

m ζ2
m/σ2

A2
mζm

=
1

∑

m 1/σ2
A2

m

. (6.8)

This initial estimate of the error assumes that each of theδA2
ijζ (θij) is well-estimated. If

this is not true, then we need to augment the error onÂ2 by an extra term that describes the

amount of scatter in the residuals. This corresponds to accounting for a non-unity reducedχ2

of the WLSQ fit that determineŝA2. Thus our final estimate for the variance ofÂ2 is

σ2

Â2
=

1

(Npairs − 1)

∑

m

(

[A2
mζm] − Â2ζm

)2

/σ2
A2

mζm

∑

m ζ2
m/σ2

A2
mζm

=
1

(Npairs − 1)

∑

(

A2
m − Â2

)2

/σ2
Am

∑

1/σ2
Am

, (6.9)

which is just the weighted estimate of the variance ofÂ2. If Â2 is significantly larger than

σ
Â2 , then a detection of the GWB has been made. This algorithm hasbeen implemented as a

TEMPO2 plugin, which is included in Appendix B.

6.3 Results

From our data set we estimate the squared GWB amplitude to beÂ2 = −4.5 × 10−30, with an

uncertaintyσ
Â2 = 9.1 × 10−30. Our result is consistent with the null hypothesis, that there is

no GWB present. Although the estimate is negative and therefore would lead to an unphysical

GWB, it is not improbable because the standard deviation is afactor of 2 larger than the mag-

nitude of the mean56. We simulated many realisations of the observations using the method of

Section 2.4.3, including the uncertainty given by the ToA error bars and a random process con-

sistent with the low-frequency spectrum of the residuals but no GWB signal. These simulations

showed that our estimate is consistent with the null hypothesis with 76% confidence. This result

56This would not be an issue for a Bayesian approach to GWB detection wherein the prior can restrict the value
of Â2 to being positive.
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Figure 6.1: The histogram shows the distribution ofÂ2 for simulations of our residuals with
no GWB present. The thin dotted line shows the value ofÂ2 obtained from the observations.
The estimates to the right of the dotted line include 76% of the simulation results. All physical
GWBs haveA2 > 0.

is shown as a histogram in Figure 6.1. At first, it appears thatthis histogram could be used to

provide a 95% confidence upper bound on the GWB amplitude. However, as discussed further

below, any limit thus obtained would not take account of “self-noise” (Jenet et al., 2005) due to

the GWB-induced perturbations at the pulsar.

In Figure 6.2, we plot the 15 estimates ofA2
ijζ (θij) with the smallest uncertainties. It is

clear from this Figure that the current noise levels are larger than4.5×10−30 and that our result

is consistent with the null hypothesis. The dot-dashed curve forA2 = 10−28 seems to imply that

such a large GWB signal is ruled out by the observations. These observations probably do rule

out such a GWB signal (though this has not been investigated), but if A2 were actually10−28

the noise levels on eachA2
ijζ (θij), which provide the upper bound, would be much higher. As

the noise levels come from the power spectrum of the residuals of each pulsar, obtaining an

upper bound using the noise levels is equivalent to obtaining an upper bound directly from the

individual power spectra and ignoring the cross correlations. Such a bounding technique is not

pursued in this Chapter.
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Figure 6.2: The 15 most precise estimates ofA2
ijζ (θij) obtained from our data set (points with

error bars), the best-fit value of̂A2ζ = −4.5×10−30×ζ (dashed curve) and the signal expected
from a strong GWB withA2 = 10−28 (dot-dashed curve).

6.4 Discussion

The results of applying this algorithm to the corrected version of the Verbiest et al. (2008,

2009) data are disappointing in the sense that the sensitivity is considerably poorer than that

calculated in the Appendix provided by Verbiest et al. (2009). We believe the estimated errors

to be correct because they are calibrated by simulation, so we ask the question:Why are the

cross-power spectra of the GWB lower than expected?To investigate this we have run a series

of simulations57 with GWB signals of differing amplitudes injected into the observations. The

results are shown in Figure 6.3. The mean values of the derived Â2 are plotted as solid lines

connecting error bars (that indicate the uncertainty in themean) for two cases: (1) the algorithm

including correction with theγij calibration factors (thick solid line); and (2) the algorithm with

γij ≡ 1 (thin solid line). These results show that our method returns a GWB amplitude estimate

Â2
out such that, on average,̂A2

out = A2
in. Figure 6.4 shows that this GWB signal is at the correct

57These simulations use a spread of pulsar distances and synthesise residuals with the same sampling as our
observations, using the methods of Section 2.4.3 and 5.1.2.The simulated residuals include white noise consistent
with the observed error bars, red noise consistent with the spectral model mentioned in Equation (6.4) and a signal
from a GWB withα = −2/3 and with a range of amplitudes betweenA2 = 6.4 × 10−33 andA2 = 4 × 10−28.
We did not perform post-Keplerian pulsar parameter fits.
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Figure 6.3: AverageÂ2 as a function of input GWBA2 for our residuals. The ordinate gives
the average output̂A2 from our detection algorithm. The triple-dot-dashed line indicates points
where the inputA2 is equal to the output̂A2. We have considered 2 cases: performing the full
detection procedure (thick lines) and the uncalibrated detection procedure that usesγij(f) ≡ 1
(thin lines). In both cases we have averaged over 1400 realisations for each inputA2, and
estimated the average outputÂ2 (solid lines), where the error bars give the error in the meanof
Â2. The dashed lines give the square root of the average ofσ2

Â2
in each case, and are in good

agreement with the sample standard deviations over the amplitude range of interest (dotted
lines).

level on average in every pulsar pair. The difference between the thick solid line and the thin

solid line in Figure 6.3 indicates that the GWB power is reduced by a factor of∼12 because

of the pulsar parameter fitting, even after adjusting the cross-power spectra using the effective

transfer function.

We can estimate the amount of GWB signal lost in estimation ofdifferent timing pa-

rameters by calculating the weighted average calibration factor in the lowest frequency chan-

nel of each pulsar pair. While this will be at a different frequency for each pair, it nev-

ertheless provides a straightforward figure of merit for comparing the effect of fitting dif-
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Figure 6.4: The expected covariance in simulated residualsthat include a GWB component
with squared amplitudeA2 = 10−28. The smooth dashed curve corresponds to the theoretical
covariance for an inputA2 = 10−28. The points correspond to the mean of the estimates of
A2

ijζ (θij) (Equation 6.6) from 200 simulated sets of timing residuals for the 20 PPTA pulsars.
The error bars give the uncertainties in these mean estimates. For clarity we only plot the 20
pairs with the smallest rms scatter in their estimates ofA2

ijζ (θij) over the 200 simulations.
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Table 6.3: The effect of fitting different combinations of timing model parameters on the GWB
signal in the lowest frequency channel. Values in the 4th column are the inverse of values in the
2nd column. The symbols are:ν (pulse frequency);̇ν (pulse frequency derivative); “JUMP”
(arbitrary phase offsets between different observing systems were removed from all pulsars);
“ALL” (all timing model parameters were fit).

Timing Model Weighted mean of Uncertainty in Sensitivity
Parameters γij(f = 1/Toverlap) Weighted Mean Loss Factor

ν, ν̇ 0.1716 0.0003 5.83
ν, ν̇, JUMP 0.0796 0.0002 12.6

ALL 0.0790 0.0002 12.7

ferent timing model parameters. For the fullTEMPO2 fit acting on our residuals, we find

γij(f = 1/Toverlap) = 0.0790 ± 0.0002, which represents an average loss of0.0790−1 = 12.7

in GWB signal atf = 1/Toverlap. This explains the large decrease in sensitivity of our method

compared to that presented in the Appendix of Verbiest et al.(2009), which did not fully ac-

count for the effect of pulsar parameter estimation on the GWB signal. In Table 6.3, we give

the weighted average calibration factor atf = 1/Toverlap when fitting for different parameters

in the timing model. The estimation of the pulsar position and parallax have little effect on

γij(f = 1/Toverlap) sinceToverlap is a few times greater than 1 yr for most of our pulsar pairs, and

so are not shown in Table 6.3. This table indicates that one can almost determine the complete

effect of fitting on the GWB sensitivity by only including fitsfor the spin frequency, its deriva-

tive and the arbitrary phase offsets between different observing systems. Additionally, while

the spin frequency derivative fit only significantly affectsthe power in the lowest frequency

channel, the arbitrary phase offsets affect the power in thelowest few channels and hence can

significantly affect our estimate ofA2.

The dashed lines in Figure 6.3 show that for GWB amplitudes aroundA2 = 5 × 10−30, the

average uncertainty on̂A2 is double the average uncertainty when there is no input GWB.This

extra contribution to the uncertainty comes from the effectof the GWs passing near the pulsar,

which we refer to as the self-noise of the GWB. For larger values ofA2, the uncertainty on̂A2

is dominated by the GWB self-noise as discussed by Jenet et al. (2005).

For comparison with previous limits, we attempted to place a95% confidence upper bound

as follows. Using the same simulations that produced Figure6.3, we attempted to find the

amplitude of a simulated GWB that gave a measurement ofA2 larger than−4.5 × 10−30 –

the value obtained from the actual observations – with probability 0.95. The results, shown in
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Figure 6.5: Percentage ofA2 estimates from simulated observations above the observed value
of A2 = −4.5 × 10−30, as a function of input simulatedA2. The dotted vertical line shows
the limit of A2 < 1.2 × 10−28 (Jenet et al., 2006). The percentage ofA2 estimates above the
observed value ofA2 = −4.5 × 10−30 (thin solid line) does not reach 95% (thick horizontal
line) within the plotted range of simulatedA2 values.

Figure 6.5, show that the percentage of estimates ofA2 above−4.5 × 10−30 does not reach

95% for any simulatedA2 ≤ 4 × 10−28. We traced this to the issue that the GWB sensitivity

of the different time series varies widely between the different pulsars analysed by Verbiest et

al. (see Section 6.4.4). The maximum simulated GWB amplitude shown in Figure 6.5 is much

larger than the Jenet et al. (2006) upper bound (A2 ≤ 1.2 × 10−28). Thus we cannot obtain

a sufficiently low upper bound with 95% confidence to warrant further investigation with our

current time series and weighting scheme.

Furthermore, any limit obtained in this way would be considerably worse than one obtained

through other methods, such as direct power estimation, because of the huge variation in noise

levels amongst our pulsars58. A power spectral analysis of the Verbiest et al. (2008, 2009)

similar to that presented by Jenet et al. (2006) is expected to provide a much lower bound on

the GWB amplitude than cross-correlation analysis.

We confirm the accuracy of the measured uncertainty on each estimate ofA2
ijζ (θij) using

58We cannot apply the Jenet et al. (2006) limit method to these observations because it requires that the timing
residuals of each pulsar be white. The method presented by van Haasteren et al. (2009) could be applied to these
observations, but this would require a large amount of computation time and any limit obtained would be difficult
to confirm via Monte Carlo simulation.
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the reducedχ2 of the WLSQ fit that determineŝA2. The reducedχ2 of this fit is

χ2
r =

1

(Npairs − 1)

∑

k

(

[A2
kζk] − Â2ζk

)2

σ2
A2

k
ζk

, (6.10)

which has a value of 1.3 for our residuals, indicating that the uncertainty estimatesσA2
k

are con-

sistent with the rms variation of the estimatesA2
k. We obtain an independent estimate of the ac-

curacy of the measured errors by making use of the information contained in the imaginary part

of the cross-power spectrum, which we denote Imag[Xij(f)]. We calculate Imag
[

A2
ijζ (θij)

]

by evaluating Equation (6.5) with Imag[Xij(f)] in place of Real[Xij(f)]. We then process

Imag
[

A2
ijζ (θij)

]

in exactly the same way as the real part is processed. Since correlation coef-

ficients are real, we expect that Imag
[

A2
ijζ (θij)

]

will contain no correlated signal. This means

that we can calculate the analogue of the reducedχ2 using Imag
[

A2
ijζ (θij)

]

:

χ2
r,im =

1

(Npairs − 1)

∑

k

(Imag[A2
kζk])

2

σ2
A2

k
ζk

. (6.11)

Similar to the reducedχ2, if the errors onA2
ijζ (θij) are well-estimated then this quantity should

be near unity. For our residuals, we findχ2
r,im = 0.87, indicating that the errors are well-

estimated.

Although bothχ2
r andχ2

r,im show that the uncertaintiesσA2
k

are reliable on average, these

uncertainties come from power spectral estimates so they are random variables. We estimated

the sensitivity ofÂ2 to variations inσA2
k

by multiplying eachσA2
k

by a random factor, distributed

as the square root of the product of twoχ2 random variables with two degrees of freedom.

This is the expected distribution for eachσA2
k
. We found thatσ

Â2 increased by a factor of

1.6, indicating that the use of incorrectδA2
ijζ (θij) estimates degrades the sensitivity of theÂ2

measurement by only a factor of 1.6.

However, theA2
ijζ (θij) are not Gaussian; rather they come from the sum of two pairwise

products of independent Gaussian variables and thus have a two-sided exponential distribution

that is reflected in Figure 6.1. This means that the maximum likelihood estimator forA2 is not a

WLSQ estimator but a weighted least absolute deviation (LAD) fit (e.g., Cox, 2006). We tested

both weighted and unweighted LAD fits and found that the results for WLSQ and unweighted

LAD fits were very similar, while the weighted LAD fit introduced a small bias in the mean.

These results are shown in Table 6.4. We suspect that the biasoccurs because any LAD fit
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Table 6.4: The results from estimatingA2 with different estimators averaged over105 simula-
tions of realistic residuals including a GWB withA2 = 10−30.

Estimator MeanÂ2 Error in Mean rms ofÂ2

(×10−30) Â2 (×10−30) (×10−30)
WLSQ [our method] 0.99 0.038 12

Unweighted LAD 1.0 0.038 12
Weighted LAD 0.84 0.041 13

Table 6.5: The results from our observations using different methods of spectral analysis of the
timing residuals.

Processing Â2 σ
Â2

Performed (×10−30) (×10−30)
Smoothing & Interpolation 3.0 10

Smoothing only −7.8 10
No smoothing [our method] −4.5 9.1

includes a ‘dead-zone’ feature, where a range of parameter estimates give the same minimum

absolute deviation. This dead zone is negligible when the number of estimates is large, but

can be significant otherwise. Since ourA2 estimates are dominated by a small number ofA2
k

measurements and the results of the different estimators are similar, we chose the more standard

WLSQ fit in calculatingÂ2. Although the WLSQ estimator is not maximum likelihood, it is

apparently more robust in our particular case.

Estimation ofA2 is also largely independent of changes to the method of spectral analysis.

We experimented with reducing the white noise in the residuals by smoothing each time series

over a 60-d period before commencing the spectral analysis.We also tested interpolation using

a constrained cubic spline of each smoothed time series ontoa 14-d grid common to all pul-

sars before the spectral analysis. The results of these different approaches are given in Table

6.5. Since there was no statistically significant difference between the different approaches, for

simplicity we elected not to smooth or interpolate the residuals.

6.4.1 Treatment of a Large Amplitude Gravitational-Wave Background

For their detection statistic, Jenet et al. (2005) calculated the normalised cross correlation be-

tween the timing residuals of each pulsar pair. They optimised the S/N ratio using a filter

designed to whiten the residuals before correlation. For a simulation of the 20 PPTA pulsars,
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this approach increased the maximum achievable detection significance for a GWB from 3σ to

13σ. However, their filter cannot be applied to real pulsar timing observations without modi-

fication. We investigated the effect of such a filter by performing simulations of our residuals

where each simulation included a signal from a GWB withA & 3 × 10−15. In the frequency

domain, the filter takes the form of a weighting factor, so we optimised this weighting factor

to match the large input GWB amplitude. We found that this method did not improve the S/N

ratio, and we traced this under-performance to the problem of spectral leakage from the low-

est frequencies to the higher frequencies. We found that thefirst few cross-spectral estimates,

which make the largest contribution to our detection statistic, were all more than 90% correlated

with the lowest spectral estimate (i.e., at frequencyf = 1/Toverlap), meaning that re-weighting

cannot change the overall S/N ratio. The spectral leakage isparticularly significant because of

the irregular sampling and variable ToA uncertainties in these observations. We expect that an

improved spectral analysis technique (e.g., Coles et al., 2011) will eliminate the spectral leakage

and enable us to take advantage of more degrees of freedom59 when the GWB signal is larger

than the noise.

6.4.2 Fitting Timing Models over Different Data-Spans

The time series we consider in this Chapter have widely varying time-spans. The effect of

such variation has not been considered in most PTA analyses to date. As part of the pulsar

parameter estimation, we fit for the pulse period and its derivative over the full duration of

each time series. Originally, we then computed the cross-power spectra from the overlapping

portion of residuals of each pulsar pair with no further processing. However, upon simulating

this procedure, we found that the lowest frequencies in the cross-power spectra were biased

wheneverTobs > Toverlap. This bias took the form of a significantly non-zero imaginary part in

the cross-power spectrum. Also, we found that much of the correlated signal at low frequencies

was removed, as shown in Figure 6.6. We were unable to eliminate these effects unless we

performed a WLSQ fit of a quadratic function for each time series over the overlapping time

range. This restores the correlation in the GWB signal between different pulsars (right panels of

Figure 6.6). This additional WLSQ fit will introduce a new bias because of removing some of

59In contrast to Verbiest et al. (2009), who state that quadratic fitting removes one degree of freedom from the
power spectrum of each pulsar’s residuals, we have shown that quadratic fitting does not affect the number of
degrees of freedom in the lowest few frequency channels of each power spectrum.
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Figure 6.6: The effect of fitting a timing model over different data-spans. The simulated time
series in the upper three panels are 5 years long, those in thelower three panels are 15 years
long (the longer time series in the first 2 panels have been truncated because deviation in the
y-direction has the same magnitude in each panel). The bottomright panel only includes the
overlapping simulated observations. The vertical dotted lines indicate the overlapping timing
residuals for these time series. We added the same large signal to both time series and the
time series are identical in the overlapping region (left panels). After fitting the timing model
(middle panels), this signal is no longer correlated between the two time series. The correlation
is restored by performing a WLSQ fit of a quadratic function inthe overlapping region of the
two time series (right panels).
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Table 6.6: The results from using updated realisations of TTand the solar system ephemeris.
The last column gives the change in the value ofÂ2 with respect to processing the observations
with TT(TAI) and DE405, the realisations used for our data set.

Realisation Solar Change
of Terrestrial System Â2 σ

Â2 in Â2

Time Ephemeris (×10−30) (×10−30) (×10−30)
TT(TAI) DE405 −4.5 9.1 0.0
TT(TAI) DE421 −2.3 9.4 2.2

TT(BIPM2010) DE405 −3.7 8.7 0.8

the GWB signal atf = 1/Toverlap, but this new bias is easily corrected with the calibration factors

γij(fk). However, there is an additional loss of 10% of the GWB signalin our observations

because of this extra WLSQ fit.

6.4.3 Correlated Signals in the Timing Residuals

The GWB analysis is complicated by the unknown effects of other correlated signals in the

timing residuals. Instabilities in TT(TAI) and errors in the solar system ephemeris both produce

signals that are correlated between different pulsars. An instability in TT(TAI) will affect all

pulsars in the same way, inducing a correlated signal that isindependent of the angular sepa-

ration of the pulsars on the sky. This would lead to a positiveoffset in the correlation curve in

Figure 1.8. An inaccuracy in the solar system ephemeris willtypically induce residuals that are

positively correlated for small pairwise angular separations. Such a signal could be correlated

with the GWB signal shown in Figure 1.8. We estimated the effect of these uncertainties by

using an updated realisation of TT and the most recent solar system ephemeris.

Instabilities in realisations of TT produce a positive cross correlation independent of angular

separation. Any estimate of the clock error will thus be correlated with the estimate of the GWB

amplitude. Had we made a significant detection of the GWB, this would have to be accounted

for. To estimate the importance of possible clock instabilities, we processed our observations

using the version of TT released by Bureau International desPoids et Mesures (BIPM) in 2010

(e.g., Petit, 2003). This post-corrected timescale has revealed statistically significant inaccu-

racies in TT(TAI). The results are shown in Table 6.6. While the change of clock reference

only changes our estimated GWB level by nine per cent of the uncertainty, the absolute change

(0.8× 10−30) is at a significant level for some predictions of the GWB (seeSection 5.2.2). This
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implies that such instabilities in realisations of TT must be accounted for when analysing future

data sets.

The results from using the newest solar system ephemeris DE421 (Folkner et al., 2009) are

given in Table 6.6. While there have been some improvements in this ephemeris version com-

pared to DE405, most of the changes are absorbed by the pulsarparameter fit. The estimated

GWB level has changed by 24% of the uncertainty. If we assume DE421 is correct, then the use

of DE405 is similar to introducing a spurious GWB signal withA = 1.5 × 10−15, a signal that

is undetectable in most of our time series. However, future observations will need to account

for the effects of inaccuracies in the solar system ephemeris.

6.4.4 Contribution of Different Pulsars to the Estimate ofA2

It is difficult to determine the exact contributions to the weighting of each pulsar pair when using

error bars derived from Monte Carlo simulations. The dominant effect is the size ofToverlap.

For a GWB caused by SMBHBs, the weighting factor increases approximately asT 4.3
overlap. A

higher noise level in the residuals of each pulsar in the pairwill decrease the weight of that pair

approximately linearly. The angle subtended at the observer by the pair of pulsarsθij can be

important ifθij is near the zeroes of the function plotted in Figure 1.8.

To determine which pulsars contribute the most to our estimate of the GWB, we perform

the WLSQ fit described by equations (6.7) and (6.8) to only 189of the possible 190A2
ijζ (θij)

estimates. By varying which estimate ofA2
ijζ (θij) is removed, we can find the pulsar pairs that

have the greatest influence over the measurement ofÂ2 in these residuals. This is performed by

finding∆Â2 for each pair of pulsars, which is the measuredÂ2 from all pulsar pairs minus the

value ofÂ2 whennot including the given pulsar pair. Those pairs with the largest contribution

to this measure are given in Table 6.7, and a histogram of the absolute value
∣

∣

∣
∆Â2

∣

∣

∣
for all pulsar

pairs is provided in Figure 6.7.

This analysis shows that the measurement ofÂ2 is determined by only a few pulsar pairs.

This severely reduces the number of degrees of freedom when detecting the GWB, and thus

decreases the maximum attainable detection confidence (seeJenet et al., 2005) because it re-

duces our ability to average out the self-noise in the residuals caused by the GWB signal at

each pulsar. Observing more strong pulsars is essential to increasing the number of degrees of

freedom in order to detect the GWB with reasonable confidence. This is further endorsement of
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Table 6.7: The nine pulsar pairs whose absence from the arraychanges the measurement ofÂ2

from our residuals by more than10−30. The first column contains the names of the pulsars in
the pair, the second column lists values of∆Â2, and the third column gives the change as a
percentage of the value of̂A2 derived when using all our data.

Removed Pulsar Pair ∆Â2 (×10−30) Percentage change
J1713+0747, J1744-1134 18.0 -400%
J2124-3358, J2145-0750 2.32 -52%
J1730-2304, J1744-1134 2.10 -47%
J0711-6830, J2145-0750 1.26 -28%
J0437-4715, J1909-3744 -1.07 24%
J0437-4715, J2129-5721 -1.36 30%
J0437-4715, J2145-0750 -1.41 31%
J1713+0747, J2145-0750 -3.97 88%
J0437-4715, J1713+0747 -7.15 159%

Figure 6.7: The effect on̂A2 of the removal of different pulsar pairs, as measured by|∆Â2|.
Almost all pulsar pairs have no significant effect on the value ofÂ2 obtained from our residuals.
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the International Pulsar Timing Array concept (Section 2.1) and agrees with the conclusions of

Jenet et al. (2005), but is contrary to a suggested strategy for detection of individual GW sources

(Burt et al., 2011). This is a fundamental difference between the single GW source detection

problem and the GWB detection problem.

6.5 Conclusion

In implementing a GWB detection algorithm along the lines originally proposed by Jenet et al.

(2005), we have confronted a number of issues that must be addressed when using real obser-

vations. We find that in practice the S/N ratio can be reduced by a factor of∼12 compared with

the ideal situation discussed by Verbiest et al. (2009) because of the fitting of a timing model

to form the residuals. In particular, almost all of the signal loss is caused by the fitting of a

quadratic term and arbitrary phase offsets between different observing systems. We also find

that it will be important to estimate and correct both clock errors and ephemeris errors when

attempting to detect the GWB at a level less thanA = 2 × 10−15. As pointed out by Jenet

et al. (2005), prewhitening will be required to obtain detection significance larger than3σ. We

find that this cannot be done without solving the problem of spectral leakage due to irregular

sampling and variable ToA uncertainties.

Fortunately, there are encouraging indications that many of these problems can be solved.

Recent work (Hobbs et al., 2011; Champion et al., 2010) showsthat clock errors and ephemeris

errors can be estimated and removed. These errors are at a level that would disrupt the GWB

signal in pulsar timing observations in the near future, andcould even impact the analysis of a

modified version of the Verbiest et al. (2008, 2009) observations that did not include arbitrary

phase offsets between observing systems. The clock and ephemeris communities will continue

to improve their data sets as systems with more sensitivity become available. It appears possible

to improve the process of fitting a timing model and also to improve the spectral leakage using

the algorithm discussed by Coles et al. (2011). It has provedpossible to calibrate most of the

phase discontinuities between different observing systems in the PPTA observations and this

alone can improve the S/N ratio of the GWB signal by a factor oftwo.

We have not discussed DM variations, but it is likely that some of the low frequency noise

in our residuals is due to such interstellar propagation effects. Certainly as the various PTA data

sets improve it will be essential to estimate and remove any frequency-dependent effects.
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Our analysis shows that, although the Verbiest et al. (2008,2009) data set contains obser-

vations of 20 pulsars spanning many years, only a few of the pulsars in this data set contribute

significantly to detecting the GWB, thereby reducing our detection confidence. It is uncertain

whether this will be the case for the most recent observations from the PPTA. Observations of

a larger sample of pulsars with precise ToA measurements will help to overcome this problem.

136



Chapter 7

Conclusion and Future Prospects

Chapter Outline: In this Chapter, we:

• describe the field of GW research using pulsar timing as it wasin 2007 when this thesis
commenced.

• summarise the results of Chapters 3 – 6.
• outline future work and a path to a possible detection of GWs with pulsar timing.

This thesis has addressed the problem of how to study GWs using observations of MSPs.

We have focussed on current results using observations fromthe PPTA project. A detection has

not yet been made, but we have constrained the amplitude of single GW sources. In Section

7.1, we highlight the status of GW detection experiments with pulsars before and during this

thesis work. In Section 7.2, we discuss the possible future of this exciting project.

7.1 The Past

At the start of 2007, it was already clear that pulsar observations could be used to make a direct

detection of GWs (e.g., Sazhin, 1978; Detweiler, 1979). First attempts to create a PTA had

been described by Foster & Backer (1990), and Hellings & Downs (1983) had shown that an

unambiguous detection of a GWB could be made by measuring correlated timing residuals with

a specific angular dependence. Jenet et al. (2005) had shown that a PTA project would need to

observe≥20 pulsars over&5 years to be sensitive to expected GW sources. However, Jenet et

al. (2004) had already used pulsar observations to rule out aproposed SMBHB system in the

radio galaxy 3C66B with a high degree of confidence.

In 2005, the main data collection for the PPTA project started. A small subset of the data

were studied to provide a limit on the amplitude of the GWB (Jenet et al., 2006). This work led

to the most constraining limit on the GWB amplitude until early 2011 and was used to rule out
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some models of cosmic superstrings. However, this method assumed that the timing residuals

were statistically white and therefore limited the application of the algorithm to only a few data

sets. Jenet et al. (2005) had proposed a method to detect a GWB, but this method could only

be applied to timing residuals that had the same regular sampling for all pulsars. The treatment

of the effects of pulsar parameter fitting on the algorithms for GWB detection had scarcely

been considered (particularly for data sets in which each pulsar was observed for a different

time-span).

Over the course of this thesis, we have described techniquesthat can be applied to almost

any set of observations from a PTA. Through the work of Chapters 3 and 4, it is now possible

to measure the sensitivity of almost any set of PTA observations to an individual GW-induced

sinusoid. This means that a realistic sensitivity curve, which is analogous to the LIGO sensitiv-

ity curve, can now be calculated for GW analysis with a PTA. From Chapter 5, we reported that

the non-detection of a GWB signal in the near future would provide significant constraints on

currently-accepted models of SMBH formation and evolution. However, if a GWB signal can

be detected, it is possible to use the technique of Chapter 6 to detect a GWB signal in almost

any PTA data set in a straightforward and unambiguous way. Any detection using this technique

takes account of the effects of pulsar parameter estimationon irregularly-sampled observations

over different time-spans with unequal error bars. This work also shows that the GWB detec-

tion statistic currently relies on only a handful of pulsarsin the PPTA, whereas a successful

detection of the GWB requires the contribution of many pulsars. This is contrary to the optimal

observing strategy for detecting single sources of GWs thathas been outlined in other recent

work (Burt et al., 2011).

7.2 The Future

We currently have not detected any GW signal using the PPTA observations. It is clear that the

detection technique should be improved, the current data sets need to become more sensitive

and that observations of even more pulsars are required. Thefollowing steps are being carried

out to achieve this:

First, the IPTA project (Section 2.1) will allow data from all the major PTA projects to

be shared. This project is essential for a high-confidence detection of a GW signal in PTA

observations. Under the IPTA, observations of many more pulsars will be available. This
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will significantly increase the probability of a detection of a single GW source and especially

the probability of a GWB detection. Aside from the statistical benefits of a larger number of

pulsars, it could also prove vital for convincing a wider physics audience that any GW signal

that is detected is in fact caused by GWs.

Second, Chapter 6 showed that instabilities in TT(TAI) may obscure the GWB signal.

While such an instability can be distinguished from the GWB signal using their different cor-

related signatures, the noise level in the residuals revealed by the post-corrected realisation

TT(BIPM2010) is at the level of most predictions for the GWB signal due to SMBHBs. Algo-

rithms have been implemented to detect and remove this signal (Hobbs et al., 2011), and these

algorithms should now be combined with a GWB detection algorithm.

Third, Chapter 6 also showed that errors in the solar system ephemeris may induce a stronger

signal in the timing residuals than the GWB signal. While a spectral analysis technique has been

applied to measure the mass of known planets in the solar system (Champion et al., 2010), the

effect of such errors on the likelihood of GWB detection withpulsars has not been considered

in detail. In particular, it is possible that the correlatedsignal induced in timing residuals by an

error in the solar system ephemeris will be related to the correlated signal that is caused by a

GWB.

Fourth, while we have not discussed the importance of DM variations in obscuring a GWB

signal, it is generally accepted that the DM variations willinduce significant low-frequency

noise in the timing residuals of many pulsars. It is possibleto correct for such variations by

comparing observations obtained at widely-separated observing frequencies.

Fifth, if no GW signal is detected in the IPTA data, it is very likely that almost all current

predictions for the amplitude of the GWB signal caused by SMBHBs will be ruled out in the

next few years. This would have important consequences for current models of galaxy forma-

tion and evolution. However, which of the parameters that are used in modelling the GWB

signal (i.e., the black-hole merger rate, the merging efficiency, the black-hole mass function;

see Section 5.2.2) are ruled out (or constrained) using a given upper bound on the GWB is not

yet clear.

Finally, while it is uncertain whether pulsar timing or veryprecise interferometry will make

the first direct detection of GWs, any GW signal that is detected will herald the era of GW

astronomy. This opens up an entirely new method of observation, providing simultaneous EM
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and GW information for some sources while also illuminatingpreviously unobservable regions

of the Universe.
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Appendix A

Our Technique for Detection of a

Gravitational-Wave-Induced Sinusoid in

Actual Pulsar Timing Observations

This Appendix contains supplementary material relevant toChapter 4.

In the following sections, we give full details of the implementation of the algorithms de-

scribed in Section 4.2. In particular, we describe some of the problems that arose during the

analysis. Solutions to these problems are described below,while their implementation as a

TEMPO2 plugin is given in Appendix B.

A.1 Our Technique for Producing a Sensitivity Curve

Our method for creating curves showing the sensitivity of our timing residuals to GW-induced

sinusoidal signals from individual SMBHBs takes into account non-white noise. To produce a

sensitivity curve for a given set of pulsars and their timingresiduals, we use a three-step process

as follows:

1. We choose logarithmically-spaced GW frequencies between 1
Tobs

and Npts

2Tobs
(single pulsar)

or between(30 yr)−1 and(28 d)−1 (multiple pulsars). The frequency sampling we used

for multiple pulsars requires oversampling each periodogram by a factor30 yr/Tobs for

that pulsar.

2. At each frequency, we:
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(a) add the effect of a sinusoidal GW point source with angular frequency2πfi, am-

plitudehs and random sky-position and polarisation to the ToAs, as described by

Equation (3.6).

(b) process the data usingTEMPO2 to obtain post-fit timing residuals.

(c) run a detection algorithm (described below) on the post-fit residuals that reports

either a detection or a non-detection.

(d) repeat steps 2a – 2c a large number of times (we use103 iterations) and record the

detection percentage.

(e) If we have detected(95 ± 1) % of the signals then we have satisfied our detection

criterion and we recordfi andhs, which places a point on the pulsar timing sen-

sitivity curve. If the detection criterion is not satisfied,adjusths higher if too few

detections have been made and lower if too many, then return to step 2a.

3. Select the next frequency in the grid and repeat.

Our detector functions as follows:

1. For each pulsar in the input data set, we calculate a non-normalised Lomb-Scargle peri-

odogram of the residuals with the frequency range describedabove.

2. We smooth the periodogram by taking the logarithm of the power values and using a box-

car median filter. By default, the number of points in the filter is 11 times the oversam-

pling factor for that pulsar. This accounts for the correlated spectral estimates induced by

the oversampling of the periodogram and by the irregular spacing of the timing residuals.

3. We use a least-squares fit to the median-smoothed log-periodogram to obtain a low-order

polynomial (i.e., of order less than six) that provides a simple model of the power spec-

trum (see Section A.4). The median-smoothing and model-fitting are performed only on

those points in the periodogram with frequency≥ (Tobs)
−1. This three-step spectral mod-

elling process ensures that the simulated GW source is not included in the model as part

of the noise in the spectrum. This is particularly importantat the low- and high-frequency

edges of the periodogram. When analysing the data collectedfrom multiple pulsars we

combine their periodograms using a weighted sum. The weightused for each pulsar is the

inverse of the simple frequency-dependent model of the power spectrum for that pulsar.
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4. We multiply the noise model obtained above by a factor of∼ 2 − 3 (determined from

simulations; see Section A.3) to define a set of detection thresholds for any given false

alarm probability (we usePf = 1%). These detection thresholds are set such that there is

a 1% probability of any observed power across the whole periodogram being greater than

the threshold when there is no signal present.

5. If the measured power in the channel containing the input GW frequency is greater than

the detection threshold in that channel, then we have made a detection of a significant

sinusoid.

In place of step 1 of the GW detection algorithm described above, Lommen & Backer (2001)

used a floating-mean periodogram. Such a periodogram allowsfor the sinusoid fitted by the

Lomb-Scargle algorithm to have non-zero mean. This can be important when the observations

are sparsely sampled. We have not used a floating-mean periodogram because we expect the

improvement to be relatively small for our well-sampled observations. Furthermore, the detec-

tion algorithm we present in this Appendix is a simple implementation that we acknowledge is

not optimal.

Some of the simulated sinusoidal GW point sources produce large signals in the timing

residuals, depending on their amplitude, polarisation andlocation on the sky. If a set of timing

residuals showed evidence of a strong signal, a typical analysis would use a model of the pulsar

with the fewest possible parameters (i.e. a period, period-derivative and any arbitrary phase off-

sets) to obtain residuals. This allows the observations to be examined more closely to determine

the source of signal. To simulate this process, in step 2b above we calculate the full parameter

fit as normal and measure the reducedχ2 for the fit. If the reducedχ2 is larger than 20, then

we instead only fit for the pulsar period and spin-down, and for arbitrary phase jumps between

different backend systems.

The weighted fit for the pulsar parameters sometimes increases the power calculated at

certain frequencies by the periodogram. This is because ourperiodogram technique does not

account for the uncertainty in each ToA estimate. For example, extra power may be induced at

a period of six months because the weighted pulsar parameterfit gives an updated value of the

parallax that increases the unweighted power at this frequency. This is not surprising, but it can

lead to false detections. This was accounted for in the modelling of the power spectrum - con-

servative models were used in general. An optimal treatmentwould require a more-complicated
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weighted power spectral estimate. A weighted spectral estimate would also increase the leakage

in the periodogram because of the highly variable ToA uncertainties.

A.2 Our Technique for Producing an Upper Limit or a Limit

Matrix

As described in Section 4.2, we have developed a technique for ruling out GWs with a particular

strain amplitude as a function of frequency. The important assumption in producing an upper

bound is that, at any frequency in our periodogram, the powercaused by GWs cannot be more

than the observed power. If it were, we would have observed a higher power level at that

frequency. This means that we assume that all the power at a given frequency is caused by an

individual non-evolving source of GWs. We then calculate the GW strain that gives a power

greater than this level in 95% of simulations. This value of the GW strain becomes the upper

bound.

To produce this upper bound, we first calculate the periodogram of the observed timing

residuals of each pulsar. We make a simple polynomial model of the noise in this periodogram

and use the inverse of this noise model as the weight in calculating a weighted and summed

periodogram. This weighted and summed periodogram is the “limit threshold” in this case. The

limit threshold roughly represents the weighted average noise level in the residuals.

We then simulate the ToAs induced by a non-evolving SMBHB using Equation (3.6). These

induced ToAs are consistent with a noiseless sinusoid. We apply the TEMPO2 parameter fit

directly to these ToAs to calculate the residuals induced bythis SMBHB in each pulsar. We

calculate the weighted and summed periodogram of the induced residuals using the same noise

model for each pulsar that is used for the actual observations. We compare this weighted sum of

noiseless sinusoids to the limit threshold. We then scale the strain amplitude so that the induced

signal produces more power than the limit threshold in 95% ofsimulations. We can thus rule

out the existence of any stronger GW sources at this frequency (with random sky position and

polarisation) with 95% confidence.

Unlike in the detection case, we cannot use the reducedχ2 to inform us of the quality of

the pulsar parameter fit. This is because we are fitting pulsarparameters to a noiseless sinusoid,

so the reducedχ2 is meaningless for these parameter fits. However, the amplitude of each

simulated GW signal when producing a limit is considerably smaller than that required to make
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a detection because the limit threshold is lower than the detection threshold. An upper bound

on the amplitude of a sinusoid present in timing residuals will always be lower than the lowest

detectable amplitude, because detection must account for the noise in the detector.

A.3 The False Alarm Probability

We have used simulations to calculate the detection threshold for a false alarm probability of

1% across the whole weighted and summed periodogram of a given data set. The statistics of

each channel in the periodogram approximately follow aχ2-distribution with 2Npsr degrees of

freedom, but many other effects change the statistics of each channel, as described below.

After adding a large GW signal to our ToAs that induces a sinusoid in frequency channeli,

the statistics of channeli follow a non-centralχ2-distribution, i.e., a Ricean distribution. This

does not affect the false-alarm probablility determination but would affect analytic determina-

tions of pulsar timing sensitivity. Other effects include:

• the irregular sampling of the time series (which can cause correlated estimates of the

power in different channels);

• the oversampling of the periodogram when analysing multiple pulsars (which means that

the peaks in the periodogram will be more fully resolved and thus the peak value is

higher); and

• the median filtering (which lowers the height of each peak in the periodogram as well as

raising the troughs).

Our method for calculating the detection threshold is similar to the method described in

Section 3.2.2. We calculateT1,i, which is the detection threshold in an individual frequency

channel that gives a 1% false alarm probability, by assumingthat the power follows aχ2-

distribution with 2Npsr degrees of freedom. For this analysis,T1,i is a factor of 2 lower than the

level implied by aχ2-distribution with 2Npsr degrees of freedom because the mean of such a

distribution is 2Npsr, whereas the mean of the weighted and summed periodogram isNpsr. We

then chooseβ ′ > 1 (generally in the range1.3 < β ′ < 2.5) and calculateT ′
i = β ′T1,i. T ′

i forms

a first estimate of the detection threshold corresponding toa particular false alarm probability

across all frequencies in the periodogram.
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We then simulate∼ 103 realisations of white noise with a rms residual of 100 ns and the

same sampling as the original time series. We do not perform aTEMPO2 parameter fit, nor add

any SMBHB signals to the data. We calculate a weighted and summed periodogram for each

realisation and compare it toT ′
i . We find the number of simulated data sets yielding a detection

at any frequency. If this number is more than 1% of the total number of simulated data sets, then

we increaseβ ′ and repeat the process. The factorβ ′ is adjusted until we find the correct factor

β ′ = β such that the detection rate above the correct detection thresholdTi = βT1,i equals the

false alarm probability. Note that the process of calculating β described here is equivalent to

manually calculatingβ in Section 3.2.2.

A.4 Modelling the Power Spectrum

Some typical spectral models used in our analysis are shown in Figure 4.1. The three pulsars

shown in this figure are the same three whose individual sensitivity is displayed in Figure 4.2.

In general, the models chosen are conservative in the presence of red noise to minimise the

number of spurious detections at low frequencies.

The spectral models in Figure 4.1 exhibit some typical features from our analysis. In partic-

ular, the models account for the confusion between red noisein the timing residuals and signal

leakage caused by irregular sampling. Many of the PPTA pulsars (including PSRs J0437−4715

and J1713+0747) exhibit high power levels at the lowest frequencies. This requires the in-

clusion of more terms in the chosen polynomial model; for example, PSRs J1713+0747 and

J0437−4715 are both modelled with quartic polynomials. On the other hand, the timing resid-

uals of PSR J1857+0943 exhibit a flat periodogram at all frequencies before theaddition of

simulated GW signals. However, if the actual residuals had been affected by a low-frequency

GW source, we would be unable to distinguish between leakagefrom the GW signal and low-

frequency noise. As shown in Figure 4.1, it is conceivable that these timing residuals are af-

fected by low-frequency noise in the channels adjacent to the signal. Hence, we model its

periodogram with a cubic polynomial to take account of the fact that we cannot distinguish

between a low-frequency GW source affecting the ToAs and rednoise affecting the ToAs.

When limiting the amplitude of the individual non-evolvingGW sources that could be af-

fecting our observations, we do not add sinusoids to the measured timing residuals. Hence,

a different model for the power spectrum may be used from those shown here, because the
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features in the periodogram are different.
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Appendix B

Computer Programs Implemented

This Appendix contains the source code for three of theTEMPO2 plugins that I developed during

my PhD. This code is included in my thesis in case the originalsource code is lost or deleted,

and as a reference for some details described in the thesis. While the code has been thoroughly

tested for functionality, it has been only slightly edited to aid readability.

All three codes are freely available online at:

http://www.atnf.csiro.au/research/pulsar/tempo2/index.php?n=Main.

Plugins

B.1 The XFER FUNC4 PLUG .C plugin

This plugin is described in Section 2.4.3 of this thesis. It has been slightly edited for its appear-

ance from the original source code.

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

/∗ a p l u g i n to de te rm ine t h e t r a n s f e r f u n c t i o n o f tempo2 as i t a ct s on a p a r t i c u l a r data s e t .

You need to re run t h i s code e v e r y t i m e you change which pa ramete r s are be ing f i t f o r OR

have a new data s e t i f you want to c o r r e c t f o r t h e e f f e c t s o f tempo2 . Th is code a l s o uses

smoothed and i n t e r p o l a t e d wh i te n o i s e as t h e ” p r e f i t ” spectrum and per fo rms t h e same

smooth ing and i n t e r p o l a t i o n on t h e pos t− f i t r e s i d u a l s to c a l c u l a t e t h e pos t− f i t spect rum .

Th is does no t a f f e c t t h e t r a n s f e r f u n c t i o n a t low f r e q u e n c i es ( which i s what we care about

, g i ven t h e w e i g h t i n g f u n c t i o n used in t h e GWB d e t e c t i o n s t a ti s t i c ) and appears to have

n e g l i g i b l e e f f e c t on t h e t r a n s f e r f u n c t i o n a t h igh f r e q u e n ci e s .

∗ /

# inc lude <s t d i o . h>

# inc lude <s t r i n g . h>

# inc lude <s t d l i b . h>

# inc lude <math . h>

# inc lude ” tempo2 . h”

# inc lude ” TKspectrum . h ”

# inc lude ” T 2 t o o l k i t . h ”

# inc lude ” T K f i t . h ”

# inc lude ”GWsim . h ”

us ing namespace s t d ;
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vo id m akeIdea lSa t s ( p u l s a r∗psr , i n t npsr ,char p a r F i l e [MAX PSRVAL ] [ MAX FILELEN] , char t i m F i l e [

MAX PSRVAL ] [ MAX FILELEN ] ) ;

vo id TK weightLS2 (double ∗x , double ∗y , double ∗ s ig , i n t n , double ∗outX , double ∗outY , i n t ∗outN ,

double ∗outY re , double ∗outY im , i n t useWeight ) ;

vo id i n t e r p o l a t e S p l i n e S m o o t h (double ∗ inX , double ∗ inY , i n t inN , double s e p a r a t i o n , double ∗

in terpX , double ∗ in terpY , i n t ∗ n I n t e r p ) ;

vo id un ique (double ∗ in , i n t nIn , double ∗out , i n t ∗nOut ) ;

double TKfindWeightedRMS d ( double ∗x , double ∗wt , i n t n ) ;

double TKWeightedmeand ( double ∗x , double ∗wt , i n t n ) ;

double TKf indWeightedVar ianced ( double ∗x , double ∗wt , i n t n ) ;

vo id i n t e r p o l a t e S p l i n e S m o o t h F i x e d P h a s e (double ∗ inX , double ∗ inY , i n t inN , double s e p a r a t i o n ,

double ∗ in terpX , double ∗ in terpY , i n t ∗ n I n t e r p , double f i x e d S t a r t ) ;

/∗ The main f u n c t i o n c a l l e d from t h e TEMPO2 package i s ’ g r a p h i ca l I n t e r f a c e ’ ∗ /

/∗ T h e r e f o r e t h i s f u n c t i o n i s r e q u i r e d in a l l p l u g i n s ∗ /

extern ”C” i n t g r a p h i c a l I n t e r f a c e (i n t argc ,char ∗argv [ ] , p u l s a r ∗psr , i n t ∗nps r )

{

p r i n t f ( ” \n\n ! ! ! NB your t im f i l e must be s o r t e d because t h i s program usesTKspectrum ! ! !

Which s o r t s your d a t a ! ! !\ n\n\n\n” ) ;

char p a r F i l e [MAX PSRVAL ] [ MAX FILELEN ] ;

char t i m F i l e [MAX PSRVAL ] [ MAX FILELEN ] ;

i n t i , k , j , p , i t , n i t ;

n i t = 1000; / / d e f a u l t va lue

i n t specType = 2 ; / / d e f a u l t i s Lomb Per iodogram

double h i f a c = 3 . 0 ; / / d e f a u l t i s to go to 3 t i m e s h igher f r e q u e n c y than t h e average − t h i s

shou ld h o p e f u l l y cover a l l p o s s i b l e o v e r l a p p i n g data spans.

i n t smooth = 0 ; / / d e f a u l t i s no smooth ing by a 60−day w id th e x p o n e n t i a l smoother .

i n t i n t e r p = 1 ; / / d e f a u l t i s to do t h e i n t e r p o l a t i o n .

i n t useWeight = 0 ; / / d e f a u l t i s to j u s t do a LSQ f i t f o r t h e s p e c t r a l e s t i m a t e s w ith

specType = 4 .

double phase = 1 3 . 0 ; / / t h e phase o f f s e t in t h e ” f i x e d P h a s e v a r i a b l e ”− d e f i n e s where in

t h e f o r t n i g h t we t a k e each sample a f t e r i n t e r p o l a t i o n .

double g l o b a l P a r a m e t e r ;

∗ nps r = 0 ; /∗ For a g r a p h i c a l i n t e r f a c e t h a t on ly shows r e s u l t s f o r one p u ls a r ∗ /

p r i n t f ( ” G r a p h i c a l I n t e r f a c e : x f e rf u n c\n” ) ;

p r i n t f ( ” Author : DY\n” ) ;

p r i n t f ( ” Vers ion : 1\n” ) ;

/∗ Obta in a l l pa ramete r s from t h e command l i n e∗ /

f o r ( i =2 ; i<argc ; i ++)

{

i f ( s t rcmp ( argv [ i ] , ”−f ” ) ==0)

{

s t r c p y ( p a r F i l e [∗ nps r ] , argv [ i +1 ] ) ;

s t r c p y ( t i m F i l e [∗ nps r ] , argv [ i +2 ] ) ;

(∗ nps r ) ++;

p r i n t f ( ” ∗nps r = %d ” ,∗ nps r ) ;

}

e l s e i f ( s t rcmp ( argv [ i ] , ”−n i t ” ) ==0)

s s c a n f ( argv [++ i ] , ”%d” , &n i t ) ;

e l s e i f ( s t rcmp ( argv [ i ] , ”−phase ” ) ==0)

s s c a n f ( argv [++ i ] , ”%l f ” , &phase ) ;

e l s e i f ( s t rcmp ( argv [ i ] , ”−specType ” ) ==0) / / 2 => Lomb Scar lge , 4 => Weighted Lomb

Scarg le , 1==> DFT

s s c a n f ( argv [++ i ] , ”%d” , &specType ) ;

e l s e i f ( s t rcmp ( argv [ i ] , ”−smooth ” ) ==0) / / Do a 60−day smooth and re− i n t e r p o l a t e t h e

data onto a d a i l y g r i d .

smooth = 1 ;

e l s e i f ( s t rcmp ( argv [ i ] , ”−n o I n t e r p ” ) ==0) / / Don ’ t do t h e i n t e r p o l a t i o n onto t h e r e g u l a r

g r i d
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i n t e r p = 0 ;

e l s e i f ( s t rcmp ( argv [ i ] , ”−useWeight ” ) ==0) / / =0 to do an unweighted LSQ f i t o f s i n and

cos to de te rm ine spect rum , = 1 to do a we igh ted LSQ f i t .

useWeight = 1 ;

e l s e i f ( s t rcmp ( argv [ i ] , ”−h” ) ==0 | | s t rcmp ( argv [ i ] , ”−−he lp ” ) ==0)

{

p r i n t f ( ” \n TEMPO2 x f e r f u n c p l u g i n : d e t e r m i n e s t h e t r a n s f e r f u n c t i o n of tempo2 as it

a c t s on a p a r t i c u l a r d a t a s e t . That i s , what e f f e c t does tempo2 have on t h e

power spect rum of any i n p u t d a t a s e t a u t o m a t i c a l l y , e . g . t h ed ip in t h e power

spect rum a t 1 /1 year , t h e d ip a t t h e lowes t few f r e q u e n c i e s caused by q u a d r a t i c

f i t t i n g , e t c . , and what a r e t h e e r r o r b a r s on t h e s p e c t r a l e s ti m a t e s ?\n” ) ;

p r i n t f ( ”===================\ n” ) ;

p r i n t f ( ” \nUSAGE: \n\ t tempo2−gr x f e r f u n c −f par1 . pa r t im1 . t im−f par2 . pa r t im2 . t im

. . . ( as many as d e s i r e d ) [ o p t i o n s ]\ n” ) ;

p r i n t f ( ” \n Command l i n e o p t i o n s :\ n” ) ;

p r i n t f ( ”−h or −−he lp :\ t d i s p l a y he lp and e x i t\n” ) ;

p r i n t f ( ”−n i t :\ t number of i t e r a t i o n s to do in d e t e r m i n i n g t h e t r a n s f e r f u n ct i o n\n” ) ;

p r i n t f ( ”−specType :\ t d e t e r m i n e s which k ind of per iodogram to do−−> 1 g i v e s DFT, 2

g i v e s Lomb Scarg le , 4 g i v e s Weighted Lomb S c a r g l e\n” ) ;

p r i n t f ( ”−smooth :\ t t u r n s on smooth ing and i n t e r p o l a t i n g t h e i n p u t d a t a s e t .\ n” ) ;

p r i n t f ( ”−useWeight :\ t uses we igh ts to c a l c u l a t e t h e LSQ f i t o f s i n s and c o s i n e s to

de te rm ine t h e power spect rum\n” ) ;

p r i n t f ( ”−n o I n t e r p :\ t t u r n s o f f t h e i n t e r p o l a t i o n s t e p when used wi th ’−smooth ’ \n” )

;

e x i t ( 0 ) ;

}

}

p r i n t f ( ” \n” ) ;

i f ( specType == 1)

{

p r i n t f ( ”DFT s e l e c t e d , you MUST have r e g u l a r sampl ing to usei t ! ! ! ! \ n” ) ;

}

e l s e i f ( specType != 1 && specType != 2 && specType != 4)

{

p r i n t f ( ”Unknown s p e c t r a l a n a l y s i s t ype\n” ) ;

e x i t ( 1 ) ;

}

r e a d P a r f i l e ( ps r , p a r F i l e , t i m F i l e ,∗ nps r ) ; /∗ Load t h e pa ramete r s ∗ /

r e a d T i m f i l e ( ps r , t i m F i l e ,∗ nps r ) ; /∗ Load t h e a r r i v a l t i m e s ∗ /

p r e P r o c e s s ( psr ,∗ npsr , argc , argv ) ;

f o r ( i =0 ; i <2; i ++) /∗ Do two i t e r a t i o n s f o r pre− and pos t− f i t r e s i d u a l s∗ /

{

f o rm BatsA l l ( ps r ,∗ nps r ) ; /∗ Form t h e b a r y c e n t r i c a r r i v a l t i m e s∗ /

f o rm Res idua l s ( ps r ,∗ npsr , 1 ) ; /∗ Form t h e r e s i d u a l s ∗ /

i f ( i ==0) d o F i t ( ps r ,∗ npsr , 0 ) ; /∗ Do t h e f i t t i n g ∗ /

}

/ / long seed = TKsetSeed ( ) ;

long seed = −1540; p r i n t f ( ”\n\n\n\nHARD CODING SEED \ t \ t \ t \tWARNING! ! ! \ t \ t \n\n\n\n” ) ;

long double ∗∗ sa t0 , t o f f s e t ;

double ∗∗checkResY ;

double ∗∗ resY , ∗∗ resX , ∗∗ resE ;

FILE ∗ f ou t , ∗ f ou tP re , ∗ f o u t P o s t ;

i n t badF i tF lagW eigh ted = 0 ; / / a c o u n t e r which measures how o f t e n t h e we igh ted p o s t f i t rms

i s g r e a t e r than t h e we igh ted p r e f i t rms .

i n t badF i tF lagNo tW e igh ted = 0 ; / / a c o u n t e r which measures how o f t e n t h e unweighted p o s t f i t

rms i s g r e a t e r than t h e unweighted p r e f i t rms .
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i n t b a d F i t F l a g = 0 ; / / a f l a g to t e l l us i f t h e r e was a bad f i t .

double pref i tRMS , postf i tRMS , postf i tVAR , pos t f i tWeightedVAR ; / / t h e unweighted pre− and

pos t− f i t rmses and t h e unweighted p o s t f i t v a r i a n c e .

char fname [ 1 0 0 ] ;

double t s p a n [∗ nps r ] , fnyq [∗ nps r ] ; / / f nyq i s t h e ”average ” Nyqu is t f r equency , as used in t h e

TKper iod program , which i s t h e Nyqu is t f r e q u e n c y one o b t a i ns i f t h e p o i n t s are e v e n l y

spaced over t ime .

double maxTspan ;

double minTspan ;

long double m insa t [∗ nps r ] , maxsat [∗ nps r ] , avgTspan = 0 . 0 ;

double ∗∗∗ wh i te ; / / a 3D ar ray t h a t c o n t a i n s a l l t h e wh i te n o i s e r e a l i s a t i o n s I’ l l use .

/ / A l l o c t e Memory

s a t 0 = (long double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( long double ∗ ) ) ;

checkResY = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

resY = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

resX = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

resE = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

wh i te = (double ∗∗∗) mal loc (MAX PSR∗ s i z e o f( double ∗∗ ) ) ;

f o r ( i =0 ; i<MAX PSR; i ++)

{

checkResY [ i ] = (double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;

resY [ i ] = ( double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;

resX [ i ] = ( double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;

resE [ i ] = (double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;

s a t 0 [ i ] = ( long double ∗ ) mal loc (MAX OBSN∗ s i z e o f( long double) ) ;

wh i te [ i ] = ( double ∗∗ ) mal loc ( n i t∗ s i z e o f( double ∗ ) ) ;

f o r ( j =0 ; j<n i t ; j ++)

wh i te [ i ] [ j ] = ( double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;

}

/ / START PLUGIN

/ / f o l l o w i n g i s e s s e n t i a l l y f o r s p l i t t i n g up t h e 1857 data set , though i t cou ld be g e n e r a l l y

a p p l i c a b l e .

double maxal lowablegap = 2 0 0 0 . 0 ; / / i n u n i t s o f days . THIS IS AN ARBITRARY CHOICE , s imp ly so

t h a t we know 1857 g e t s s p l i t up .

long double maxgap [∗ nps r ] ;

i n t locmaxgap [∗ nps r ] ; / / t h e l o c a t i o n o f t h e b i g g e s t gap in t h e t ime s e r i e s .

/ / C a l c u l a t e t imespans

t o f f s e t = p s r [ 0 ] . param [ parampepoch ] . v a l [ 0 ] ;

f o r ( p =0; p<∗nps r ; p++)

{

m insa t [ p ]= maxsat [ p ]= p s r [ p ] . obsn [ 0 ] . s a t ;

maxgap [ p ] = 0 . 0 L ;

f o r ( j =0 ; j<p s r [ p ] . nobs ; j ++)

{

i f ( p s r [ p ] . obsn [ j ] . s a t< m insa t [ p ] ) m insa t [ p ] = p s r [ p ] . obsn [ j ] . s a t ;

i f ( p s r [ p ] . obsn [ j ] . s a t> maxsat [ p ] ) maxsat [ p ] = p s r [ p ] . obsn [ j ] . s a t ;

i f ( p s r [ p ] . obsn [ j + 1 ] . s a t− p s r [ p ] . obsn [ j ] . s a t> maxgap [ p ] && j < p s r [ p ] . nobs−1)

{

maxgap [ p ] = p s r [ p ] . obsn [ j + 1 ] . s a t− p s r [ p ] . obsn [ j ] . s a t ;

locmaxgap [ p ] = j ; / / so t h e b i g g e s t gap appears between t h e j−t h and j+1− t h

o b s e r v a t i o n s .

}

}

t s p a n [ p ] = (double ) ( maxsat [ p ] − m insa t [ p ] ) ;

fnyq [ p ] = p s r [ p ] . nobs / 2 . 0 / ( t s p a n [ p ]∗ 86400 . 0 ) ; / / and now fnyq i s t h e average

Nyqu is t f r e q u e n c y f o r t h i s p u l s a r in sec ˆ−1
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avgTspan += (long double) t s p a n [ p ] ;

p r i n t f ( ” maxgap [ p ] = %Lg\n” , maxgap [ p ] ) ;

}

avgTspan = avgTspan / (long double) ∗nps r ;

maxTspan = TKfindMaxd ( tspan ,∗ nps r ) ;

minTspan = TKfindMin d ( tspan ,∗ nps r ) ;

p r i n t f ( ”max t ime span p r e s e n t in d a t a i s %lg\n” , maxTspan ) ;

p r i n t f ( ” min t ime span p r e s e n t in d a t a i s %lg\n” , minTspan ) ;

p r i n t f ( ” ave rage t ime span p r e s e n t in d a t a i s %Lg\n\n” , avgTspan ) ;

/ / S t o r e r e s i d u a l s

i n t n r e s [∗ nps r ] ;

f o r ( p =0; p<∗nps r ; p ++)

{

n r e s [ p ] = p s r [ p ] . nobs ;

f o r ( i =0 ; i<p s r [ p ] . nobs ; i ++)

{

i f ( p s r [ p ] . obsn [ i ] . d e l e t e d !=0 )

{

p r i n t f ( ” Must remove d e l e t e d p o i n t s from t h e . t im f i l e f o r p sr %s\n” , p s r [ p ] . name )

;

e x i t ( 1 ) ;

}

resY [ p ] [ i ] = ( double ) p s r [ p ] . obsn [ i ] . r e s i d u a l ; / / f o r 1857 , t h i s i s MORE obsns than

we need , bu t w i l l have to do t r u n c a t i n g l a t e r on in t h e code .

resX [ p ] [ i ] = ( double ) ( p s r [ p ] . obsn [ i ] . s a t− t o f f s e t + 1000.0L) ;

resE [ p ] [ i ] = ( double ) ( p s r [ p ] . obsn [ i ] . t o a E r r∗1.0 e−6) ;

}

}

p r i n t f ( ” \n” ) ;

m ake Idea lSa t s ( psr ,∗ npsr , p a r F i l e , t i m F i l e ) ; / / Determine t h e i d e a l i s e d s i t e a r r i v a l t i m e s

/ / S t o r e i d e a l s a t s in s a t 0 [ ] [ ] , TESTED t h a t i d e a l s a t s r e a l ly are i d e a l ( rms o f r e s i d ’ s i s

0)

f o r ( p =0; p<∗nps r ; p ++)

{

f o r ( i =0 ; i<p s r [ p ] . nobs ; i ++)

s a t 0 [ p ] [ i ] = p s r [ p ] . obsn [ i ] . s a t ; / / no te t h e s e are t h e i d e a l s i t e a r r i v a l t i m e s

}

/ / power s p e c t r a l e s t i m a t i o n pa ramete r s and a l l o c a t e memory

i n t MAX SPEC = 2000∗ ( i n t ) h i f a c ;

double ∗specXPre ,∗ specXPost ,∗ specY , ∗avgPreSpecY ,∗avgPostSpecY ,∗ specY re , ∗specY im ;

double ∗∗ a l l P r e f i t S p e c t r a ; / / t o s t o r e each i t e r a t i o n , t h u s e n a b l i n g c a l c u l a t i o n o f a

s t a t i s t i c a l e r r o r bar

double ∗∗ a l l P o s t f i t S p e c t r a ; / / same as above .

specXPre = (double ∗ ) mal loc (MAX SPEC∗ s i z e o f( double ) ) ;

specXPost = (double ∗ ) mal loc (MAX SPEC∗ s i z e o f( double ) ) ;

specY = (double ∗ ) mal loc (MAX SPEC∗ s i z e o f( double ) ) ;

specY re = (double ∗ ) mal loc (MAX SPEC∗ s i z e o f( double ) ) ;

specY im = ( double ∗ ) mal loc (MAX SPEC∗ s i z e o f( double ) ) ;

avgPreSpecY = (double ∗ ) mal loc (MAX SPEC∗ s i z e o f( double ) ) ;

avgPostSpecY = (double ∗ ) mal loc (MAX SPEC∗ s i z e o f( double ) ) ;

a l l P r e f i t S p e c t r a = (double ∗∗ ) mal loc (MAX SPEC∗ s i z e o f( double∗ ) ) ;

a l l P o s t f i t S p e c t r a = (double ∗∗ ) mal loc (MAX SPEC∗ s i z e o f( double∗ ) ) ;

f o r ( i =0 ; i<MAX SPEC; i ++)

{
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a l l P r e f i t S p e c t r a [ i ] = (double ∗ ) mal loc ( n i t∗ s i z e o f( double ) ) ;

a l l P o s t f i t S p e c t r a [ i ] = (double ∗ ) mal loc ( n i t∗ s i z e o f( double ) ) ;

}

i n t nSpecPre , nSpecPos t ; / / i f we are do ing smoothing , then t h e pre− and pos t−f i t , smoothing

, i n t e r p o l a t i o n number o f s p e c t r a l e s t i m a t e s w i l l be d i f f e re n t .

double checkVar ;

double e r r P r e f i t S p e c t r a [MAXSPEC ] ;

double e r r P o s t f i t S p e c t r a [MAXSPEC ] ;

double e r r P r e f i t S p e c t r a L o w e r [MAXSPEC ] ;

double e r r P o s t f i t S p e c t r a L o w e r [MAXSPEC ] ;

FILE ∗ a l l P r e , ∗ a l l P o s t , ∗ x f e r f u n c s ;

/ / SMOOTHING paramete r s and a l l o c a t e memory .

double avgTau ;

i n t n r e s u n i q [∗ nps r ] , n r e s i n t e r p [∗ nps r ] ;

double sum1 , c u r r e n t d a y , weight , count1 , mean1 , s e p a r a t i o n ;

double ∗∗ r e s Y i n t e r p ,∗∗ r e s E i n t e r p ,∗∗ r e s X i n t e r p ;

double ∗∗ resY2 ,∗∗ resE2 ,∗∗ resX2 ;

double ∗∗ resX un iq ,∗∗ r esE 2 un iq ,∗∗ r esY2 un iq ;

i f ( smooth == 1)

{

r e s X i n t e r p = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

resX2 = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

r esX un iq = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

r e s Y i n t e r p = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

r e s E i n t e r p = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

resY2 = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

r esY2 un iq = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

resE2 = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

r e s E 2 u n i q = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

f o r ( p =0; p<∗nps r ; p++)

{

r e s X i n t e r p [ p ] = (double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;

r e s Y i n t e r p [ p ] = (double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;

r e s E i n t e r p [ p ] = (double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;

resX2 [ p ] = (double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;

r esX un iq [ p ] = ( double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;

resY2 [ p ] = (double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;

r esY2 un iq [ p ] = ( double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;

resE2 [ p ] = (double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;

r e s E 2 u n i q [ p ] = ( double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;

}

}

double maxVar iance [MAXPSR] , maxWeightedVar iance [MAXPSR ] ; / / t h e maximum v a r i a n c e o f t h e

wh i te n o i s e s i m u l a t e d f o r p u l s a r p ;

double var ; / / f o r c o m p u t a t i o n a l speed

double wtvar ; / / we igh ted v a r i a n c e

double wts [MAX OBSN] ; / / t h e we igh ts used in c a l c u l a t i n g t h e wtvar

double f i x e d P h a s e =−15000.0− ( double ) t o f f s e t + phase ; / / f i x e s t h e phase o f t h e g r i d o f

p o i n t s f o r i n t e r p o l a t i o n . The 0 . 0 i s a v a r i a b l e t h a t can change t h e r e s u l t s by s h i f t i n g

which p o i n t s are in t h e c r o s s spect rum and which ones aren ’ t

p r i n t f ( ” f i x e d P h a s e = %g , resX [ 0 ] [ 0 ] = %g , x r e s [ 1 ] [ 0 ] = %g\n” , f i xedPhase , resX [ 0 ] [ 0 ] , resX

[ 1 ] [ 0 ] ) ;

/ / BEGIN i t e r a t i o n to f i n d average pre− and pos t− f i t spect rum .
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f o r ( p =0; p<∗nps r ; p ++)

{

badF i tF lagW eigh ted = 0 ;

badF i tF lagNo tW e igh ted = 0 ;

s p r i n t f ( fname , ” A l l P r e f i t S p e c t r a . d a tp s r%s ” , p s r [ p ] . name ) ;

s p r i n t f ( fname , ” A l l P o s t f i t S p e c t r a . d a tp s r%s ” , p s r [ p ] . name ) ;

i f ( useWeight == 1)

{

f o r ( i =0 ; i<p s r [ p ] . nobs ; i ++)

wts [ i ] = 1 . 0 / resE [ p ] [ i ] / resE [ p ] [ i ] ;

}

p r i n t f ( ” \n==================================================\ n” ) ;

p r i n t f ( ” Reading d a t a f o r p s r %s\n” , p s r [ p ] . name ) ;

f o r ( i t =0 ; i t <n i t ; i t ++)

{

i f ( ( i t +1)%( n i t / 1 0 ) == 0)

{

p r i n t f ( ” i t : %d/%d S i m u l a t i n g wh i te n o i s e in a r r a y wh i te [ p ][ i t ] [ i ] \ r ” , i t +1 ,

n i t ) ;

f f l u s h ( s t d o u t ) ;

}

/ / F i l l up ” wh i te ” a r ray w i th wh i te n o i s e r e a l i s a t i o n s .

f o r ( i =0 ; i<p s r [ p ] . nobs ; i ++)

{

wh i te [ p ] [ i t ] [ i ] = TKgaussDev(& seed ) ∗ ( double ) ( p s r [ p ] . obsn [ i ] . t o a E r r∗1.0 e−6) ;

/ / c r e a t e s wh i te n o i s e c o n s i s t e n t w i th e r r o r bars on each p o in t . Note t h a t I

CAN’T USE resE here because , i f I ’m do ing an unweighted f i t , resE g e t s

r e s e t to 1 . 0 ( ! ! ! ! ! ) May no t be t r u e w i th my new TKweightLS2 code .

/ / = TKgaussDev (& seed )∗1.0 e−7; / / c r e a t e s 100 ns o f wh i te n o i s e .

}

i f ( useWeight == 0) va r = TKvar ianced ( wh i te [ p ] [ i t ] , p s r [ p ] . nobs ) ;

e l s e i f ( useWeight == 1) wtvar = TKf indWeightedVar ianced ( wh i te [ p ] [ i t ] , wts , p s r [ p ] .

nobs ) ;

i f ( i t == 0)

{

i f ( useWeight == 0) maxVar iance [ p ] = var ;

e l s e i f ( useWeight == 1) maxWeightedVar iance [ p ] = wtvar ;

}

e l s e
{

i f ( useWeight == 0 && var> maxVar iance [ p ] ) maxVar iance [ p ] = var ;

e l s e i f ( useWeight == 1 && wtvar> maxWeightedVar iance [ p ] ) maxWeightedVar iance [

p ] = wtvar ;

}

}

i f ( useWeight == 0) p r i n t f ( ”\nuseWeight = %d and maxVar iance [ p ] v a r i a n c e = %g\n” ,

useWeight , maxVar iance [ p ] ) ;

e l s e i f ( useWeight == 1) p r i n t f ( ”\nuseWeight = %d and maxWeightedVar iance [ p ]

v a r i a n c e = %g\n” , useWeight , maxWeightedVar iance [ p ] ) ;

/ / beg in t r a n s f e r f u n c t i o n c a l c u l a t i o n .

f o r ( i t =0 ; i t <n i t ; i t ++)

{

i f ( ( i t +1)%( n i t / 1 0 ) == 0)

{
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p r i n t f ( ” i t : %d/%d s e t t i n g r e s i d u a l s equa l to wh i te n o i s e and p r o c e s s i n g\ r ” , i t

+1 , n i t ) ;

f f l u s h ( s t d o u t ) ;

}

i f ( b a d F i t F l a g == 1) / / i f we had a bad f i t l a s t t ime , then

{

/ / Create some BRAND NEW whi te data

f o r ( i =0 ; i<p s r [ p ] . nobs ; i ++)

{

resY [ p ] [ i ] = TKgaussDev(& seed )∗ ( double ) ( p s r [ p ] . obsn [ i ] . t o a E r r∗1.0 e−6) ;

p s r [ p ] . obsn [ i ] . s a t = s a t 0 [ p ] [ i ] + ( (long double) ( resY [ p ] [ i ] ) ) / 86400 . 0 L ;

}

b a d F i t F l a g = 0 ;

}

e l s e i f ( b a d F i t F l a g == 0) / / i f t h e l a s t f i t was f i n e , use t h e n e x t i t e r a t i o n o f

s t o r e d wh i te data

{

f o r ( i =0 ; i<p s r [ p ] . nobs ; i ++)

{

resY [ p ] [ i ] = wh i te [ p ] [ i t ] [ i ] ;

p s r [ p ] . obsn [ i ] . s a t = s a t 0 [ p ] [ i ] + ( (long double) ( resY [ p ] [ i ] ) ) / 86400 . 0 L ;

}

}

p s r [ p ] . nJumps = 0 ;

f o r ( i =0 ; i<MAX PARAMS; i ++) / / t o avo id memory e r r o r s due to a r ray s i z e

o v e r f l o w ( e . g . Kin and S i n I are l i n k e d parameters , so every it e r a t i o n we w i l l

have a new l i n k )

{

p s r [ p ] . param [ i ] . nLinkTo = 0 ; / / t o avo id memory e r r o r s due to a r ray s i z e

o v e r f l o w

p s r [ p ] . param [ i ] . nLinkFrom = 0 ; / / t o avo id memory e r r o r s due to a r ray s i z e

o v e r f l o w

}

r e a d P a r f i l e ( p s r +p , p a r F i l e +p , t i m F i l e +p , 1 ) ; /∗ Load t h e pa ramete r s f o r p u l s a r p

on ly Note t h a t we are NOT re−r ead ing t h e t im− f i l e ∗ /

v e c t o r P u l s a r ( p s r +p , 1 ) ; /∗ 1 . Form a v e c t o r p o i n t i n g a t t h e p u l s a r∗ /

c a l c u l a t e b c l t ( p s r +p , 1 ) ;

fo rmBats ( p s r +p , 1 ) ; /∗ Form B a r y c e n t r i c a r r i v a l t i m e s ∗ /

f o rm Res idua ls ( p s r +p , 1 , 0 ) ; / / t h e s e are PREFIT r e s i d u a l s

/ / TRUNCATE p r e f i t da ta s e t i f i t has a gap in i t l a r g e r than MAXALLOWABLEGAP ! ! ! i f

maxgap f o r t h i s p u l s a r i s b igger than maxa l lowable gap , thenchoose t h e l a t e s t

p o r t i o n o f t h i s p u l s a r and d i s c a r d t h e f i r s t few o b s e r v a t i o ns .

i f ( maxgap [ p ] <= maxal lowablegap )

{

locmaxgap [ p ] = −1;

}

i f ( i t == 0) p r i n t f ( ” locmaxgap [ p ] = %d\n” , locmaxgap [ p ] ) ;

i f ( i t == 0) p r i n t f ( ” n r e s [ p ] = %d , p s r [ p ] . nobs = %d\n” , n r e s [ p ] , p s r [ p ] . nobs ) ;

f o r ( i =0 ; i<p s r [ p ] . nobs− locmaxgap [ p ]− 1 ; i ++) / / f rom t h e o t h e r s i d e o f t h e

b i g g e s t gap onwards , s t a r t r e c o r d i n g o b s e r v a t i o n s .

{

resX [ p ] [ i ] = ( double ) ( p s r [ p ] . obsn [ i + locmaxgap [ p ] + 1 ] . s a t− t o f f s e t + 1000.0L)

; / / R e c a l l t o f f s e t = ps r [ 0 ] . param [ parampepoch ] . v a l [ 0 ] ,
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checkResY [ p ] [ i ] = (double ) p s r [ p ] . obsn [ i + locmaxgap [ p ] + 1 ] . r e s i d u a l ; / / These

are t h e PREFIT r e s i d u a l s

resE [ p ] [ i ] = ( double ) p s r [ p ] . obsn [ i + locmaxgap [ p ] + 1 ] . t o a E r r∗1e−6; / / so e r r i s

in seconds now

}

i f ( maxgap [ p ] <= maxal lowablegap )

n r e s [ p ] = p s r [ p ] . nobs ;

e l s e
{

n r e s [ p ] = p s r [ p ] . nobs− locmaxgap [ p ]− 1 ;

t s p a n [ p ] = resX [ p ] [ p s r [ p ] . nobs− 1] − resX [ p ] [ locmaxgap [ p ] + 1 ] ;

}

i f ( i t == 0) p r i n t f ( ” n r e s [ p ] = %d , p s r [ p ] . nobs = %d , t s p a n [ p ] = %g\n” , n r e s [ p ] , p s r [ p

] . nobs , t s p a n [ p ] ) ;

i f ( i t == 0)

{

i f ( useWeight == 0) p r i n t f ( ”\ n v a r i a n c e i s %g and smooth = %d\n” ,

TKvar iance d ( checkResY [ p ] , n r e s [ p ] ) , smooth ) ;

e l s e i f ( useWeight == 1) p r i n t f ( ”\nWGTED v a r i a n c e i s %g and smooth = %d\n”

, TKf indWeightedVar ianced ( checkResY [ p ] , wts , n r e s [ p ] ) , smooth ) ;

}

/ / Now smooth and i n t e r p o l a t e t h e wh i te not−tempo2− f i t data , c a l c u l a t e t h e power

spect rum a f t e r smooth ing and i n t e r p o l a t i o n and s e t t h i s as th e ”PREFIT” power

spect rum .

i f ( smooth == 1) / / do smooth ing and then t h e i n t e r p o l a t i o n

{

avgTau = 6 0 . 0 ; / / t h i s i s t h e smooth ing w id th

i f ( s t rcmp ( p s r [ p ] . name , ” 1939+2134” ) ==0) avgTau = 3 0 . 0 ; / / t o

remove t h e bump near t h e end o f t h e t ime s e r i e s .

i f ( i t == 0) p r i n t f ( ”FIXING ! ! ! avgTau = %lg\n” , avgTau ) ;

f o r ( i =0 ; i<n r e s [ p ] ; i ++) / / i i s o b s e r v a t i o n number in pos t− i n t e r p o l a t e d t ime

s e r i e s .

{

sum1 = 0 . 0 ;

r e s Y i n t e r p [ p ] [ i ] = 0 ; r e s E i n t e r p [ p ] [ i ] = 0 ;

c u r r e n t d a y = resX [ p ] [ i ] ; / / smooth onto t h e same t ime p o i n t s as t h e i n p u t

t ime s e r i e s .

r e s X i n t e r p [ p ] [ i ] = c u r r e n t d a y ;

/ / DO t h e smooth ing . f i l t e r i d c o n t r o l s whether to use gauss ian or e x p o n e n t i a l

smoother− 1 = Gaussian , 2 = expn l .

f o r ( k =0; k<n r e s [ p ] ; k++)

{

weight = exp(− f a b s ( resX [ p ] [ k ] − c u r r e n t d a y ) / avgTau ) / pow ( resE [ p ] [ k ] , 2 ) ;

sum1+= weight ;

r e s Y i n t e r p [ p ] [ i ]+= weight∗checkResY [ p ] [ k ] ;

r e s E i n t e r p [ p ] [ i ]+=pow ( weight∗ resE [ p ] [ k ] , 2 ) ;

}

resY2 [ p ] [ i ] = r e s Y i n t e r p [ p ] [ i ] / sum1 ;

resE2 [ p ] [ i ] = s q r t ( r e s E i n t e r p [ p ] [ i ] / pow ( sum1 , 2 ) ) ;

resX2 [ p ] [ i ] = c u r r e n t d a y ;

}

count1 = 0 ; / / Remove means UNWEIGHTED ! ! ! ! ! ! ! !
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mean1 = 0 . 0 ;

f o r ( i =0 ; i<n r e s [ p ] ; i ++)

{

i f ( resY2 [ p ] [ i ] != 0)

{

mean1+=resY2 [ p ] [ i ] ;

count1 ++;

}

}

mean1 / = (double ) ( count1 ) ;

f o r ( i =0 ; i<n r e s [ p ] ; i ++)

i f ( resY2 [ p ] [ i ] != 0) resY2 [ p ] [ i ]−=mean1 ;

i f ( TKmean d ( resY2 [ p ] , ( i n t ) count1 ) > 1 . 0 e−10) { p r i n t f ( ”ERROR! ! mean of resY2

[%d ] = %g != 0 , count1 = %d\n” , p , TKmean d ( resY2 [ p ] , ( i n t ) count1 ) , count1 ) ;

e x i t ( 1 ) ;}

i f ( i n t e r p == 1)

{

/ / now i n t e r p o l a t e smoothed data onto a r e g u l a r g r i d us ing a co n s t r a i n e d

cub ic s p l i n e − day s e p a r a t i o n s g iven by ” s e p a r a t i o n ” .

s e p a r a t i o n = 1 4 . 0 ; / / 2 week ly t ime s e r i e s

i f ( i t == 0) p r i n t f ( ” s e p a r a t i o n = %lg\n” , s e p a r a t i o n ) ;

/ /NOW run un ique ( ) code on resX2 and resY2 to g e t a l i s t o f un ique SATs and

( SAT−s o r t e d ) r e s i d u a l s ;

un ique ( resX2 [ p ] , n r e s [ p ] , r esXun iq [ p ] ,& n r e s u n i q [ p ] ) ;

un ique ( resY2 [ p ] , n r e s [ p ] , r esY2un iq [ p ] ,& n r e s u n i q [ p ] ) ;

un ique ( resE2 [ p ] , n r e s [ p ] , r e s E 2u n i q [ p ] ,& n r e s u n i q [ p ] ) ; / / MAKE SURE ERRORS

AREN’T ALL EQUAL AT THIS POINT ! !

/ / Now run t h e s p l i n e i n t e r p o l a t i o n .

i n t e r p o l a t e S p l i n e S m o o t h F i x e d P h a s e ( resXun iq [ p ] , r esY2 un iq [ p ] , n r e s u n i q [ p ] ,

s e p a r a t i o n , r e s Xi n t e r p [ p ] , r e s Y i n t e r p [ p ] , &n r e s i n t e r p [ p ] , f i x e d P h a s e )

;

/ / Now run t h e s p l i n e i n t e r p o l a t i o n ON THE ERROR BARS us ing t he i r v a r i a n c e .

need c a l c u l a t e v a r i a n c e o f t h e e r r 2u n i q [ p ] a r ray

f o r ( i =0 ; i<n r e s u n i q [ p ] ; i ++)

r e s E 2 u n i q [ p ] [ i ] = r e s E 2 u n i q [ p ] [ i ] ∗ r e s E 2 u n i q [ p ] [ i ] ;

i n t e r p o l a t e S p l i n e S m o o t h F i x e d P h a s e ( resXun iq [ p ] , r e s E 2 u n i q [ p ] , n r e s u n i q [ p ] ,

s e p a r a t i o n , r e s Xi n t e r p [ p ] , r e s E i n t e r p [ p ] , &n r e s i n t e r p [ p ] , f i x e d P h a s e )

;

/ / r e s e t va lue o f un iq e r r o r .

f o r ( i =0 ; i<n r e s u n i q [ p ] ; i ++)

r e s E 2 u n i q [ p ] [ i ] = s q r t ( r e s E 2 u n i q [ p ] [ i ] ) ;

/ / make t h e i n t e r p o l a t e d r e s Ei n t e r p t h e s tanda rd d e v i a t i o n ( e r r o r ) , no t t h e

v a r i a n c e .

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

r e s E i n t e r p [ p ] [ i ] = s q r t ( r e s E i n t e r p [ p ] [ i ] ) ;

}

e l s e / / no t pe r fo rm ing i n t e r p o l a t i o n

{

f o r ( i =0 ; i<n r e s [ p ] ; i ++)
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{

r e s X i n t e r p [ p ] [ i ] = resX2 [ p ] [ i ] ;

r e s Y i n t e r p [ p ] [ i ] = resY2 [ p ] [ i ] ;

r e s E i n t e r p [ p ] [ i ] = resE2 [ p ] [ i ] ;

}

n r e s i n t e r p [ p ] = n r e s [ p ] ;

}

}

i f ( smooth == 1)

{

i f ( specType !=4 )

TKspectrum ( r e s X i n t e r p [ p ] , r e s Y i n t e r p [ p ] , r e s E i n t e r p [ p ] , n r e s i n t e r p [ p

] , 0 , 0 , 0 , 0 , 0 , specType , 1 , 1 , 1 , specXPre , specY ,& nSpecPre, 0 , 0 , specYre ,

specY im , useWeight ) ;

e l s e
TKspectrum ( r e s X i n t e r p [ p ] , r e s Y i n t e r p [ p ] , r e s E i n t e r p [ p ] , n r e s i n t e r p [ p

] , 0 , 0 , 0 , 0 , 0 , 6 , 1 , h i f ac , 1 , specXPre , specY ,& nSpecPre , 0 ,0 , specY re ,

specY im , useWeight ) ;

}

e l s e i f ( smooth == 0) / / no smooth ing done

{

i f ( specType !=4 )

TKspectrum ( resX [ p ] , checkResY [ p ] , resE [ p ] , n r e s [ p ] , 0 , 0, 0 , 0 , 0 , specType , 1 , 1 , 1 ,

specXPre , specY ,& nSpecPre , 0 , 0 , specYre , specY im , useWeight ) ;

e l s e
{

TKspectrum ( resX [ p ] , checkResY [ p ] , resE [ p ] , n r e s [ p ] , 0 , 0, 0 , 0 , 0 , 6 , 1 , h i f ac , 1 ,

specXPre , specY ,& nSpecPre , 0 , 0 , specYre , specY im , useWeight ) ;

}

}

f o r ( i =0 ; i<nSpecPre ; i ++)

{

i f ( i t == 0) avgPreSpecY [ i ] = 0 ;

avgPreSpecY [ i ] += specY [ i ] ;

a l l P r e f i t S p e c t r a [ i ] [ i t ] = specY [ i ] ;

}

/ / END OF SMOOTHING AND INTERPOLATING PREFIT DATA NOW Do f i t ti n g

d o F i t ( p s r +p , 1 , 0 ) ; /∗ Do t h e f i t t i n g ∗ /

v e c t o r P u l s a r ( p s r +p , 1 ) ; /∗ 1 . Form a v e c t o r p o i n t i n g a t t h e p u l s a r∗ /

c a l c u l a t e b c l t ( p s r +p , 1 ) ; /∗ 3 . C a l c u l a t e b c l t ∗ /

fo rmBats ( p s r +p , 1 ) ; /∗ Form B a r y c e n t r i c a r r i v a l t i m e s ∗ /

f o rm Res idua ls ( p s r +p , 1 , 0 ) ; /∗ Form t h e r e s i d u a l s ∗ /

i f ( maxgap [ p ] > maxal lowablegap ) / / so i f t h e r e i s a l a r g e gap in t h e data and we

w i l l have to t r u n c a t e t h e data s e t

{

f o r ( i =0 ; i<p s r [ p ] . nobs ; i ++)

checkResY [ p ] [ i ] = (double ) p s r [ p ] . obsn [ i ] . r e s i d u a l ;

i f ( useWeight == 0) pos t f i tVAR = TKvar ianced ( checkResY [ p ] , p s r [ p ] . nobs ) ;

/ / t h i s i s t h e unweighted pos t− f i t v a r i a n c e ! ! ! ! ! ! !

e l s e i f ( useWeight == 1) pos t f i tWeightedVAR = TKf indWeightedVar iance d (

checkResY [ p ] , wts , p s r [ p ] . nobs ) ; / / t h i s we igh ted pos t− f i t v a r i a n c e !

}

/ / TRUNCATE p o s t f i t da ta s e t i f i t has a gap in i t l a r g e r than MAXALLOWABLEGAP ! ! !

choose t h e l a t e s t p o r t i o n o f t h i s p u l s a r and d i s c a r d t h e f i r st few o b s e r v a t i o n s .
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f o r ( i =0 ; i<p s r [ p ] . nobs− locmaxgap [ p ]− 1 ; i ++) / / f rom t h e o t h e r s i d e o f t h e

b i g g e s t gap onwards , s t a r t r e c o r d i n g o b s e r v a t i o n s .

{

resX [ p ] [ i ] = ( double ) ( p s r [ p ] . obsn [ i + locmaxgap [ p ] + 1 ] . s a t− t o f f s e t + 1000.0L)

; / / R e c a l l t o f f s e t = ps r [ 0 ] . param [ parampepoch ] . v a l [ 0 ] ,

checkResY [ p ] [ i ] = (double ) p s r [ p ] . obsn [ i + locmaxgap [ p ] + 1 ] . r e s i d u a l ; / / These

are t h e PREFIT r e s i d u a l s

resE [ p ] [ i ] = ( double ) p s r [ p ] . obsn [ i + locmaxgap [ p ] + 1 ] . t o a E r r∗1e−6; / / so e r r i s

in seconds now

}

i f ( maxgap [ p ] <= maxal lowablegap )

n r e s [ p ] = p s r [ p ] . nobs ;

e l s e
{

n r e s [ p ] = p s r [ p ] . nobs− locmaxgap [ p ]− 1 ;

t s p a n [ p ] = resX [ p ] [ p s r [ p ] . nobs− 1] − resX [ p ] [ locmaxgap [ p ] + 1 ] ;

}

i f ( i t == 0) p r i n t f ( ” n r e s [ p ] = %d , p s r [ p ] . nobs = %d , t s p a n [ p ] = %g\n” , n r e s [ p ] , p s r [ p

] . nobs , t s p a n [ p ] ) ;

i f ( maxgap [ p ] <= maxal lowablegap ) / / because we haven ’ t c a l c u l a t e d t h e p o s t f i t

v a r i a n c e y e t i f i t ’ s a normal data s e t .

{

i f ( useWeight == 0) pos t f i tVAR = TKvar ianced ( checkResY [ p ] , n r e s [ p ] ) ; / /

t h i s i s t h e unweighted pos t− f i t v a r i a n c e ! ! ! ! ! ! !

e l s e i f ( useWeight == 1) pos t f i tWeightedVAR = TKf indWeightedVar iance d ( checkResY [

p ] , wts , n r e s [ p ] ) ; / / t h i s we igh ted pos t− f i t v a r i a n c e !

}

i f ( useWeight == 0 && maxVar iance [ p ]< pos t f i tVAR ) / / i . e . i f t h e f i t has pushed

t h e v a r i a n c e to be g r e a t e r than t h e l a r g e s t v a r i a n c e we have inpu t , then

{

++ badF i tF lagNo tW e igh ted ; / / r eco rd a bad f i t ;

p r i n t f ( ” \nBAD UNWEIGHTED VARIANCE FIT RECORDED, maxVar iance [ p ] = %g, pos t f i tVAR

= %g , i t = %d\n” , maxVar iance [ p ] , postf i tVAR , i t ) ;

−− i t ; / / r e s e t t h e i t e r a t i o n number ;

b a d F i t F l a g = 1 ; / / t h i s was a bad f i t .

cont inue ; / / r e t u r n to s t a r t o f i t e r a t i o n loop w i th i t e r a t i o n va lue r e se t .

}

e l s e i f ( useWeight == 1 && maxWeightedVar iance [ p ]< pos t f i tWeightedVAR ) / / i . e . i f

t h e f i t has pushed t h e v a r i a n c e to be g r e a t e r than t h e l a r g e s twe igh ted v a r i a n c e

we have inpu t , then

{

++ badF i tF lagW eigh ted ; / / r eco rd a bad f i t ;

p r i n t f ( ” \nBAD WEIGHTED VARIANCE FIT RECORDED, maxWeightedVar iance[ p ] = %g ,

pos t f i tWeightedVAR = %g , i t = %d\n” , maxWeightedVar iance [ p ] ,

postf i tWeightedVAR , i t ) ;

−− i t ; / / r e s e t t h e i t e r a t i o n number ;

b a d F i t F l a g = 1 ; / / t h i s was a bad f i t .

cont inue ; / / r e t u r n to s t a r t o f i t e r a t i o n loop w i th i t e r a t i o n va lue r e se t .

}

/ / BEGIN SMOOTHING AND INTERP on p o s t f i t da ta

i f ( smooth == 1) / / do smooth ing and then t h e i n t e r p o l a t i o n

{

avgTau = 6 0 . 0 ; / / t h i s i s t h e smooth ing w id th

i f ( s t rcmp ( p s r [ p ] . name , ” 1939+2134” ) ==0) avgTau = 3 0 . 0 ; / / t o

remove t h e bump near t h e end o f t h e t ime s e r i e s .
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i f ( i t == 0) p r i n t f ( ”FIXING ! ! ! avgTau = %lg\n” , avgTau ) ;

f o r ( i =0 ; i<n r e s [ p ] ; i ++) / / i i s o b s e r v a t i o n number in pos t− i n t e r p o l a t e d t ime

s e r i e s .

{

sum1 = 0 . 0 ;

r e s Y i n t e r p [ p ] [ i ] = 0 ; r e s E i n t e r p [ p ] [ i ] = 0 ;

c u r r e n t d a y = resX [ p ] [ i ] ; / / smooth onto t h e same t ime p o i n t s as t h e i n p u t

t ime s e r i e s .

r e s X i n t e r p [ p ] [ i ] = c u r r e n t d a y ;

/ / DO t h e smooth ing . f i l t e r i d c o n t r o l s whether to use gauss ian or e x p o n e n t i a l

smoother− 1 = Gaussian , 2 = expn l .

f o r ( k =0; k<n r e s [ p ] ; k++)

{

weight = exp(− f a b s ( resX [ p ] [ k ] − c u r r e n t d a y ) / avgTau ) / pow ( resE [ p ] [ k ] , 2 ) ;

sum1+= weight ;

r e s Y i n t e r p [ p ] [ i ]+= weight∗checkResY [ p ] [ k ] ;

r e s E i n t e r p [ p ] [ i ]+=pow ( weight∗ resE [ p ] [ k ] , 2 ) ;

}

resY2 [ p ] [ i ] = r e s Y i n t e r p [ p ] [ i ] / sum1 ;

resE2 [ p ] [ i ] = s q r t ( r e s E i n t e r p [ p ] [ i ] / pow ( sum1 , 2 ) ) ;

resX2 [ p ] [ i ] = c u r r e n t d a y ;

}

/ / Remove means

count1 = 0 ;

mean1 = 0 . 0 ;

f o r ( i =0 ; i<n r e s [ p ] ; i ++)

{

i f ( resY2 [ p ] [ i ] != 0)

{

mean1+=resY2 [ p ] [ i ] ;

count1 ++;

}

}

mean1 / = (double ) ( count1 ) ;

f o r ( i =0 ; i<n r e s [ p ] ; i ++)

{

i f ( resY2 [ p ] [ i ] != 0) resY2 [ p ] [ i ]−=mean1 ;

}

i f ( TKmean d ( resY2 [ p ] , ( i n t ) count1 ) > 1 . 0 e−10) { p r i n t f ( ”ERROR! ! mean of resY2

[%d ] = %g != 0 , count1 = %d\n” , p , TKmean d ( resY2 [ p ] , ( i n t ) count1 ) , count1 ) ;

e x i t ( 1 ) ;}

i f ( i n t e r p == 1)

{

/ / now i n t e r p o l a t e smoothed data onto a r e g u l a r g r i d us ing a co n s t r a i n e d

cub ic s p l i n e − day s e p a r a t i o n s g iven by ” s e p a r a t i o n ” .

s e p a r a t i o n = 7 . 0 ; / / 2 week ly t ime s e r i e s

i f ( i t == 0) p r i n t f ( ” s e p a r a t i o n = %lg\n” , s e p a r a t i o n ) ;

/ /NOW run un ique ( ) code on resX2 and resY2 to g e t a l i s t o f un ique SATs and

( SAT−s o r t e d ) r e s i d u a l s ;

un ique ( resX2 [ p ] , n r e s [ p ] , r esXun iq [ p ] ,& n r e s u n i q [ p ] ) ;

un ique ( resY2 [ p ] , n r e s [ p ] , r esY2un iq [ p ] ,& n r e s u n i q [ p ] ) ;

un ique ( resE2 [ p ] , n r e s [ p ] , r e s E 2u n i q [ p ] ,& n r e s u n i q [ p ] ) ; / / MAKE SURE ERRORS

AREN’T ALL EQUAL AT THIS POINT ! !

/ / Now run t h e s p l i n e i n t e r p o l a t i o n .
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i n t e r p o l a t e S p l i n e S m o o t h F i x e d P h a s e ( resXun iq [ p ] , r esY2 un iq [ p ] , n r e s u n i q [ p ] ,

s e p a r a t i o n , r e s Xi n t e r p [ p ] , r e s Y i n t e r p [ p ] , &n r e s i n t e r p [ p ] , f i x e d P h a s e )

;

/ / Now run t h e s p l i n e i n t e r p o l a t i o n ON THE ERROR BARS us ing t he i r v a r i a n c e .

/ / need c a l c u l a t e v a r i a n c e o f t h e e r r 2u n i q [ p ] a r ray

f o r ( i =0 ; i<n r e s u n i q [ p ] ; i ++)

r e s E 2 u n i q [ p ] [ i ] = r e s E 2 u n i q [ p ] [ i ] ∗ r e s E 2 u n i q [ p ] [ i ] ;

i n t e r p o l a t e S p l i n e S m o o t h F i x e d P h a s e ( resXun iq [ p ] , r e s E 2 u n i q [ p ] , n r e s u n i q [ p ] ,

s e p a r a t i o n , r e s Xi n t e r p [ p ] , r e s E i n t e r p [ p ] , &n r e s i n t e r p [ p ] , f i x e d P h a s e )

;

/ / r e s e t va lue o f un iq e r r o r .

f o r ( i =0 ; i<n r e s u n i q [ p ] ; i ++)

r e s E 2 u n i q [ p ] [ i ] = s q r t ( r e s E 2 u n i q [ p ] [ i ] ) ;

/ / make t h e i n t e r p o l a t e d r e s Ei n t e r p t h e s tanda rd d e v i a t i o n ( e r r o r ) , no t t h e

v a r i a n c e .

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

r e s E i n t e r p [ p ] [ i ] = s q r t ( r e s E i n t e r p [ p ] [ i ] ) ;

}

e l s e / / no t pe r fo rm ing i n t e r p o l a t i o n

{

f o r ( i =0 ; i<n r e s [ p ] ; i ++)

{

r e s X i n t e r p [ p ] [ i ] = resX2 [ p ] [ i ] ;

r e s Y i n t e r p [ p ] [ i ] = resY2 [ p ] [ i ] ;

r e s E i n t e r p [ p ] [ i ] = resE2 [ p ] [ i ] ;

}

n r e s i n t e r p [ p ] = n r e s [ p ] ;

}

}

/ / i f no smoothing , then proceed s t r a i g h t to c a l c u l a t i n g p o st f i t spect rum below .

i f ( smooth == 1)

{

i f ( specType !=4 )

TKspectrum ( r e s X i n t e r p [ p ] , r e s Y i n t e r p [ p ] , r e s E i n t e r p [ p ] , n r e s i n t e r p [ p

] , 0 , 0 , 0 , 0 , 0 , specType , 1 , 1 , 1 , specXPost , specY ,& nSpecPost , 0 , 0 , specYre ,

specY im , useWeight ) ;

e l s e
TKspectrum ( r e s X i n t e r p [ p ] , r e s Y i n t e r p [ p ] , r e s E i n t e r p [ p ] , n r e s i n t e r p [ p

] , 0 , 0 , 0 , 0 , 0 , 6 , 1 , h i f ac , 1 , specXPost , specY ,& nSpecPost ,0 , 0 , specY re ,

specY im , useWeight ) ;

}

e l s e i f ( smooth == 0) / / no smooth ing done

{

i f ( specType !=4 )

TKspectrum ( resX [ p ] , checkResY [ p ] , resE [ p ] , n r e s [ p ] , 0 , 0, 0 , 0 , 0 , specType , 1 , 1 , 1 ,

specXPost , specY ,& nSpecPost , 0 , 0 , specYre , specY im , useWeight ) ;

e l s e
TKspectrum ( resX [ p ] , checkResY [ p ] , resE [ p ] , n r e s [ p ] , 0 , 0, 0 , 0 , 0 , 6 , 1 , h i f ac , 1 ,

specXPost , specY ,& nSpecPost , 0 , 0 , specYre , specY im , useWeight ) ;

}

f o r ( i =0 ; i<nSpecPos t ; i ++)

{

i f ( i t == 0) avgPostSpecY [ i ] = 0 ;
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avgPostSpecY [ i ] += specY [ i ] ;

a l l P o s t f i t S p e c t r a [ i ] [ i t ] = specY [ i ] ;

}

i f ( i t == n i t − 1)

{

/ / OUTPUT AVERAGE PREFIT SPECTRA

p r i n t f ( ” For p u l s a r %s , badF i tF lagNo tW e igh ted = %d , badF i tF lagW eigh ted = %d , n i t

= %d\n” , p s r [ p ] . name , badF i tF lagNo tWe ighted , badF i tF lagW eigh ted , n i t ) ;

i f ( specType == 1)

s p r i n t f ( fname , ”%s Avg Pre f i t DFT %d” , p s r [ p ] . name , n i t ) ;

e l s e i f ( specType == 2)

s p r i n t f ( fname , ”%s Avg Pre f i t L om b %d” , p s r [ p ] . name , n i t ) ;

e l s e i f ( specType == 4)

{

i f ( resE [ p ] [ 0 ] == 1 . 0 e−7 && resE [ p ] [ 1 ] == 1 . 0 e−7)

s p r i n t f ( fname , ”%sAvg Pref i t UnWLS %d” , p s r [ p ] . name , n i t ) ;

e l s e i f ( resE [ p ] [ 0 ] == 1 . 0 && resE [ p ] [ 1 ] == 1 . 0 )

s p r i n t f ( fname , ”%sAvg Pref i t UnWLS %d” , p s r [ p ] . name , n i t ) ;

e l s e
s p r i n t f ( fname , ”%s Avg Pre f i t W L S %d” , p s r [ p ] . name , n i t ) ;

}

p r i n t f ( ” \ n w r i t i n g to f i l e %s : FREQ−PREFIT MEAN−PREFIT UPPER−PREFIT LOWER−

PREFIT\n” , fname ) ;

f o r ( i =0 ; i<nSpecPre ; i ++)

{

p r i n t f ( ” S o r t i n g P r e f i t channe l : %d/%d\ r ” , i +1 , nSpecPre ) ;

f f l u s h ( s t d o u t ) ;

avgPreSpecY [ i ] /= n i t ;

T K s o r t i t ( a l l P r e f i t S p e c t r a [ i ] , a l l P r e f i t S p e c t r a [ i ] , a ll P r e f i t S p e c t r a [ i ] , n i t ) ;

e r r P r e f i t S p e c t r a [ i ] = a l l P r e f i t S p e c t r a [ i ] [ (i n t ) round (0 . 975∗ n i t ) ] ; / / upper

e r r o r bar

e r r P r e f i t S p e c t r a L o w e r [ i ] = a l l P r e f i t S p e c t r a [ i ] [ (i n t ) round (0 . 025∗ n i t ) ] ; / /

lower e r r o r bar

}

/ / OUTPUT ALL AVERAGE POSTFIT SPECTRA

i f ( specType == 1)

s p r i n t f ( fname , ”%s A v g P o s t f i t D F T %d” , p s r [ p ] . name , n i t ) ;

e l s e i f ( specType == 2)

s p r i n t f ( fname , ”%s Avg Pos t f i t L om b %d” , p s r [ p ] . name , n i t ) ;

e l s e i f ( specType == 4)

{

i f ( resE [ p ] [ 0 ] == 1 . 0 e−7 && resE [ p ] [ 1 ] == 1 . 0 e−7)

s p r i n t f ( fname , ”%sAvg Post f i t UnWLS %d” , p s r [ p ] . name , n i t ) ;

e l s e i f ( resE [ p ] [ 0 ] == 1 . 0 && resE [ p ] [ 1 ] == 1 . 0 )

s p r i n t f ( fname , ”%sAvg Post f i t UnWLS %d” , p s r [ p ] . name , n i t ) ;

e l s e
s p r i n t f ( fname , ”%s Avg Pos t f i t W L S %d” , p s r [ p ] . name , n i t ) ;

}

p r i n t f ( ” \ n w r i t i n g to f i l e %s : FREQ−POSTFIT MEAN−POSTFIT UPPER−POSTFIT LOWER−

POSTFIT\n” , fname ) ;

f o r ( i =0 ; i<nSpecPos t ; i ++)

{
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p r i n t f ( ” S o r t i n g P o s t f i t channe l : %d/%d\ r ” , i +1 , nSpecPos t ) ;

f f l u s h ( s t d o u t ) ;

avgPostSpecY [ i ] /= n i t ;

T K s o r t i t ( a l l P o s t f i t S p e c t r a [ i ] , a l l P o s t f i t S p e c t r a [ i ] ,a l l P o s t f i t S p e c t r a [ i ] , n i t )

;

e r r P o s t f i t S p e c t r a [ i ] = a l l P o s t f i t S p e c t r a [ i ] [ (i n t ) round (0 . 975∗ n i t ) ] ; / /

upper e r r o r bar

e r r P o s t f i t S p e c t r a L o w e r [ i ] = a l l P o s t f i t S p e c t r a [ i ] [ (i n t ) round (0 . 025∗ n i t ) ] ; / /

lower

}

/ / OUTPUT TRANSFER FUNCTION− need to on ly c a l c u l a t e f o r whatever i s t h e minimum

of nSpecPre and nSpecPos t

s p r i n t f ( fname , ” T r a n s f e rf u n c t i o n S m o o t h I n P l a c e . d a tp s r%s ” , p s r [ p ] . name ) ;

p r i n t f ( ” \ n w r i t i n g to f i l e %s : FREQ AVGPRE AVGPOST POST / PRE\n” , fname

) ;

x f e r f u n c s = fopen ( fname , ”w” ) ;

f o r ( i =0 ; i<nSpecPos t ; i ++)

{

i f ( i >= nSpecPre ) break ; / / e n s u r e s we g e t t h e minimum of nSpecPre or

nSpecPos t

f p r i n t f ( x f e r f u n c s , ” %.45g %.15g %.15g %.15g\n” , specXPost [ i ] / 86400 . 0 ,

avgPreSpecY [ i ] , avgPostSpecY [ i ] , avgPostSpecY [ i ] / avgPreSpecY [ i ] ) ;

}

f c l o s e ( x f e r f u n c s ) ;

p r i n t f ( ”DONE WRITING TO FILE\n” ) ; p r i n t f ( ” \nCOMPLETE\n” ) ;

re tu rn 0 ;

}

/ / Th is code does a ( can be we igh ted ) l e a s t squa res f i t o f ”As in ( wt ) + Bcos ( wt ) ” to a data s e t .

Th is l e a s t squa res f i t i s used to de te rm ine t h e amp l i t ude o f th e r e a l and imag ina ry p a r t s

o f t h e DFT .

/∗ ∗∗∗∗∗∗∗The d e f i n i t i o n o f t h e D i s c r e t e F our ie r Trans form used in t h is code i s :∗∗∗∗∗∗∗∗∗∗∗∗

∗ X k = 2 ∗ ( 1 / numPts ) ∗ X k ( w i k i p e d i a ) ∗

∗ where we have t h e f o l l o w i n g d e f i n i t i o n s and j u s t i f i c a t i o n : ∗

∗ ”2” == > t h e spect rum below i s one−s i d e d because a l l t h e−ve f r e q u e n c i e s are ∗

∗ f o l d e d i n t o t h e p o s i t i v e ones ( so t h e DC term must be mul t . by 2) ∗

∗ ”1 / nP ts ” == > makes t h e numbers match up− j u s t one o f t h e a r b i t r a r y d e f i n i t i o n s o f DFT ∗

∗” X k ( w i k i p e d i a ) ” ==> The d e f i n i t i o n o f Xk g iven a t t h e top o f t h e w i k i p e d i a ∗

∗ a r t i c l e a t ” h t t p : / / en . w i k i p e d i a . org / w i k i / D i s c r e t eF o u r i e r t r a n s f o r m ”∗

∗ The d e f i n i t i o n g iven in t h i s a r t i c l e s i s : ∗

∗ X k ( w i k i p e d i a ) = sum{n=0}ˆ{numPts} x n ∗ exp{−2∗p i ∗ i ∗k∗n / numPts} ∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ /

/ / DANIEL ’S ALGORITHM ! ! C a l c u l a t e we igh ted l e a s t squa res fi t o f s i n u s o i d s to t h e data ,

e q u i v a l e n t to a we igh ted Lomb−S c a r g l e per iodogram . Note t h a t t h e r e t u r n e d a m p l i t u d e s o f

s i n e s and c o s i n e s co r respond to t h e imag ina ry and r e a l p a r t so f t h e d f t , NOT t h e amp l i t ude

o f t h e b e s t f i t s i n e or c o s i n e t h a t f i t s in t h e data .

vo id TK weightLS2 (double ∗x , double ∗y , double ∗s ig2 , i n t n , double ∗outX , double ∗outY , i n t ∗outN ,

double ∗outY re , double ∗outY im , i n t useWeight )

{

i n t i , j , n f r e q = ( i n t ) f l o o r ( ( double ) n / 2 . 0 ) − 1 ;

long double s1 , s2 , s3 , s4 , s5 ;

long double omega =0.0L ;

long double s i , c i ;

long double omega0 ;

double s i g [ n ] ;

double mean ;
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double wt [ n ] ; / / an a r ray o f we igh ts f o r c a l c u l a t i n g t h e we igh ted mean .

∗outN = n f r e q ;

i f ( useWeight == 0) / / No w e i g h t i n g

{

f o r ( i =0 ; i<n ; i ++)

s i g [ i ] = 1 . 0 ;

}

e l s e i f ( useWeight == 1) / / t hen use w e i g h t i n g

{

f o r ( i =0 ; i<n ; i ++)

{

s i g [ i ] = s i g 2 [ i ] ;

wt [ i ] = 1 . 0 / ( s i g [ i ] ∗ s i g [ i ] ) ; / / p repa r ing f o r t a k i n g we igh ted mean soon ;

}

}

e l s e
{

p r i n t f ( ”Unknown va lue of ’ useWeight ’ i n TKweightLS2\n” ) ;

e x i t ( 1 ) ;

}

/ / ze ro mean i n p u t data− i f i t i s a we igh ted f i t , t hen t h e we igh ted mean must be zero .

i f ( useWeight == 0)

mean = TKmeand ( y , n ) ;

e l s e i f ( useWeight == 1)

mean = TKWeightedmeand ( y , wt , n ) ;

f o r ( i =0 ; i<n ; i ++) y [ i ] −= mean ;

/ / Assuming t h e i n p u t x v a l u e s are in days , then tspan i s in days :

double t s p a n = TKranged ( x , n ) ;

omega0 = 2 . 0 L∗M PI / t s p a n ; / / t h i s matches t h e f r e q sampl ing o f TKd f t .

f o r ( j =0 ; j<n f r e q ; j ++)

{

omega = omega0∗ ( long double) ( j +1) ;

s1 = s2 = s3 = s4 = s5 = 0 . 0 L ;

f o r ( i =0 ; i<n ; i ++)

{

s i = s i n l ( omega∗x [ i ] ) ;

c i = c o s l ( omega∗x [ i ] ) ;

/ / 19 th Nov 2009− DY has checked t h a t t h e s e are t h e c o r r e c t e x p r e s s i o n s f o r a

we igh ted l e a s t−squa res

s1 += y [ i ]∗ s i / s i g [ i ] / s i g [ i ] ;

s2 += s i∗ s i / s i g [ i ] / s i g [ i ] ;

s3 += s i∗ c i / s i g [ i ] / s i g [ i ] ;

s4 += y [ i ]∗ c i / s i g [ i ] / s i g [ i ] ;

s5 += c i∗ c i / s i g [ i ] / s i g [ i ] ;

}

ou tY re [ j ] = ( s4∗s2 − s1∗s3 ) / ( s5∗s2 − s3∗s3 ) ; / / t h e amp l i t ude o f t h e b e s t f i t t i n g

cos wave .

outY im [ j ] = ( s4∗s3 − s1∗s5 ) / ( s3∗s3 − s2∗s5 ) ; / / amp o f b e s t f i t t i n g s i n e wave

ou tY re [ j ] = ou tY re [ j ] ∗ ( double ) n / 2 . 0 ; / / t h e r e a l F ou r ie r component

outY im [ j ] = outY im [ j ] ∗ ( double ) n / 2 . 0 ; / / imag F our ie r component

outX [ j ] = omega / 2 . 0 / MPI ;

outY [ j ] = ou tY re [ j ]∗ ou tY re [ j ]+ outY im [ j ] ∗ outY im [ j ] ;
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/ / The f o l l o w i n g l i n e assumes we want PSD o u t p u t !

outY [ j ] = ( outY [ j ] / pow (365 . 25∗86 40 0 . 0 , 2 ) )∗2∗ ( t s p a n / 3 6 5 . 2 5 ) / (double ) n / ( double ) n ;

}

}

/ / un ique : a f u n c t i o n t h a t r e t u r n s t h e l i s t o f un ique v a l u e s in an a r ray . NB ! ! ! I t assumes t h e

a r ray has been s o r t e d . t h e o u t p u t a r ray w i l l a lways be s m a l l er than or equa l to t h e i n p u t

a r ray .

vo id un ique (double ∗ in , i n t nIn , double ∗out , i n t ∗nOut )

{

i n t i ;

∗nOut =0;

f o r ( i =0 ; i<nIn −1; i ++)

{

i f ( i n [ i ] == in [ i +1 ] )

{

cont inue ;

}

e l s e
{

ou t [∗ nOut ] = in [ i ] ;

++(∗ nOut ) ;

}

}

ou t [∗ nOut ] = in [ nIn−1];

++(∗ nOut ) ;

re tu rn ;

}

/ / Adapted from S t e f a n / George ’ s p l u g i n . i n t e r p o l a t i o n ( s pl i n e ) : t h i s f u n c t i o n i n t e r p o l a t e s a

data s e t us ing c o n s t r a i n e d s p l i n e

vo id i n t e r p o l a t e S p l i n e S m o o t h (double ∗ inX , double ∗ inY , i n t inN , double s e p a r a t i o n , double ∗

in terpX , double ∗ in terpY , i n t ∗ n I n t e r p )

{

/ / a r r ay needed by TKcmonot

double yd [MAX OBSN] [ 4 ] ;

/ / a u x i l a r y ’ i ’

i n t i ;

TKcmonot ( inN , inX , inY , yd ) ;

∗ n I n t e r p = 0 ;

do
{

i n t e r p X [∗ n I n t e r p ] = inX [ 0 ] + s e p a r a t i o n∗ (∗ n I n t e r p ) ;

(∗ n I n t e r p ) ++;

} whi le ( i n t e r p X [∗ n I n t e r p − 1] < inX [ inN − 1 ] ) ;

(∗ n I n t e r p )−−;

T K s p l i n e i n t e r p o l a t e ( inN , inX , inY , yd , in terpX , in terpY ,∗ n I n t e r p ) ;

} / / i n t e r p o l a t e S p l i n e S m o o t h

/ / i n t e r p o l a t i o n ( s p l i n e ) : t h i s f u n c t i o n i n t e r p o l a t e s a data s e t us ing c o n s t r a i n e d s p l i n e onto

a f i x e d phase g r i d o f p o i n t s w i t h i n t h e o b s e r a t i o n b a s e l i n e

vo id i n t e r p o l a t e S p l i n e S m o o t h F i x e d P h a s e (double ∗ inX , double ∗ inY , i n t inN , double s e p a r a t i o n ,

double ∗ in terpX , double ∗ in terpY , i n t ∗ n I n t e r p , double f i x e d S t a r t )

{

/ / a r r ay needed by TKcmonot

double yd [MAX OBSN ] [ 4 ] ;
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/ / a u x i l a r y ’ i ’

i n t i ;

TKcmonot ( inN , inX , inY , yd ) ;

∗ n I n t e r p = 0 ;

i =0 ;

do
{

i f ( f i x e d S t a r t + s e p a r a t i o n∗ i > inX [ 0 ] )

{

i n t e r p X [∗ n I n t e r p ] = f i x e d S t a r t + s e p a r a t i o n∗ i ; / / on l y pu t down a p o i n t i f we ’ re

w i t h i n t h e o b s e r v a t i o n b a s e l i n e f o r t h i s p u l s a r ( we don ’ t want to EXTRAPOLATE,

j u s t INTERPOLATE) .

(∗ n I n t e r p ) ++;

i ++;

}

e l s e
i ++;

} whi le ( i n t e r p X [∗ n I n t e r p − 1] < inX [ inN − 1 ] ) ;

(∗ n I n t e r p )−−;

T K s p l i n e i n t e r p o l a t e ( inN , inX , inY , yd , in terpX , in terpY ,∗ n I n t e r p ) ;

} / / i n t e r p o l a t e S p l i n e S m o o t h F i x e d P h a s e

/ / TK f indWeigh tedV ar iance i s a f u n c t i o n to f i n d t h e we igh ted Var iance o f an i n p u t s e r i e s . x i s

t h e a r ray o f va lues , wt i s t h e a r ray o f weights , n i s l e n g t h o f se r i e s .

double TKf indWeightedVar ianced ( double ∗x , double ∗wt , i n t n )

{

i n t i ;

double mean , va r =0 . 0 , sumwt = 0 . 0 ;

mean = TKWeightedmeand ( x , wt , n ) ;

f o r ( i =0 ; i<n ; i ++)

{

var += pow ( x [ i ]−mean , 2 )∗wt [ i ] ;

sumwt += wt [ i ] ;

}

var /= sumwt ;

va r∗=( double ) n / ( double ) ( n−1) ;

re tu rn var ;

}

/ / TKfindWeightedRMS i s a f u n c t i o n to f i n d t h e we igh ted RMS of an i n p u t s e r i e s . x i s t h e a r ray

o f va lues , wt i s t h e a r ray o f weights , n i s l e n g t h o f s e r i e s .

double TKfindWeightedRMS d ( double ∗x , double ∗wt , i n t n )

{

i n t i ;

double mean , sdev =0 . 0 , sumwt = 0 . 0 ;

mean = TKWeightedmeand ( x , wt , n ) ;

f o r ( i =0 ; i<n ; i ++)

{

sdev += pow ( x [ i ]−mean , 2 )∗wt [ i ] ;

sumwt += wt [ i ] ;

}

sdev /= sumwt ;

sdev∗=( double ) n / ( double ) ( n−1) ;

sdev = s q r t ( sdev ) ;

re tu rn sdev ;

}
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/ / make Idea lSa t s : a f u n c t i o n which r e p l a c e s t h e s a t s in ps r [p ] . obsn [∗ ] . s a t w i th i d e a l s i t e

a r r i v a l t i m e s ( i . e . , t h e s a t s t h a t g i v e 0 r e s i d u a l s ) .

vo id m akeIdea lSa t s ( p u l s a r∗psr , i n t npsr ,char p a r F i l e [MAX PSRVAL ] [ MAX FILELEN] , char t i m F i l e [

MAX PSRVAL ] [ MAX FILELEN ] )

{

i n t j , p , i ;

f o r ( j =0 ; j <5; j ++)

{

f o r ( p =0; p<nps r ; p++)

{

p s r [ p ] . nJumps = 0 ;

f o r ( i =0 ; i<MAX PARAMS; i ++)

{

p s r [ p ] . param [ i ] . nLinkTo = 0 ;

p s r [ p ] . param [ i ] . nLinkFrom = 0 ;

}

}

r e a d P a r f i l e ( ps r , p a r F i l e , t i m F i l e , nps r ) ;/∗ Load t h e pa ramete r s ∗ /

f o rm BatsA l l ( ps r , nps r ) ; /∗ Form t h e b a r y c e n t r i c a r r i v a l t i m e s∗ /

f o rm Res idua l s ( ps r , npsr , 0 ) ; /∗ Form t h e r e s i d u a l s ∗ /

f o r ( p =0; p<nps r ; p++)

{

f o r ( i =0 ; i<p s r [ p ] . nobs ; i ++)

p s r [ p ] . obsn [ i ] . s a t−= ( long double) p s r [ p ] . obsn [ i ] . r e s i d u a l /86400 . 0 L ;

}

}

}
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B.2 The PSD SIMULATOR PLUG .C plugin

This plugin is described in Section 2.4.3 of this thesis. It has been slightly edited for its appear-

ance from the original source code.

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

/∗

∗ Th is p l u g i n t a k e s in a powerlaw model (A∗FˆB f o r each f r e q F) f o r t h e low f r e q p a r t o f t h e

PSD , then e x t r a p o l a t e s t h a t model assuming you ’ ve used a smoother o f t h e form exp (−| t / t au

| ) which has a known ( and hard coded ) t r a n s f e r f u n c t i o n , and then s i m u l a t e s r e g u l a r l y

spaced t ime s e r i e s which are c o n s i s t e n t w i th t h a t PSD . Thereare o p t i o n s to use j u s t t h e

power law model an no t t h e smoother as wel l , or to use t h e George s p e c t r a l model when he

was t e s t i n g someth ing . avgTau = 0 . 0 i f no smooth ing a p p l i e d .

∗ am now e d i t i n g i t so i t can t a k e in George ’ s s p e c t r a l d e n s i t y model .

∗ /

# inc lude <s t d i o . h>

# inc lude <s t r i n g . h>

# inc lude <s t d l i b . h>

# inc lude <math . h>

# inc lude ” tempo2 . h”

# inc lude ”GWsim . h ”

# inc lude ” T 2 t o o l k i t . h ”

# inc lude ” TKspectrum . h ”

# inc lude ” T K f i t . h ”

us ing namespace s t d ;

vo id m akeIdea lSa t s ( p u l s a r∗psr , i n t npsr ,char p a r F i l e [MAX PSRVAL ] [ MAX FILELEN] , char t i m F i l e [

MAX PSRVAL ] [ MAX FILELEN ] ) ;

double TKf indWeightedVar ianced ( double ∗x , double ∗wt , i n t n ) ;

double TKWeightedmeand ( double ∗x , double ∗wt , i n t n ) ;

# de f ine MAX FLAG 10

# de f ine MAX FREQ 10000

/∗ The main f u n c t i o n c a l l e d from t h e TEMPO2 package i s ’ g r a p h i ca l I n t e r f a c e ’ ∗ /

/∗ T h e r e f o r e t h i s f u n c t i o n i s r e q u i r e d in a l l p l u g i n s ∗ /

extern ”C” i n t g r a p h i c a l I n t e r f a c e (i n t argc ,char ∗argv [ ] , p u l s a r ∗psr , i n t ∗nps r )

{

sho r t i n t d i r ;

i n t i , p , n , j , k , pp ;

double g l o b a l P a r a m e t e r ;

/ / long seed = −125;

long seed = TKsetSeed ( ) ;

char fname [ 1 0 0 ] ;

i n t noRed = 0 ; / / =1 ==> don ’ t s i m u l a t e red n o i s e ; =0 ==> do s i m u l a t e red n o i s e .

i n t yesClock = 0 ; / / =0 ==> don ’ t s i m u l a t e c l o c k red n o i s e ( common red n o i s e to a l l

p u l s a r s ) ; =1 ==> do s i m u l a t e red n o i s e component which i s t h e same f o r a l l p u l sa r s .

/ /GWB paramete r s

i n t ngw =1000;

double d i s t [MAX PSR] , a lpha = −0.6666666666 , gwamp = 1 . 0 e−15;

i n t distNum = 0 ;

char p a r F i l e [MAX PSR ] [ MAX FILELEN] , t i m F i l e [MAX PSR] [ MAX FILELEN ] ;

double modelspecy [MAX PSR ] [ 2 ] ; / / s t o r e s t h e a n a l y t i c power−law model spect rum f o r each

p u l s a r in t h e form ( mean , exponen t ) .

double c l o c k s p e c y [ 2 ] ; / / t h e model o f t h e c l o c k spect rum .

i n t nspec [MAXPSR ] ;

double t s p a n [MAX PSR ] ;

double maxTspan ;
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char l i n e [ 1 0 0 0 ] ;

FILE ∗ f i n , ∗ f o u t ;

i n t nread ;

char dummy [ 1 0 0 ] ; / / f o r e n s u r i n g t h e scann ing in o f s p e c t r a l models goes in t h er i g h t o rde r

( t h e models match t h e p u l s a r s t h e y are supposed to match )

i n t nSpec ;

double mean , mean2 ;

char specMode lF i l e [MAXFILELEN ] ;

s p r i n t f ( specModelF i le , ” S p e c t r a l M o d e l sF i n a l 2 p s r ” ) ; / / t h i s i s t h e p r e f i x t h a t goes b e f o r e

a l l t h e S p e c t r a l model f i l e s used .

∗ nps r = 0 ;

/∗ Obta in a l l pa ramete r s from t h e command l i n e∗ /

f o r ( i =2 ; i<argc ; i ++)

{

i f ( s t rcmp ( argv [ i ] , ”−f ” ) ==0)

{

s t r c p y ( p a r F i l e [∗ nps r ] , argv [ i +1 ] ) ;

s t r c p y ( t i m F i l e [∗ nps r ] , argv [ i +2 ] ) ;

(∗ nps r ) ++;

}

e l s e i f ( s t rcmp ( argv [ i ] , ”−specMode lF i l e ” ) ==0) / / changes p r e f i x o f i n p u t f i l e c o n t a i n i n g

t h e mean and t h e s p e c t r a l exponen t f o r each p u l s a r .

s s c a n f ( argv [ i +1 ] , ”%s ” ,& specMode lF i l e ) ;

e l s e i f ( s t rcmp ( argv [ i ] , ”−ngw” ) ==0)

s s c a n f ( argv [++ i ] , ”%d” , &ngw ) ;

e l s e i f ( s t rcmp ( argv [ i ] , ”−gwamp” ) ==0)

s s c a n f ( argv [++ i ] , ”%l f ” , &gwamp) ;

e l s e i f ( s t rcmp ( argv [ i ] , ”−a lpha ” ) ==0)

s s c a n f ( argv [++ i ] , ”%l f ” , &a lpha ) ;

e l s e i f ( s t rcmp ( argv [ i ] , ”−seed ” ) ==0)

s s c a n f ( argv [++ i ] , ”%d” , &seed ) ;

e l s e i f ( s t rcmp ( argv [ i ] , ”−noRed ” ) ==0)

noRed = 1 ;

e l s e i f ( s t rcmp ( argv [ i ] , ”−yesClock ” ) ==0)

yesClock = 1 ;

e l s e i f ( s t rcmp ( argv [ i ] , ”−d i s t ” ) ==0)

{

s s c a n f ( argv [++ i ] , ”%l f ” , &d i s t [ distNum ] ) ;

d i s t [ distNum ]∗=3.086 e19 ;

distNum ++;

}

}

double ∗specX , ∗specY , ∗outY re , ∗outY im ;

double ∗∗ f r e q i n , ∗∗ psd in , ∗∗x , ∗∗y , ∗∗ t , ∗∗avgSpecX , ∗∗avgSpecY ; / / t i s t h e a r ray o f x

v a l u e s o b t a i n e d from t h e i n v e r s e DFT f o r each p ; t h e PSD of t h ei n p u t data I ’m

s i m u l a t i n g ; AND x i s r e a l p a r t o f DFT, y i s imag p a r t o f DFT

long double ∗∗ s a t 0 ;

double ∗∗ s a t 0 d ;

/ / ALLOCATE MEMORY! ! ! ! ! ! ! !

specX = (double ∗ ) mal loc (MAX FREQ∗ s i z e o f( double ) ) ;

specY = (double ∗ ) mal loc (MAX FREQ∗ s i z e o f( double ) ) ;

ou tY re = (double ∗ ) mal loc (MAX FREQ∗ s i z e o f( double ) ) ;

outY im = ( double ∗ ) mal loc (MAX FREQ∗ s i z e o f( double ) ) ;

s a t 0 = (long double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( long double ∗ ) ) ;

f r e q i n = ( double ∗∗ ) mal loc ( (∗ nps r )∗ s i z e o f( double ∗ ) ) ;

p s d i n = ( double ∗∗ ) mal loc ( (∗ nps r )∗ s i z e o f( double ∗ ) ) ;

x = ( double ∗∗ ) mal loc ( (∗ nps r )∗ s i z e o f( double ∗ ) ) ;
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y = ( double ∗∗ ) mal loc ( (∗ nps r )∗ s i z e o f( double ∗ ) ) ;

t = ( double ∗∗ ) mal loc ( (∗ nps r )∗ s i z e o f( double ∗ ) ) ;

s a t 0 d = ( double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

avgSpecX = (double ∗∗ ) mal loc ( (∗ nps r )∗ s i z e o f( double ∗ ) ) ;

avgSpecY = (double ∗∗ ) mal loc ( (∗ nps r )∗ s i z e o f( double ∗ ) ) ;

f o r ( p =0; p<∗nps r ; p ++)

{

f r e q i n [ p ] = ( double ∗ ) mal loc (MAX FREQ∗ s i z e o f( double ) ) ;

p s d i n [ p ] = ( double ∗ ) mal loc (MAX FREQ∗ s i z e o f( double ) ) ;

x [ p ] = ( double ∗ ) mal loc (MAX FREQ∗ s i z e o f( double ) ) ;

y [ p ] = ( double ∗ ) mal loc (MAX FREQ∗ s i z e o f( double ) ) ;

t [ p ] = ( double ∗ ) mal loc (MAX FREQ∗ s i z e o f( double ) ) ;

avgSpecX [ p ] = (double ∗ ) mal loc (MAX FREQ∗ s i z e o f( double ) ) ;

avgSpecY [ p ] = (double ∗ ) mal loc (MAX FREQ∗ s i z e o f( double ) ) ;

s a t 0 [ p ] = (long double ∗ ) mal loc (MAX OBSN∗ s i z e o f( long double) ) ;

s a t 0 d [ p ] = ( double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;

}

/ / Now read par and t i m s and form r e s i d u a l s . We need t h i s f o r t imespan o f data and f o r

p o s i t i o n o f p u l s a r s in GWB

r e a d P a r f i l e ( ps r , p a r F i l e , t i m F i l e ,∗ nps r ) ; /∗ Load t h e pa ramete r s ∗ /

r e a d T i m f i l e ( ps r , t i m F i l e ,∗ nps r ) ; /∗ Load t h e a r r i v a l t i m e s ∗ /

p r e P r o c e s s ( psr ,∗ npsr , argc , argv ) ;

/ / p r i n t f ( ” Number o f p u l s a r s = %d and ps r [ 0 ] . nobs = %d and noClock = %d and noP lo t = %d\n ” , ∗

npsr , ps r [ 0 ] . nobs , noClock , noP lo t ) ;

f o rm BatsA l l ( ps r ,∗ nps r ) ; /∗ Form t h e b a r y c e n t r i c a r r i v a l t i m e s∗ /

f o rm Res idua l s ( ps r ,∗ npsr , 0 ) ; /∗ Form t h e r e s i d u a l s t h e s e are PREFIT r e s i d u a l s

∗ /

long double meanVal ;

long double kp [MAX PSR ] [ 3 ] ;

long double gwRes [MAX PSR] [MAX OBSN] ;

gwSrc ∗gw ;

i f ( ( gw = ( gwSrc ∗ ) mal loc (s i z e o f( gwSrc )∗ngw ) ) ==NULL)

{

p r i n t f ( ” Unable to a l l o c a t e memory f o r %d GW s o u r c e s\n” ,ngw ) ;

e x i t ( 1 ) ;

}

f o r ( p =0; p<∗nps r ; p ++)

{

setupPulsarGWsim ( p s r [ p ] . param [ p a r a mr a j ] . v a l [ 0 ] , p s r [ p ] . param [ paramdec j ] . v a l [ 0 ] , kp [ p ] ) ;

i f ( distNum == 0) d i s t [ p ] = (0 . 91+ p / 1 0 . 0 )∗3.08568 e19 ;

}

/ /NOW read in Clock model i f i t was s e l e c t e d .

i f ( yesClock == 1)

{

s p r i n t f ( fname , ” Spec t ra lMode lC lock ” ) ;

p r i n t f ( ” Scann ing %s\n” , fname ) ;

i f ( ( f i n = fopen ( fname , ” r ” ) ) == NULL)

{

p r i n t f ( ” Unable to open / f i n d f i l e %s\n” , fname ) ;

e x i t ( 1 ) ;

}

whi le ( ! f e o f ( f i n ) )

{

i f ( f g e t s ( l i n e , 1000 , f i n ) !=NULL)

{

nread = s s c a n f ( l i n e , ”%s %lg %lg ” ,dummy,& c l o c k s p e cy [1 ] ,& c l o c k s p e c y [ 0 ] ) ;
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i f ( s t rcmp ( ” c lock ” ,dummy ) !=0 )

{

p r i n t f ( ”ERROR IN MODEL SCANNING! ’ c lock ’ does no t equa l %s\n” ,dummy ) ;

f p r i n t f ( s t d e r r , ”ERROR scann ing %s\n” , fname ) ;

e x i t ( 1 ) ;

}

}

}

f c l o s e ( f i n ) ;

}

/ /NOW READ IN MODELS f o r each p u l s a r power spect rum to be ab leto s i m u l a t e t h e PSD

f o r ( p =0; p<∗nps r ; p++)

{

s p r i n t f ( fname , specMode lF i l e ) ;

s t r c a t ( fname , p s r [ p ] . name ) ;

p r i n t f ( ” Scann ing %s\n” , fname ) ;

i f ( ( f i n = fopen ( fname , ” r ” ) ) == NULL)

{

p r i n t f ( ” Unable to open / f i n d f i l e %s\n” , fname ) ;

e x i t ( 1 ) ;

}

whi le ( ! f e o f ( f i n ) )

{

i f ( f g e t s ( l i n e , 1000 , f i n ) !=NULL)

{

nread = s s c a n f ( l i n e , ”%s %lg %lg ” ,dummy,& modelspecy [ p ] [ 1 ] , & modelspec y [ p ] [ 0 ] ) ;

i f ( s t rcmp ( p s r [ p ] . name , dummy ) !=0 )

{

p r i n t f ( ”ERROR IN MODEL SCANNING! %s does no t equa l %s\n” , p s r [ p ] . name , dummy ) ;

f p r i n t f ( s t d e r r , ”ERROR scann ing %s\n” , fname ) ;

e x i t ( 1 ) ;

}

}

}

f c l o s e ( f i n ) ;

}

/ / now we have a l l t h e s p e c t r a l models ( maybe i n c l u d i n g t h e c lo c k spect rum ) . Note t h e s e w i l l

be m u l t i p l i e d by t h e t r a n s f e r f u n c t i o n o f t h e expn l smootherto g i v e t h e spect rum across

a l l f r e q s .

/ / C a l c u l a t e t imespan o f each data se t , needed f o r f r e q u e n c yva lue c a l c u l a t i o n

/ / t h e f o l l o w i n g s e c t i o n o f code f i n d s t h e f i r s t and l a s t o b s er v a t i o n s f o r each p u l s a r .

long double m insa t [∗ nps r ] , maxsat [∗ nps r ] , avgTspan = 0 . 0 ;

double avDel taT = 0 . 0 ; / / t h e average sampl ing t ime

f o r ( p =0; p<∗nps r ; p++)

{

m insa t [ p ]= maxsat [ p ]= p s r [ p ] . obsn [ 0 ] . s a t ;

f o r ( j =0 ; j<p s r [ p ] . nobs ; j ++)

{

i f ( p s r [ p ] . obsn [ j ] . s a t< m insa t [ p ] ) m insa t [ p ] = p s r [ p ] . obsn [ j ] . s a t ;

i f ( p s r [ p ] . obsn [ j ] . s a t> maxsat [ p ] ) maxsat [ p ] = p s r [ p ] . obsn [ j ] . s a t ;

}

t s p a n [ p ] = maxsat [ p ]− m insa t [ p ] ;

p r i n t f ( ” t s p a n of p u l s a r %s = %g days\n” , p s r [ p ] . name , t s p a n [ p ] ) ;

avgTspan += (long double) t s p a n [ p ] ;

avDel taT += ( t s p a n [ p ] / ( p s r [ p ] . nobs− 1) ) ;
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}

maxTspan = TKfindMaxd ( tspan ,∗ nps r ) ;

avgTspan = avgTspan / (long double) ∗nps r ;

avDel taT = avDel taT / (double ) ∗ nps r ;

long double t o f f s e t = p s r [ 0 ] . param [ parampepoch ] . v a l [ 0 ] ;

long double t o f f s e t 2 = 7000.0L ; / / so t h a t t h e smooth ing a l g o r i t h m doesn ’ t mess up w i th

n e g a t i v e measured SATs .

double d e l t a t [∗ nps r ] ; / / t h i s i s t h e t i m e s t e p between days o f s i m u l a t e d o b s e r v a t i on .

double numPts [∗ nps r ] ; / / t h i s i s t h e number o f p o i n t s in t h e i n t e r p o l a t e d t ime s e r i es .

/ / f o r s e t t i n g f l o and f h i , we use to b s and a l s o t h e average Nyqu is t f r e q u e n c y :

double f l o ;

double f h i ;

f l o = 1 . 0L / ( 2 0 . 0 L ∗ maxTspan ∗ 86400.0L) ; / / l o w e s t GW s i m u l a t e f r e q i s 20 t i m e s t h e data

span

f h i = 1 . 0L / ( 1 . 0 L ∗ 86400.0L ) ; / / h i g h e s t GW s i m u l a t e d f r e q i s one day

gwamp∗= ( pow (365 . 2425∗86400 . 0 , a lpha ) ) ;

/ / Now c a l c u l a t e t ime between c o n s e c u t i v e o b s e r v a t i o n s

f o r ( p =0; p<∗nps r ; p ++)

{

numPts [ p ] = 2 5 6 . 0 ; / / NB t h i s needs to be a power o f 2 .

i f ( numPts [ p ] > MAX FREQ) f p r i n t f ( s t d e r r , ”Too many p o i n t s in s i m u l a t e d t ime s er i e s −−>

i n c r e a s e va lue of MAXFREQ\n” ) ;

d e l t a t [ p ] = t s p a n [ p ] / numPts [ p ] ;

p r i n t f ( ” d e l t a t = %g and numPts = %g\n” , d e l t a t [ p ] , numPts [ p ] ) ;

}

double avgTau ;

long n f r e q i n [∗ nps r ] ;

double weigh ts [MAX OBSN] ;

avgTspan = (long double) TKmean d ( tspan ,∗ nps r ) ;

/ / Determine t h e i d e a l i s e d s i t e a r r i v a l t i m e s

m akeIdea lSa t s ( psr ,∗ npsr , p a r F i l e , t i m F i l e ) ;

/ / S t o r e i d e a l s a t s in s a t 0 [ ] [ ] TESTED t h a t i d e a l s a t s r e a l l yare i d e a l ( rms o f r e s i d ’ s i s 0)

f o r ( p =0; p<∗nps r ; p ++)

{

f o r ( i =0 ; i<p s r [ p ] . nobs ; i ++)

{

s a t 0 [ p ] [ i ] = p s r [ p ] . obsn [ i ] . s a t ; / / no te t h e s e are t h e i d e a l s i t e a r r i v a l t i m e s

s a t 0 d [ p ] [ i ] = ( double ) p s r [ p ] . obsn [ i ] . s a t ; / / no te t h e s e are t h e i d e a l s i t e

a r r i v a l t i m e s

}

}

/ /FROM HERE ON we need to choose days vs . seconds . Choosing days .

/ / now c a l c u l a t e number o f channe ls in p s di n and compute va lue o f p s di n which depends on

t h e i n p u t s p e c t r a l model and t h e smooth ing f i l t e r used

f o r ( p =0; p<∗nps r ; p ++)

{

avgTau = 6 0 . 0 ; / / 60 day smooth ing f i l t e r f o r most p u l s a r s i f smooth ing used.

i f ( s t rcmp ( p s r [ p ] . name , ” 1939+2134” ) ==0) avgTau = 3 0 . 0 ; / / t o remove t h e bump near

t h e end o f t h e t ime s e r i e s .

n f r e q i n [ p ] = ( i n t ) round ( ( 1 . 0 / d e l t a t [ p ] ) / ( 1 . 0 / t s p a n [ p ] ) ) ;
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f o r ( i =0 ; i<n f r e q i n [ p ] ; i ++)

{

f r e q i n [ p ] [ i ] = i / t s p a n [ p ] ; / / t h i s i s in 1 / days ; i t i s i m p o r t a n t t h a t t h e

numerator i s ” i ” , so t h a t we i n c l u d e a DC term .

i f ( i == 0)

{

p s d i n [ p ] [ i ] = 0 . 0 ; / / no DC term

}

e l s e i f ( i <= ( n f r e q i n [ p ] / 2 . 0 ) )

{

p s d i n [ p ] [ i ] = modelspec y [ p ] [ 0 ] ∗ pow ( ( f r e q i n [ p ] [ i ] / 8 6 4 0 0 . 0 ) , modelspecy [ p

] [ 1 ] ) ; / / psd assuming f r e q i s in days , psd measured in yea rs

}

e l s e
{

p s d i n [ p ] [ i ] = p s d i n [ p ] [ n f r e q i n [ p ] − i ] ;

}

}

}

i n t i t , n i t = 1 ;

f o r ( i t =0 ; i t <n i t ; i t ++)

{

/ /NOW s e t up t h e GWB f o r t h i s i t e r a t i o n !

GWbackground (gw , ngw,& seed , f l o , f h i , gwamp , a lpha , 1 ) ;

f o r ( k =0; k<ngw ; k++)

setupGW(&gw[ k ] ) ;

f o r ( p =0; p<∗nps r ; p++)

{

f o r ( i =0 ; i<n f r e q i n [ p ] ; i ++)

{

/ / FILL IN NEGATIVE FREQUENCIES

i f ( i <= ( n f r e q i n [ p ] / 2 . 0 ) )

{

x [ p ] [ i ] = TKgaussDev(& seed ) ∗ s q r t ( p s d i n [ p ] [ i ] / 4 . 0 / t s p a n [ p ] ∗ 365 . 2425 )

; / / so x [ p ] i n yr

y [ p ] [ i ] = TKgaussDev(& seed ) ∗ s q r t ( p s d i n [ p ] [ i ] / 4 . 0 / t s p a n [ p ] ∗ 365 . 2425 )

; / / so y [ p ] i n yr

}

e l s e
{

x [ p ] [ i ] = x [ p ] [ n f r e q i n [ p ] − i ] ;

y [ p ] [ i ] = −1.0 ∗ y [ p ] [ n f r e q i n [ p ] − i ] ;

}

}

/ / run t h e i n v e r s e FFT on complex a r ray ( x [ p ] , y [ p ] ) w i th x andy in u n i t s o f yea rs ˆ

−1

d i r = −1; / /−1 = i n v e r s e FFT , 1 = normal FFT

/∗ DESCRIPTION OF T Kf f t Th is computes an in−p lace complex−to−complex FFT x and y

are t h e r e a l and imag ina ry a r rays o f n res [ p ] = 2ˆm p o i n t s . I t assumes t h e f i r s t

p o i n t i s t h e DC term

∗ /

T K f f t ( d i r , n f r e q i n [ p ] , x [ p ] , y [ p ] ) ;

/ / now x [ p ] i s a complex t ime s e r i e s measured in yea rs and y [ p ]i s an independe n t

complex t ime s e r i e s in yea rs . both are r e a l i s a t i o n s o f t h e PSD g iven by p s d i n .

The number o f p o i n t s in x [ p ] i s n f r e qi n [ p ] .

/ / c o n v e r t u n i t s o f x [ p ] y [ p ] to seconds ( same u n i t s as r e s i d ua l s ) and f i n d sample

t i m e s o f x [ p ] and y [ p ]
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f o r ( i =0 ; i<n f r e q i n [ p ] ; i ++)

{

x [ p ] [ i ] ∗= 86400 . 0∗365 . 2425 ; / / now x [ p ] measured in seconds .

t [ p ] [ i ] = p s r [ p ] . obsn [ 0 ] . s a t + i ∗ d e l t a t [ p ] ; / / t i s measured in days

}

/ /NOW i n t e r p o l a t e t h e d e r i v e d t ime s e r i e s f u n c t i o n onto t h eg r i d o f o b s e r v a t i o n s f o r

t h i s p u l s a r .

T K in te rpo la te Sp l in e Sm oo t hF i x e dXP ts ( t [ p ] , x [ p ] , n f r e qi n [ p ] , s a t 0 d [ p ] , y [ p ] , p s r [ p ] . nobs )

;

/ / so y [ p ] i s now t h e same f u n c t i o n as x [ p ] bu t sampled a t t h e REAL o b s e r v a t i o n t i m e s

o f t h i s p u l s a r .

/ /NOW c a l c u l a t e t h e e f f e c t o f a GWB on t h e p u l s a r s

f o r ( i =0 ; i<p s r [ p ] . nobs ; i ++)

{

gwRes [ p ] [ i ] = 0 . 0L ;

f o r ( j =0 ; j<ngw ; j ++)

gwRes [ p ] [ i ] += ca lcu la teRes idua lGW ( kp [ p ] ,&gw[ j ] , ( p s r [p ] . obsn [ i ] . sa t− t o f f s e t +

t o f f s e t 2 )∗86400.0L , d i s t [ p ] ) ;

}

/ / ze ro mean t h e GWB r e s i d u a l s f o r t h i s p u l s a r

meanVal =0.0L ;

f o r ( i =0 ; i<p s r [ p ] . nobs ; i ++)

meanVal+=gwRes [ p ] [ i ] ;

meanVal / = (double ) p s r [ p ] . nobs ;

/ /NOW add GWB + wh i te n o i s e + t i m i n g n o i s e to t h e i d e a l s i t e a r ri v a l t i m e s we made

e a r l i e r s a t 0 [ ] [ ] .

f o r ( i =0 ; i<p s r [ p ] . nobs ; i ++)

{

i f ( noRed == 0)

{

p s r [ p ] . obsn [ i ] . s a t = s a t 0 [ p ] [ i ] + (long double) ( y [ p ] [ i ] / SECDAY) + ( ( gwRes [ p

] [ i ] −meanVal ) /SECDAY) + ( TKgaussDev(& seed )∗ p s r [ p ] . obsn [ i ] . t o a E r r ∗ 1 . 0

e−6 / SECDAY) ;

}

e l s e
{ / / don ’ t s i m u l a t e red n o i s e from t h e model , j u s t s i m u l a t e wh ite n o i s e

c o n s i s t . w i th e r r o r bars and a GWB.

p s r [ p ] . obsn [ i ] . s a t = s a t 0 [ p ] [ i ] + ( ( gwRes [ p ] [ i ]−meanVal ) /SECDAY) + (

TKgaussDev(& seed )∗ p s r [ p ] . obsn [ i ] . t o a E r r ∗ 1 . 0 e−6 / SECDAY) ;

}

}

s p r i n t f ( fname , ”%s . sim . s o r t . t im ” , p s r [ p ] . name ) ;

wr i teT im ( fname , p s r +p , ” tempo2 ” ) ;

}

i f ( i t %1==0) { p r i n t f ( ”COMPLETE, i t +1 / n i t = %d/%d \ r ” , i t +1 , n i t ) ; f f l u s h ( s t d o u t ) ;}

}

p r i n t f ( ” \nCOMPLETE\n” ) ;

}
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B.3 The PTA CORRELATION PLUG .C plugin

The algorithm that is implemented by this plugin is described in Section 6.2.1 of this thesis. It

has been slightly edited for its appearance from the original source code.

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

/∗ Th is p l u g i n e s t i m a t e s t h e s i g n i f i c a n c e o f a GWB s i g n a l in a s et o f data . The c o r r e l a t i o n i s

per formed in t h e f r e q u e n c y domain . I t uses t h e f r e q u e n c y domain cross−cova r iance

recommended by B i l l w i th WEIGHTING . I t a l s o uses t h e t r a n s f er f u n c t i o n which can be

c a l c u l a t e d in x f e r f u n c or x f e r f u n c [2 , 3 , 4 ] to improve t h e s p e c t r a l a n a l y s i s . I t a l s o uses

models f o r t h e power s p e c t r a which need to be in t h e specMode lF i l es d e s c r i b e d below .

∗ /

# inc lude <s t d i o . h>

# inc lude <s t r i n g . h>

# inc lude <s t d l i b . h>

# inc lude <math . h>

# inc lude ” tempo2 . h ”

# inc lude ”GWsim . h ”

# inc lude ” T 2 t o o l k i t . h ”

# inc lude ” TKspectrum . h ”

# inc lude ” T K f i t . h ”

us ing namespace s t d ;

# de f ine MAX FLAG 10

# de f ine MAX FREQ 5000

double calcHD (double ang le ) ;

double c a l c S i g n i f i c a n c e (double ∗ co r r ,double ∗ang le ,i n t ncor r , i n t nps r ) ;

double p s r a n g l e (double c e n t r e l o n g ,double c e n t r e l a t , double p s r l o n g ,double p s r l a t ) ;

vo id a v e r a g e P t s (f l o a t ∗x , f l o a t ∗y , i n t n , i n t width , f l o a t ∗meanX ,f l o a t ∗meanY ,i n t ∗nMean ) ;

vo id f i tHDcurve (double ∗x , double ∗y , double ∗e , i n t n , i n t wErr , i n t nharm ,double ∗A2 , i n t ∗outN ,

double ∗eA2 , double ∗ r e d u c e d c h i s q ) ;

vo id HDfunc (double x , double a func [ ] , i n t ma) ;

vo id HDfuncClk (double x1 , double a func [ ] , i n t ma) ; / / used to f i t t h e HD f u n c t i o n AND a

c o n s t a n t

double TKfindWeightedRMS d ( double ∗x , double ∗wt , i n t n ) ;

double TKf indWeightedVar ianced ( double ∗x , double ∗wt , i n t n ) ;

vo id i n t e r p o l a t e S p l i n e S m o o t h (double ∗ inX , double ∗ inY , i n t inN , double s e p a r a t i o n , double ∗

in terpX , double ∗ in terpY , i n t ∗ n I n t e r p ) ;

vo id un ique (double ∗ in , i n t nIn , double ∗out , i n t ∗nOut ) ;

vo id TK weightLS2 (double ∗x , double ∗y , double ∗ s ig , i n t n , double ∗outX , double ∗outY , i n t ∗outN ,

double ∗outY re , double ∗outY im , i n t useWeight ) ;

vo id TK weightLSor ig (double ∗x , double ∗y , double ∗ s ig , i n t n , double ∗outX , double ∗outY , i n t ∗outN

, double ∗outY re , double ∗outY im ) ;

vo id i n t e r p o l a t e S p l i n e S m o o t h F i x e d P h a s e (double ∗ inX , double ∗ inY , i n t inN , double s e p a r a t i o n ,

double ∗ in terpX , double ∗ in terpY , i n t ∗ n I n t e r p , double f i x e d S t a r t ) ;

vo id i n t e r p o l a t e S p l i n e S m o o t h F i x e d X P t s (double ∗ inX , double ∗ inY , i n t inN , double ∗ in terpX ,

double ∗ in terpY , i n t n I n t e r p ) ;

f l o a t TKfindWeightedRMS f ( f l o a t ∗x , double ∗wt , i n t n ) ;

/∗ The main f u n c t i o n c a l l e d from t h e TEMPO2 package i s ’ g r a p h i ca l I n t e r f a c e ’ ∗ /

/∗ T h e r e f o r e t h i s f u n c t i o n i s r e q u i r e d in a l l p l u g i n s ∗ /

extern ”C” i n t g r a p h i c a l I n t e r f a c e (i n t argc ,char ∗argv [ ] , p u l s a r ∗psr , i n t ∗nps r )

{

char o u t F i l e [MAX FILELEN ] ;

o u t F i l e [ 0 ] = ’A’ ;

o u t F i l e [ 1 ] = ’\0 ’ ;

char o u t F i l e P a i r s [MAXFILELEN ] ;

o u t F i l e P a i r s [ 0 ] = ’A ’ ;
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o u t F i l e P a i r s [ 1 ] = ’2 ’ ;

o u t F i l e P a i r s [ 2 ] = ’\0 ’ ;

long idum = TKsetSeed ( ) ;

i n t f a s t =0;

char p a r F i l e [MAX PSR ] [ MAX FILELEN ] ;

char t i m F i l e [MAX PSR ] [ MAX FILELEN ] ;

i n t i , p , n , j , k ;

double g l o b a l P a r a m e t e r ;

double ∗∗ xres ,∗∗ x r e s u n i q , ∗∗ xres2 , ∗∗ x res3 ; / / x r e s i s t h e t i m e s o f t h e i n p u t r e s i d u a l s ,

x res3 i s o v e r l a p p i n g r e s i d u a l s

double f i r s t d a y , l a s t d a y , m inDi f f ;

double ∗∗ x r e s i n t e r p , ∗∗ x r e s i n t e r p 1 , ∗∗ x r e s i n t e r p 2 ; / / f o r t e s t i n g t h e power s p e c t r a o f

t h e 2−p o r t i o n p u l s a r s .

double ∗∗ y r e s i n t e r p ,∗∗ y r e s i n t e r p 1 , ∗∗ y r e s i n t e r p 2 ; / / t h e i n t e r p o l a t e d y va lues , and 1

and 2 deno te d i f f e r e n t s e c t i o n s o f t h e t ime s e r i e s w i th d i f f e r e nt wh i te n o i s e e r r o r

bars .

double ∗∗ e r r i n t e r p , ∗∗ e r r i n t e r p 1 , ∗∗ e r r i n t e r p 2 , ∗∗ v a r i n t e r p ;

i n t n r e s i n t e r p [MAX PSR ] ; / / number o f p o i n t s in i n t e r p o l a t e d s e r i e s .

double ∗ c lock x , ∗ c lock y , ∗ c l o c k e r r ; / / t h e c l o c k e r r o r t ime s e r i e s .

i n t nc lock ;

double Pc lock up ; / / The upper bound on t h e power in t h e c l o c k e r r o r .

double ∗∗XFER, ∗∗XFER interp , ∗∗XFER x , ∗∗meanPre ; / / meanPre i s t h e average spect rum o f

t h e wh i te no ise , used f o r p l o t t i n g pu rposes

i n t nXFER [MAX PSR ] ;

double ∗∗ yres ,∗∗ yres2 , ∗∗ y res2 un iq , ∗∗ y res3 ; / / y r e s i s t h e i n i t i a l s e t o f r e s i d u a l s , y res3

i s t h e o v e r l a p p i n g s e t .

double ∗∗ er r , ∗∗ er r2 , ∗∗ e r r 2 u n i q , ∗∗ er r3 , ∗∗weigh ts ; / / same d e f i n i t i o n s as y r e s above

double ∗∗ xspec ;

double ∗∗ yspec re , ∗∗ yspec im ; / / f o r t h e r e a l and imag ina ry p a r t s o f t h e F our ie r t r a n s f o r m .

double ∗∗yspec , mean , mean1 , mean2 ,∗∗ e r r s p e c ; / / e r r s p e c i s t h e e r r o r on t h e f i t o f t h e power

spect rum

double c l o c k s p e c x [MAX FREQ] , c l o c k s p e cy [MAX FREQ] , c l o c k s p e ce r r [MAX FREQ] , c l o c k s p e cy r e [

MAX FREQ] , c l o c k s p e cy i m [MAX FREQ] ;

i n t nc lockspe c ;

double ∗∗ c r o s s s p e cx , ∗∗ c r o s s s p e cy r e , ∗∗ c r o s s s p e cy i m , ∗∗ c r o s s s p e ce r r ; / / t h e c r o s s

spect rum o f each p a i r o f p u l s a r s .

i n t numCrossspec [MAXPSR∗MAX PSR ] ;

double ∗∗P g ; / / t h i s d e s c r i b e s t h e g r a v i t a t i o n a l wave power a t t h a t cross−s p e c t r a l

f r e q u e n c y f o r use w i th t h e p r e w h i t e n i n g

double modelspecy [MAX PSR ] [ 2 ] ; / / s t o r e s t h e a n a l y t i c power−law model spect rum f o r each

p u l s a r in t h e form ( mean , exponen t ) .

i n t a u t o F l a g =0;

i n t nspec [MAXPSR ] ;

double t s p a n [MAX PSR ] ;

double maxTspan ;

long double t o f f s e t ;

i n t n r e s [MAX PSR] , n r e s u n i q [MAX PSR ] ;

i n t nres2 [MAX PSR] , n res3 [MAXPSR] , maxNres ;

f l o a t ∗ fx1 , ∗ fy1 , ∗ yer r1 ,∗ yer r2 ,∗ fx2 ,∗ fy2 ,∗ fx3 ,∗ f y3 ;

f l o a t f irstCommonX , lastCommonX ;

double minx , maxx , miny , maxy , minx2 , maxx2 , miny2 , maxy2 ;

double rad2deg = 1 8 0 . 0 / MPI ;

i n t r e a d P a r =0 , readTim =0 , noClock =1 , noP lo t =0 , yesXSpec =0 , yesP lo tXSpec =0 , noXFER=1 , noEQUAD

=1 , noSpecModel = 1 , noquad =1;/ / noClock = 0 −−> DO c a l c u l a t e c l o c k e r r o r s ; noP lo t = 0

−−> DO make a p g p l o t p o s t s c r i p t f i l e . noXFER = 1 ==> noXFER i s f a l s e , so DO CORRECT by

t h e t r a n s f e r f u n c t i o n . I f noquad = 1 , then DO f i t a q u a d r a t i c .

186



i n t r e g u l a r = 1 ; / / r e g u l a r = 1 ==> do smooth ing IN PLACE , then i n t e r p o l a t e onto a r e g u l a r

g r i d us ing a c o n s t r a i n e d cub ic s p l i n e i n t e r p o l a t o r .

i n t specType = 4 ; / / = 1 −−> DFT ( r e q u i r e s r e g u l a r sampl ing ! ! ) , = 2−−> Lomb per iodogram , =

4 −−> ( can be we igh ted ) l e a s t squa res f i t o f As inwt + Bcoswt

i n t useWeight = 1 ; / / 0 to no t use a we igh ted s p e c t r a l e s t i m a t e , = 1 to use t h e we igh ts in

t h e s p e c t r a l e s t i m a t e ( on ly can use we igh ts f o r specType = 4)

i n t nharm = 1 ; / / =1 −−> d e f a u l t i s to f i t ONLY f o r t h e HD curve ; i f nharm = 2 then f i t f o r

c l o c k e r r o r as w e l l

i n t smooth = 1 ; / / 1==> d e f a u l t i s to do smoothing , = 0 means no smooth ing or i n t e r p o la t i o n .

i n t i n t e r p = 1 ; / / 1==> d e f a u l t i s to do i n t e r p o l a t i o n , = 0 means no i n t e r p o l a t i o n .

i n t yesCalFac = 0 ; / / 1 = t r ue , so we do do t h e c a l i b r a t i o n , 0 = f a l s e so we don ’ t do it .

i n t numCal = 10 ; / / t h e number o f channe ls to be c a l i b r a t e d .

char s t r [ 1 0 0 0 ] ;

double width = 1 0 0 . 0 ;

i n t ngw =0;

double d i s t [MAX PSR] , a lpha = −0.6666666666 , gwamp = 1 . 0 e−20;

double preWhAmp = 0 . 0 ; / / t h e amp l i t ude by which we w i l l pre−wh i ten

double f a c t o r = 1 . 0 ;

i n t distNum = 0 ;

double s e p a r a t i o n = 1 4 . 0 ;

/ / What va lue o f a lpha ( t h e gwb s p e c t r a l exponen t ) are we hun ting f o r when we c o n v e r t t h e

e s t i m a t e o f Aˆ2 i n t o a l i m i t e t c . ?

double alphaGWB = −2.0 / 3 . 0 ;

f o r ( p =0; p<MAX PSR; p++)

d i s t [ p ] = 0 . 9 1 ; / / d e f a u l t d i s t a n c e i s 0 . 91 k i l o p a r s e c s f o r a l l p u l s a r s

i n t jmax ;

double t k v a r ;

i n t nFreq ;

f l o a t l f r e q V a l f [MAX FREQ] , l p y f [MAX FREQ] ; / / l og o f f r e q u e n c y v a l u e s and power v a l u e s ( f o r

p g p l o t )

char l i n e [ 1 0 0 0 ] ;

FILE ∗ f i n ;

i n t nread ;

f l o a t meanPost [MAXFREQ] ;

double sum1 , sum2 , sum3 , sum4 , sum5 , sum6 , weight ;

i n t p1 , p2 , p l o t C o l ;

f l o a t f x [MAX OBSN] , fy [MAX OBSN] ;

i n t n c o r r =0 , t o t a l c o r r ;

double c o r r [MAX PSR∗MAX PSR ] ; / / c o r r e l a t i o n between p u l s a r p a i r s

double a 2 z e t a [MAXPSR∗MAX PSR ] ; / / cova r iance between p u l s a r p a i r s

double a2ze ta im [MAX PSR∗MAX PSR ] ; / / imag ina ry p a r t o f Aˆ2 z e t a e s t i m a t e f o r each p u l s a r

p a i r

double a 2 z e t a e r r [MAX PSR∗MAX PSR ] ; / / e r r o r in each cova r ianc e between p u l s a r p a i r s

double ang le [MAX PSR∗MAX PSR ] ; / / ang le on sky betw p u l s a r p a i r s

double T over lap [MAX PSR∗MAX PSR ] ; / / o v e r l a p p i n g t ime i n t e r v a l betw p u l s a r p a i r s

double avT over lap ; / / t h e we igh ted average o f t h e o v e r l a p t i m e s .

f l o a t c o r r f [MAX PSR∗MAX PSR ] ; / / c o r r e l a t i o n between p u l s a r p a i r s

f l o a t a 2 z e t a f [MAX PSR∗MAX PSR ] ; / / cova r iance between p u l s a r p a i r s

f l o a t a 2 z e t a e r r f [MAX PSR∗MAX PSR ] ; / / cova r ianc e between p u l s a r p a i r s

f l o a t a n g l e f [MAX PSR∗MAX PSR ] ;

f l o a t ymin , ymax ; / / a x i s l i m i t s f o r p l o t t i n g

FILE ∗ f o u t ;

char fname [ 1 0 0 ] ;

char dummy [ 1 0 0 ] ; / / f o r e n s u r i n g t h e scann ing in o f s p e c t r a l models goes in t h er i g h t o rde r

( t h e models match t h e p u l s a r s t h e y are supposed to match )

char specMode lF i l e [MAXFILELEN ] ;

s p r i n t f ( specModelF i le , ” S p e c t r a l M o d e l sF i n a l 2 p s r ” ) ;

double phase = 1 3 . 0 ; / / t h e phase o f f s e t in t h e ” f i x e d P h a s e v a r i a b l e ”− d e f i n e s where in

t h e f o r t n i g h t we t a k e each sample a f t e r i n t e r p o l a t i o n .
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∗ nps r = 0 ;

p r i n t f ( ” G r a p h i c a l I n t e r f a c e : PT ACor re la t i on\n” ) ;

p r i n t f ( ” Author : D. Yard ley\n” ) ;

p r i n t f ( ” Vers ion : v2 . 0 \n” ) ;

p r i n t f ( ” −−− t ype ’ tempo2−gr PT A Cor re la t i on −h ’ f o r he lp i n f o r m a t i o n\n” ) ;

/∗ Obta in a l l pa ramete r s from t h e command l i n e∗ /

f o r ( i =2 ; i<argc ; i ++)

{

i f ( s t rcmp ( argv [ i ] , ”−f ” ) ==0)

{

s t r c p y ( p a r F i l e [∗ nps r ] , argv [ i +1 ] ) ;

s t r c p y ( t i m F i l e [∗ nps r ] , argv [ i +2 ] ) ;

(∗ nps r ) ++;

r e a d P a r =0; readTim =0;

}

e l s e i f ( s t rcmp ( argv [ i ] , ”−par ” ) ==0)

{

r e a d P a r =1;

readTim =0;

∗nps r =0;

}

e l s e i f ( s t rcmp ( argv [ i ] , ”−t im ” ) ==0)

{

r e a d P a r =0;

readTim =1;

∗nps r =0;

}

e l s e i f ( s t rcmp ( argv [ i ] , ”−d i s t ” ) ==0)

{

s s c a n f ( argv [++ i ] , ”%l f ” , &d i s t [ distNum ] ) ;

d i s t [ distNum ]∗=3.086 e19 ;

distNum ++;

}

e l s e i f ( s t rcmp ( argv [ i ] , ”−ngw” ) ==0)

{

/ / p r i n t f ( ” ngw = %d 2\n ” ,ngw ) ;

s s c a n f ( argv [++ i ] , ”%d” , &ngw ) ;

/ / p r i n t f ( ” ngw = %d 3\n ” ,ngw ) ;

}

e l s e i f ( s t rcmp ( argv [ i ] , ”−seed ” ) ==0)

s s c a n f ( argv [++ i ] , ”%d” , &idum ) ;

e l s e i f ( s t rcmp ( argv [ i ] , ”−specMode lF i l e ” ) ==0) / / i n p u t f i l e c o n t a i n i n g t h e mean and t h e

s p e c t r a l exponen t f o r t h i s range o f p u l s a r s .

s s c a n f ( argv [ i +1 ] , ”%s ” ,& specMode lF i l e ) ;

e l s e i f ( s t rcmp ( argv [ i ] , ”−a lpha ” ) ==0)

s s c a n f ( argv [++ i ] , ”%l f ” , &a lpha ) ;

e l s e i f ( s t rcmp ( argv [ i ] , ”−alphaGWB ” ) ==0)

s s c a n f ( argv [++ i ] , ”%l f ” , &alphaGWB ) ;

e l s e i f ( s t rcmp ( argv [ i ] , ”− f a c t o r ” ) ==0) / / f a c t o r to m u l t i p l y rmses by .

s s c a n f ( argv [++ i ] , ”%l f ” , &f a c t o r ) ;

e l s e i f ( s t rcmp ( argv [ i ] , ”−gwamp” ) ==0)

s s c a n f ( argv [++ i ] , ”%l f ” , &gwamp) ;

e l s e i f ( s t rcmp ( argv [ i ] , ”−s e p a r a t i o n ” ) ==0)

s s c a n f ( argv [++ i ] , ”%l f ” , &s e p a r a t i o n ) ;

e l s e i f ( s t rcmp ( argv [ i ] , ”−preWhAmp” ) ==0)

s s c a n f ( argv [++ i ] , ”%l f ” , &preWhAmp) ;

e l s e i f ( s t rcmp ( argv [ i ] , ”−phase ” ) ==0)
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s s c a n f ( argv [++ i ] , ”%l f ” , &phase ) ;

e l s e i f ( s t rcmp ( argv [ i ] , ”−yesClock ” ) ==0)

noClock = 0 ; / / ca r r y ou t c l o c k e r r o r e s t i m a t i o n

e l s e i f ( s t rcmp ( argv [ i ] , ”−noP lo t ” ) ==0)

noP lo t = 1 ; / / do no t produce t h e p g p l o t p o s t s c r i p t f i l e

e l s e i f ( s t rcmp ( argv [ i ] , ”−noXFER” ) ==0)

noXFER = 0 ; / / do no t c o r r e c t by t h e t r a n s f e r f u n c t i o n

e l s e i f ( s t rcmp ( argv [ i ] , ”−noquad ” ) ==0)

noquad = 0 ; / / do no t f i t ou t a we igh ted q u a d r a t i c to each o v e r l a p p i n g data span

e l s e i f ( s t rcmp ( argv [ i ] , ”−noSpecModel ” ) ==0)

noSpecModel = 0 ; / / do no t i n c l u d e s p e c t r a l models

e l s e i f ( s t rcmp ( argv [ i ] , ”−noEQUAD” ) ==0)

noEQUAD = 0 ; / / do no t c o r r e c t by any EQUAD terms

e l s e i f ( s t rcmp ( argv [ i ] , ”−noSmooth ” ) ==0)

smooth = 0 ; / / do no t do smooth ing or i n t e r p o l a t i o n

e l s e i f ( s t rcmp ( argv [ i ] , ”−n o I n t e r p ” ) ==0)

i n t e r p = 0 ; / / do no t do i n t e r p o l a t i o n

e l s e i f ( s t rcmp ( argv [ i ] , ”−yesXSpec ” ) ==0)

yesXSpec = 1 ; / / p roduce an o u t p u t f i l e w i th t h e f i r s t few harmonics o f t h e cr o s s

power spect rum ( r e a l and imag p a r t s ) f o r each p a i r .

e l s e i f ( s t rcmp ( argv [ i ] , ”−yesPlo tXSpec ” ) ==0)

yesP lo tXSpec = 1 ; / / p roduce p l o t o f t h e c r o s s power spect rum f o r each p a i r o f

p u l s a r s .

e l s e i f ( s t rcmp ( argv [ i ] , ”−yesCalFac ” ) ==0)

yesCalFac = 1 ; / / C a l i b r a t e each c r o s s spect rum us ing C a l i b r a t i o n F a c t o r s%s%s f i l e s

e l s e i f ( s t rcmp ( argv [ i ] , ”−numCal ” ) ==0)

s s c a n f ( argv [++ i ] , ”%d” , &numCal ) ;

e l s e i f ( s t rcmp ( argv [ i ] , ”−n o r e g u l a r ” ) ==0)

r e g u l a r = 0 ;

e l s e i f ( s t rcmp ( argv [ i ] , ”−specType ” ) ==0) / / 2 => Lomb Scar lge , 4 => Weighted Lomb

Scarg le , 1==> DFT

s s c a n f ( argv [++ i ] , ”%d” , &specType ) ;

e l s e i f ( s t rcmp ( argv [ i ] , ”−nharm ” ) ==0) / / =1 −−> on ly f i t f o r HD curve . =2−−> f i t f o r

HD curve and a c o n s t a n t s i m u l t a n e o u s l y .

s s c a n f ( argv [++ i ] , ”%d” , &nharm ) ;

e l s e i f ( s t rcmp ( argv [ i ] , ”−nouseWeight ” ) ==0) / / =0 to do an unweighted LSQ f i t o f s i n

and cos to de te rm ine spect rum , = 1 to do a we igh ted LSQ f i t .

useWeight = 0 ;

e l s e i f ( s t rcmp ( argv [ i ] , ”−o u t F i l e ” ) ==0) / / o u t p u t f i l e f o r e s t i m a t e o f A , A ˆ 2 ,

s i g n i f i c a n c e s and t h e reduced ch i−squared .

s s c a n f ( argv [ i +1 ] , ”%s ” ,& o u t F i l e ) ;

e l s e i f ( s t rcmp ( argv [ i ] , ”−o u t F i l e P a i r s ” ) ==0) / / o u t p u t f i l e f o r each c r o s s spect rum o f

each p a i r . Order i s Re ( 1 ) , Imag ( 1 ) , Re ( 2 ) , Imag ( 2 ) , Re ( 3 ) , Imag ( 3 ) . . . One row i s

one i t e r a t i o n o f t h e code .

s s c a n f ( argv [ i +1 ] , ”%s ” ,& o u t F i l e P a i r s ) ;

e l s e i f ( s t rcmp ( argv [ i ] , ”−au to ” ) ==0)

{

r e a d P a r =0;

readTim =0;

a u t o F l a g =1;

}

e l s e i f ( r e a d P a r ==1)

{

s t r c p y ( p a r F i l e [∗ nps r ] , argv [ i ] ) ;

(∗ nps r ) ++;

}

e l s e i f ( readTim ==1)

{

s t r c p y ( t i m F i l e [∗ nps r ] , argv [ i ] ) ;

189



(∗ nps r ) ++;

}

e l s e i f ( s t rcmp ( argv [ i ] , ”−h” ) ==0 | | s t rcmp ( argv [ i ] , ”−−he lp ” ) ==0)

{

p r i n t f ( ” \n TEMPO2 PT A Cor re la t i on p l u g i n\n” ) ;

p r i n t f ( ”===================\ n” ) ;

p r i n t f ( ” \nUSAGE: \n\ t tempo2−gr PT A Cor re la t i on −par ∗ . pa r −t im ∗ . t im . . . ( as many

as d e s i r e d ) [ o p t i o n s ]\ n” ) ;

p r i n t f ( ” \n Command l i n e o p t i o n s :\ n” ) ;

p r i n t f ( ”−yesClock : c a l c u l a t e s c lock e r r o r s ( d e f a u l t i s no c lock c o r re c t i o n s )\n” ) ;

p r i n t f ( ”−noP lo t : does no t produce t h e p g p l o t o u t p u t\n” ) ;

p r i n t f ( ”−o u t F i l e :\ t choose o u t p u t f i l e f o r s t a t i s t i c s ( d e f a u l t i s ’A ’ )\n” ) ;

p r i n t f ( ”−seed :\ t change t h e random number seed ( d e f a u l t =−123) \n” ) ;

p r i n t f ( ”−d i s t :\ t i n p u t t h e d i s t a n c e to t h e p u l s a r in kpc ( d e f a u l t i s 0 . 91 kpc )\n” ) ;

p r i n t f ( ”−specType :\ t d e t e r m i n e s which k ind of per iodogram to do−−> 1 g i v e s DFT, 2

g i v e s Lomb Scarg le , 4 g i v e s Weighted Lomb S c a r g l e ( d e f a u l t is 4)\n” ) ;

p r i n t f ( ”−n o r e g u l a r :\ t r e g u l a r = 0 ==> do smooth ing and i n t e r p o l a t i n g t o g e t h e r , and

don ’ t i n t e r p o l a t e a c r o s s gaps t h a t a r e l a r g e r than 2∗ t a u ( d e f a u l t i s smooth in

p l a c e and then i n t e r p o l a t e onto a r e g u l a r g r i d )\n” ) ;

p r i n t f ( ”−nouseWeight :\ t does no t use we igh ts to c a l c u l a t e t h e LSQ f i t o f s i n s and

c o s i n e s to de te rm ine t h e power spect rum ( d e f a u l t i s to use weigh ts )\n” ) ;

p r i n t f ( ”−specMode lF i l e : \ t p r e f i x o f i n p u t f i l e c o n t a i n i n g t h e mean and t h e

s p e c t r a l exponent f o r t h i s range of p u l s a r s ( d e f a u l t i s ’ S p ec t r a l M o d e l s F i n a l 2

’ . \ n” ) ;

p r i n t f ( ”−o u t F i l e P a i r s : \ t p r e f i x o f o u t p u t f i l e f o r each c r o s s spect rum of each

p a i r . Order i s Re ( 1 ) , Imag ( 1 ) , Re ( 2 ) , Imag ( 2 ) , Re ( 3 ) , Imag (3 ) .\ n” ) ;

p r i n t f ( ”−noSmooth :\ t don ’ t do smooth ing or i n t e r p o l a t i o n\n” ) ;

p r i n t f ( ”−n o I n t e r p :\ t don ’ t do i n t e r p o l a t i o n\n” ) ;

p r i n t f ( ”−noEQUAD:\ t don ’ t use t h e EQUAD−l i k e c o r r e c t i o n s t e p\n” ) ;

p r i n t f ( ”=========GWB i n p u t s t u f f ======\n” ) ;

p r i n t f ( ”−ngw :\ t Number of gws to pu t in s i m u l a t e d background .\ n” ) ;

p r i n t f ( ”−a lpha :\ t s p e c t r a l exponent o f background\n” ) ;

p r i n t f ( ”−gwamp:\ t d i m e n s i o n l e s s am p l i t ude of background , bu t i t assumes t h at ’ f ’ i s

measured in 1 /1 s , no t 1 /1 yr\n” ) ;

p r i n t f ( ”−alphaGWB :\ t s p e c t r a l exponent o f background when d e t e r m i n i n g l i m i t s et c .

r e a l l y t h i s shou ld be t h e same as a lpha ! !\ n” ) ;

e x i t ( 0 ) ;

}

}

/∗ Form p u l s a r t i m i n g r e s i d u a l s ∗ /

r e a d P a r f i l e ( ps r , p a r F i l e , t i m F i l e ,∗ nps r ) ; /∗ Load t h e pa ramete r s ∗ /

r e a d T i m f i l e ( ps r , t i m F i l e ,∗ nps r ) ; /∗ Load t h e a r r i v a l t i m e s ∗ /

p r e P r o c e s s ( psr ,∗ npsr , argc , argv ) ;

f o rm BatsA l l ( ps r ,∗ nps r ) ; /∗ Form t h e b a r y c e n t r i c a r r i v a l t i m e s∗ /

f o rm Res idua l s ( ps r ,∗ npsr , 0 ) ; /∗ Form t h e r e s i d u a l s t h e s e are PREFIT r e s i d u a l s

∗ /

d o F i t ( ps r ,∗ npsr , 0 ) ;

f o rm BatsA l l ( ps r ,∗ nps r ) ; /∗ Form t h e b a r y c e n t r i c a r r i v a l t i m e s∗ /

f o rm Res idua l s ( ps r ,∗ npsr , 0 ) ; /∗ Form t h e r e s i d u a l s t h e s e are POSTFIT r e s i d u a l s

∗ /

/ / A l l o c a t e memory

c r o s s s p e cx = ( double ∗∗ ) mal loc (MAX PSR∗MAX PSR∗ s i z e o f( double ∗ ) ) ;

c r o s s s p e cy r e = (double ∗∗ ) mal loc (MAX PSR∗MAX PSR∗ s i z e o f( double ∗ ) ) ;

c r o s s s p e cy i m = ( double ∗∗ ) mal loc (MAX PSR∗MAX PSR∗ s i z e o f( double ∗ ) ) ;

c r o s s s p e ce r r = (double ∗∗ ) mal loc (MAX PSR∗MAX PSR∗ s i z e o f( double ∗ ) ) ;

P g = ( double ∗∗ ) mal loc (MAX PSR∗MAX PSR∗ s i z e o f( double ∗ ) ) ;
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x r e s = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

x res2 = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

x res3 = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

x r e s i n t e r p = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

x r e s i n t e r p 1 = ( double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

x r e s i n t e r p 2 = ( double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

x r e s u n i q = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

y r e s i n t e r p = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

y r e s i n t e r p 1 = ( double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

y r e s i n t e r p 2 = ( double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

e r r i n t e r p = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

e r r i n t e r p 1 = ( double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

e r r i n t e r p 2 = ( double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

v a r i n t e r p = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

y r e s = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

y res2 = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

y r e s 2 u n i q = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

y res3 = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

e r r = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

e r r 2 = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

e r r 2 u n i q = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

e r r 3 = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

we igh ts = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

xspec = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

yspec = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

y s p e c r e = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

yspec im = ( double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

meanPre = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

XFER = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

XFER x = ( double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

XFER interp = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ;

e r r s p e c = (double ∗∗ ) mal loc (MAX PSR∗ s i z e o f( double ∗ ) ) ; / / e r r s p e c i s t h e e r r o r on t h e f i t o f

t h e power spect rum

c l o c k x = ( double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;

c l o c k y = ( double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;

c l o c k e r r = (double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;

f o r ( p =0; p<MAX PSR; p++)

{

x r e s [ p ] = (double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;

x res2 [ p ] = (double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;

x res3 [ p ] = (double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;

x r e s u n i q [ p ] = ( double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;

x r e s i n t e r p [ p ] = (double ∗ ) mal loc (10000∗ s i z e o f( double ) ) ;

x r e s i n t e r p 1 [ p ] = ( double ∗ ) mal loc (10000∗ s i z e o f( double ) ) ;

x r e s i n t e r p 2 [ p ] = ( double ∗ ) mal loc (10000∗ s i z e o f( double ) ) ;

y r e s i n t e r p [ p ] = (double ∗ ) mal loc (10000∗ s i z e o f( double ) ) ;

y r e s i n t e r p 1 [ p ] = ( double ∗ ) mal loc (10000∗ s i z e o f( double ) ) ;

y r e s i n t e r p 2 [ p ] = ( double ∗ ) mal loc (10000∗ s i z e o f( double ) ) ;

e r r i n t e r p [ p ] = (double ∗ ) mal loc (10000∗ s i z e o f( double ) ) ;

e r r i n t e r p 1 [ p ] = ( double ∗ ) mal loc (10000∗ s i z e o f( double ) ) ;

e r r i n t e r p 2 [ p ] = ( double ∗ ) mal loc (10000∗ s i z e o f( double ) ) ;

v a r i n t e r p [ p ] = (double ∗ ) mal loc (10000∗ s i z e o f( double ) ) ;

y r e s [ p ] = (double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;

y res2 [ p ] = (double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;

y r e s 2 u n i q [ p ] = ( double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;

y res3 [ p ] = (double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;

e r r [ p ] = ( double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;

e r r 2 [ p ] = (double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;
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e r r 2 u n i q [ p ] = ( double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;

e r r 3 [ p ] = (double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;

we igh ts [ p ] = (double ∗ ) mal loc (MAX OBSN∗ s i z e o f( double ) ) ;

xspec [ p ] = (double ∗ ) mal loc (MAX FREQ∗ s i z e o f( double ) ) ;

yspec [ p ] = (double ∗ ) mal loc (MAX FREQ∗ s i z e o f( double ) ) ;

y s p e c r e [ p ] = ( double ∗ ) mal loc (MAX FREQ∗ s i z e o f( double ) ) ;

yspec im [ p ] = ( double ∗ ) mal loc (MAX FREQ∗ s i z e o f( double ) ) ;

e r r s p e c [ p ] = (double ∗ ) mal loc (MAX FREQ∗ s i z e o f( double ) ) ;

meanPre [ p ] = (double ∗ ) mal loc (MAX FREQ∗ s i z e o f( double ) ) ;

XFER[ p ] = ( double ∗ ) mal loc (MAX FREQ∗ s i z e o f( double ) ) ;

XFER x [ p ] = ( double ∗ ) mal loc (MAX FREQ∗ s i z e o f( double ) ) ;

XFER interp [ p ] = (double ∗ ) mal loc (MAX FREQ∗ s i z e o f( double ) ) ;

}

f o r ( k =0; k<MAX PSR∗MAX PSR; k++)

{

c r o s s s p e cx [ k ] = ( double ∗ ) mal loc (MAX FREQ∗ s i z e o f( double ) ) ;

c r o s s s p e cy r e [ k ] = ( double ∗ ) mal loc (MAX FREQ∗ s i z e o f( double ) ) ;

c r o s s s p e cy i m [ k ] = ( double ∗ ) mal loc (MAX FREQ∗ s i z e o f( double ) ) ;

c r o s s s p e ce r r [ k ] = ( double ∗ ) mal loc (MAX FREQ∗ s i z e o f( double ) ) ;

P g [ k ] = ( double ∗ ) mal loc (MAX FREQ∗ s i z e o f( double ) ) ;

}

long double m insa t [∗ nps r ] , maxsat [∗ nps r ] , avgTspan = 0 . 0 ;

/ / f o l l o w i n g i s e s s e n t i a l l y f o r s p l i t t i n g up t h e 1857 data set , though i t cou ld be g e n e r a l l y

a p p l i c a b l e .

double maxal lowablegap = 2 0 0 0 . 0 ; / / i n u n i t s o f days . THIS IS AN ARBITRARY CHOICE , s imp ly so

t h a t we know 1857 g e t s s p l i t up .

long double maxgap [∗ nps r ] ;

i n t locmaxgap [∗ nps r ] ; / / t h e l o c a t i o n o f t h e b i g g e s t gap in t h e t ime s e r i e s .

f o r ( p =0; p<∗nps r ; p ++)

{

m insa t [ p ]= maxsat [ p ]= p s r [ p ] . obsn [ 0 ] . s a t ;

maxgap [ p ] = 0 . 0L ;

f o r ( j =0 ; j<p s r [ p ] . nobs ; j ++)

{

i f ( p s r [ p ] . obsn [ j ] . s a t< m insa t [ p ] ) m insa t [ p ] = p s r [ p ] . obsn [ j ] . s a t ;

i f ( p s r [ p ] . obsn [ j ] . s a t> maxsat [ p ] ) maxsat [ p ] = p s r [ p ] . obsn [ j ] . s a t ;

i f ( p s r [ p ] . obsn [ j + 1 ] . s a t− p s r [ p ] . obsn [ j ] . s a t> maxgap [ p ] && j < p s r [ p ] . nobs−1)

{

maxgap [ p ] = p s r [ p ] . obsn [ j + 1 ] . s a t− p s r [ p ] . obsn [ j ] . s a t ;

locmaxgap [ p ] = j ; / / so t h e b i g g e s t gap appears between t h e j−t h and j+1− t h

o b s e r v a t i o n s .

}

}

t s p a n [ p ] = maxsat [ p ]− m insa t [ p ] ;

p r i n t f ( ” t s p a n of p u l s a r %s = %g days\n” , p s r [ p ] . name , t s p a n [ p ] ) ;

avgTspan += (long double) t s p a n [ p ] ;

p r i n t f ( ” maxgap [ p ] = %Lg\n” , maxgap [ p ] ) ;

}

t o f f s e t = p s r [ 0 ] . param [ parampepoch ] . v a l [ 0 ] ;

long double t o f f s e t 2 = 3100.0L ; / / so t h a t t h e smooth ing a l g o r i t h m doesn ’ t mess up w i th

n e g a t i v e measured SATs . However , t h e GWB code f r e a k s ou t i f th e day number i s too b ig .

avgTspan = avgTspan / (long double) ∗nps r ;

maxTspan = TKfindMaxd ( tspan ,∗ nps r ) ;

/ / READ PULSAR DATA INTO MEMORY and c a l u c l a t e we igh ted v a r i an c e o f r e s i d u a l s

s p r i n t f ( fname , ” WeightedVAR%dpsrs GWB” ,∗ nps r ) ;

i f ( ( f o u t = fopen ( fname , ” a ” ) ) == NULL)

{
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p r i n t f ( ” Unable to open / f i n d f i l e %s\n” , fname ) ;

e x i t ( 1 ) ;

}

f o r ( p =0; p<∗nps r ; p++)

{

p r i n t f ( ” Reading d a t a f o r p s r number %d\n” , p +1) ;

/ / now i f maxgap f o r t h i s p u l s a r i s b igger than maxa l lowable gap , then choose t h e l a t e s t

p o r t i o n o f t h i s p u l s a r and d i s c a r d t h e f i r s t few o b s e r v a t i o ns .

i f ( maxgap [ p ] <= maxal lowablegap )

{

locmaxgap [ p ] = −1;

}

p r i n t f ( ” locmaxgap [ p ] = %d\n” , locmaxgap [ p ] ) ;

p r i n t f ( ” n r e s [ p ] = %d , p s r [ p ] . nobs = %d\n” , n r e s [ p ] , p s r [ p ] . nobs ) ;

f o r ( i =0 ; i<p s r [ p ] . nobs− locmaxgap [ p ]− 1 ; i ++) / / f rom t h e o t h e r s i d e o f t h e b i g g e s t

gap onwards , s t a r t r e c o r d i n g o b s e r v a t i o n s .

{

x r e s [ p ] [ i ] = ( double ) ( p s r [ p ] . obsn [ i + locmaxgap [ p ] + 1 ] . s a t− t o f f s e t + t o f f s e t 2 ) ;

y r e s [ p ] [ i ] = ( double ) p s r [ p ] . obsn [ i + locmaxgap [ p ] + 1 ] . r e s i d u a l ;

e r r [ p ] [ i ] = ( double ) p s r [ p ] . obsn [ i + locmaxgap [ p ] + 1 ] . t o a E r r∗1e−6; / / so e r r i s in

seconds now

weigh ts [ p ] [ i ] = 1 . 0 / e r r [ p ] [ i ] / e r r [ p ] [ i ] ;

}

i f ( maxgap [ p ] <= maxal lowablegap )

{

n r e s [ p ] = p s r [ p ] . nobs ;

}

e l s e
{

n r e s [ p ] = p s r [ p ] . nobs− locmaxgap [ p ]− 1 ;

p s r [ p ] . nobs = n r e s [ p ] ;

t s p a n [ p ] = x r e s [ p ] [ p s r [ p ] . nobs− 1] − x r e s [ p ] [ 0 ] ;

}

f p r i n t f ( f ou t , ”%g ” , TKf indWeightedVar ianced ( y r e s [ p ] , we igh ts [ p ] , p s r [ p ] . nobs ) ) ;

}

f p r i n t f ( f ou t , ” \n” ) ;

f c l o s e ( f o u t ) ;

/ / Remove unweighted mean

f o r ( p =0; p<∗nps r ; p++)

{

mean = 0 . 0 ;

f o r ( i =0 ; i<p s r [ p ] . nobs ; i ++)

mean+= y r e s [ p ] [ i ] ;

mean / = (double ) ( p s r [ p ] . nobs ) ;

f o r ( i =0 ; i<p s r [ p ] . nobs ; i ++)

y r e s [ p ] [ i ]−=mean ;

}

i n t f i l t e r i d = 2 ; / / f i l t e r i d i s an i n t e g e r d e s c r i b i n g which k ind o f f i l t e r to

use : 1 = Gauss ian f i l t e r , 2 = E x p o n e n t i a l f i l t e r

i n t f i l t e r P l o t = 0 ; / / 0 to no t p l o t t h e f i l t e r s , 1 to p l o t them .

double f i l t e r [ ( i n t ) w id th ] ; / / on l y t a k e mean i f t h e r e i s more than 1 day between obsns .

double t a u [∗ nps r ] ;

double avgTau = 1 . 0 ; / / t h i s i s needed f o r t h e c a l c u l a t i o n o f s e p a r a t i o n ( how f a r th e

p o i n t s are s e p a r a t e d ) .

double i nvsdev = 2 . 5 , bw ;

double c u r r e n t d a y ; / / d e s c r i b e s which day in t h e i n t e r p o l a t e d data s e t we are l o ok i n g

a t .
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i n t count1 , count2 ;

f o r ( p =0; p<∗nps r ; p ++)

{

t a u [ p ] = t s p a n [ p ] / 2 / MPI / 3 ; / / t ime c o n s t a n t f o r f i l t e r , no te d i f f e r e n t f o r

each p u l s a r . The ”3” i s because we want t h e f i l t e r to f a l l t o−6dB a t t h e 3 rd p o i n t

i n t h e spect rum , which occu rs a t 3 / t span [ p ] ;

avgTau ∗= t a u [ p ] ; / / we want t h e geomet r i c mean , no t a r i t h m e t i c . . .

f o r ( i =0 ; i <( i n t ) w id th ; i ++)

{

i f ( f i l t e r i d ==1) / / Choose Gauss ian f i l t e r

{

i nvsdev = 700.0 / t a u [ p ] ; / / changes ( i n v e r s e o f ) s tanda rd d e v i a t i o n o f f i l t e r (

d e f a u l t MATLAB va lue i s 2 . 5 )

f i l t e r [ i ]= exp ( −0.5∗pow ( invsdev∗ ( ( double ) ( ( i +1) −0.5∗( w id th +1) ) / ( w id th +1) / 2 . 0 ) , 2 ) )

;

}

e l s e i f ( f i l t e r i d ==2) / / form and p l o t e x p o n e n t i a l f i l t e r . Note we ’ re us ing a

d i f f e r e n t expn l . f i l t e r f o r each p u l s a r

f i l t e r [ i ]= exp(− f a b s ( ( i−width / 2 ) / t a u [ p ] ) ) ;

i f ( noP lo t == 0 && f i l t e r P l o t == 1)

{

f x [ i ] = ( f l o a t ) i ;

f y [ i ] = ( f l o a t ) f i l t e r [ i ] ;

}

}

}

avgTau = pow ( avgTau , (double ) ( 1 . 0 / (double ) ∗ nps r ) ) ;

double f i x e d P h a s e =−15000.0− ( double ) t o f f s e t + phase ; / / f i x e s t h e phase o f t h e g r i d o f

p o i n t s f o r i n t e r p o l a t i o n .

/ /NOW PREPARE TIME SERIES us ing smooth ing and i n t e r p o l a t i on

double varp 1 = 0 . 0 , va rp 2 = 0 . 0 ; / / t h e v a r i a n c e o f two d i f f e r e n t s e c t i o n s o f t ime s e r i e s

− e . g . i f sudden change in wh i te n o i s e v a r i a n c e .

i n t coun t 1 = 0 , coun t 2 = 0 ; / / t h e number o f p o i n t s b e f o r e and a f t e r t h e c u t o f f p o i n t f o r

t h e non−s t a t i o n a r i t y o f t h e t ime s e r i e s .

i f ( smooth == 1) / / t hen do t h e smooth ing and p o s s i b l y a l s o t h e i n t e r p o l a t i o n.

{

f o r ( p =0; p<∗nps r ; p++) / / t o a n a l y s e and p l o t a l l t h e t i m i n g r e s i d s e t c .

{

avgTau = 6 0 . 0 ;

i f ( s t rcmp ( p s r [ p ] . name , ” 1939+2134 ” ) ==0) avgTau = 3 0 . 0 ; / / t o remove t h e

bump near t h e end o f t h e t ime s e r i e s .

i f ( p == 0) p r i n t f ( ” f i x i n g smooth ing wid th to be avgTau = %lg\n” , avgTau ) ;

i f ( r e g u l a r == 1) / / SMOOTH p u l s a r p in p lace i f we want ” r e g u l a r ”

r esamp l ing

{

f o r ( i =0 ; i<n r e s [ p ] ; i ++)

{

sum1 = 0 . 0 ; y r e si n t e r p [ p ] [ i ] = 0 . 0 ; v a r i n t e r p [ p ] [ i ] = 0 . 0 ;

c u r r e n t d a y = x r e s [ p ] [ i ] ; / / smooth onto t h e same p o i n t s as t h e i n p u t t ime

s e r i e s

f o r ( k =0; k<p s r [ p ] . nobs ; k++)

{

i f ( f i l t e r i d == 1) weight = exp (−0.5 ∗ pow ( x r e s [ p ] [ k ] − c u r r e n t d a y , 2) /

avgTau ) ;

e l s e i f ( f i l t e r i d == 2) weight = exp(− f a b s ( c u r r e n t d a y− x r e s [ p ] [ k ] ) /

avgTau ) / e r r [ p ] [ k ] / e r r [ p ] [ k ] ;
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sum1+= weight ;

y r e s i n t e r p [ p ] [ i ]+= weight∗ y r e s [ p ] [ k ] ;

v a r i n t e r p [ p ] [ i ]+=( weight∗weight∗ e r r [ p ] [ k ]∗ e r r [ p ] [ k ] ) ;

}

y res2 [ p ] [ i ] = y r e s i n t e r p [ p ] [ i ] / sum1 ;

e r r 2 [ p ] [ i ] = s q r t ( v a r i n t e r p [ p ] [ i ] ) / sum1 ;

x res2 [ p ] [ i ] = c u r r e n t d a y ;

i f ( i n t e r p == 1)

{

/ / Now i f any o b s e r v a t i o n s are too c l o s e t o g e t h e r in t ime , we don ’ t

r e a l l y need them any more ( s i n c e we ’ ve a l r e a d y smoothed t h e data , we

’ ve taken advantage o f t h e m u l t i p l e o b s e r v a t i o n s ) . The i n t er p o l a t i o n

s t e p does no t need l o t s and l o t s o f o b s e r v a t i o n s to be more

accu ra te , so we can s e t t h e o b s e r v a t i o n s equa l to each other ,then

t h e un ique ( ) f u n c t i o n which I run below w i l l remove them .

i f ( x res2 [ p ] [ i ] − x res2 [ p ] [ i−1] < 1 . 0 e−3 && i > 0)

{

y res2 [ p ] [ i ] = y res2 [ p ] [ i−1];

e r r 2 [ p ] [ i ] = e r r 2 [ p ] [ i −1];

x res2 [ p ] [ i ] = x res2 [ p ] [ i−1];

}

}

}

/ / Remove means

count1 = 0 ;

mean1 = 0 . 0 ;

f o r ( i =0 ; i<n r e s [ p ] ; i ++) mean1+= y res2 [ p ] [ i ] ;

mean1 / = (double ) ( n r e s [ p ] ) ;

f o r ( i =0 ; i<n r e s [ p ] ; i ++) y res2 [ p ] [ i ]−=mean1 ;

i f ( TKmean d ( y res2 [ p ] , n r e s [ p ] )> 1 . 0 e−10) { p r i n t f ( ”ERROR ! ! mean of y res2 [%d ]

= %g != 0 , n r e s [ p ] = %d\n” , p , TKmean d ( y res2 [ p ] , n r e s [ p ] ) , n r e s [ p ] ) ; e x i t ( 1 ) ;}

i f ( i n t e r p == 1)

{

/ / now i n t e r p o l a t e smoothed data onto a r e g u l a r g r i d us ing a co n s t r a i n e d

cub ic s p l i n e − day s e p a r a t i o n s g iven by ” s e p a r a t i o n ” .

un ique ( x res2 [ p ] , n r e s [ p ] , x r e su n i q [ p ] ,& n r e s u n i q [ p ] ) ;

un ique ( y res2 [ p ] , n r e s [ p ] , y r e s 2u n i q [ p ] ,& n r e s u n i q [ p ] ) ;

un ique ( e r r 2 [ p ] , n r e s [ p ] , e r r 2u n i q [ p ] ,& n r e s u n i q [ p ] ) ; / / MAKE SURE ERRORS AREN

’T ALL EQUAL AT THIS POINT ! !

/ / Now run t h e s p l i n e i n t e r p o l a t i o n to g e t t h e r e s i d u a l s .

i n t e r p o l a t e S p l i n e S m o o t h F i x e d P h a s e ( x r e su n i q [ p ] , y r e s 2 u n i q [ p ] , n r e s u n i q [ p ] ,

s e p a r a t i o n , x r e si n t e r p [ p ] , y r e s i n t e r p [ p ] , &n r e s i n t e r p [ p ] , f i x e d P h a s e )

;

/ / Now run t h e s p l i n e i n t e r p o l a t i o n ON THE ERROR BARS us ing t he i r v a r i a n c e .

F i r s t c a l c u l a t e v a r i a n c e o f t h e e r r 2u n i q [ p ] a r ray

f o r ( i =0 ; i<n r e s u n i q [ p ] ; i ++)

e r r 2 u n i q [ p ] [ i ] = e r r 2 u n i q [ p ] [ i ] ∗ e r r 2 u n i q [ p ] [ i ] ;

i n t e r p o l a t e S p l i n e S m o o t h F i x e d P h a s e ( x r e su n i q [ p ] , e r r 2 u n i q [ p ] , n r e s u n i q [ p ] ,

s e p a r a t i o n , x r e si n t e r p [ p ] , v a r i n t e r p [ p ] , &n r e s i n t e r p [ p ] , f i x e d P h a s e ) ;

/ / r e s e t va lue o f un iq e r r o r to be t h e s tanda rd d e v i a t i o n FOR COMPLETENESS’

SAKE

f o r ( i =0 ; i<n r e s u n i q [ p ] ; i ++)

e r r 2 u n i q [ p ] [ i ] = s q r t ( e r r 2 u n i q [ p ] [ i ] ) ;

/ / So t h e a lmos t f i n a l data s e t i s c o n t a i n e d in x r e si n t e r p [ p ] , y r e s i n t e r p [ p

] , v a r i n t e r p [ p ] , n r e s i n t e r p [ p ] , where v a r i n t e r p [ p ] [ i ] i s t h e SQUARE of

t h e e r r o r on t h e i t h o b s e r v a t i o n . Th is g e t s c o r r e c t e d below when we do
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t h e ” e r r o r b o o s t i n g ”

}

e l s e i f ( i n t e r p == 0) / / don ’ t do t h e i n t e r p o l a t i o n

{

f o r ( i =0 ; i<n r e s [ p ] ; i ++)

{

x r e s i n t e r p [ p ] [ i ] = x res2 [ p ] [ i ] ;

y r e s i n t e r p [ p ] [ i ] = y res2 [ p ] [ i ] ;

v a r i n t e r p [ p ] [ i ] = e r r 2 [ p ] [ i ] ∗ e r r 2 [ p ] [ i ] ;

}

n r e s i n t e r p [ p ] = n r e s [ p ] ;

}

}

e l s e i f ( r e g u l a r == 0) / / don ’ t smooth in p lace , r a t h e r smooth onto t h e

i n t e r p o l a t e d g r i d t h a t we want ( so smooth ing and i n t e r p are done t o g e t h e r )

{

avgTau = 6 0 . 0 ; / / t h i s i s t h e smooth ing w id th

i f ( s t rcmp ( p s r [ p ] . name , ” 1939+2134” ) ==0)

{

avgTau = 3 0 . 0 ; / / t o remove t h e bump near t h e end o f t h e t ime s e r i e s .

p r i n t f ( ”FIXING ! ! ! avgTau = %lg f o r p s r 1939\n” , avgTau ) ;

}

f i r s t d a y = c e i l ( TKfindMin d ( x r e s [ p ] , p s r [ p ] . nobs ) ) ;

l a s t d a y = f l o o r ( TKfindMax d ( x r e s [ p ] , p s r [ p ] . nobs ) ) ;

s e p a r a t i o n = 2 . 0∗ avgTau ; / / r esamp l ing r a t e i s j u s t t w i c e t h e smooth ing w id th

.

count1 = 0 ; / / a c o u n t e r to t e l l us how many o b s e r v a t i o n s are a c t u a l l y in th e

pos t−i n t e r p o l a t e d t ime s e r i e s .

n r e s i n t e r p [ p ] = 1 + ( i n t ) f l o o r ( ( l a s t d a y − f i r s t d a y ) / s e p a r a t i o n ) ; / / t h i s i s

t h e f i r s t guess a t t h e number o f p o i n t s in t h e pos t−i n t e r p o l a t e d s e r i e s .

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++) / / i i s o b s e r v a t i o n number in pos t− i n t e r p o l a t e d

t ime s e r i e s .

{

c u r r e n t d a y = f i r s t d a y + (double ) i ∗ s e p a r a t i o n ; / / x−v a l u e s are a t ime

s e r i e s w i th samples s e p a r a t e d by ” s e p a r a t i o n ” .

minDi f f = f a b s ( x r e s [ p ] [ 0 ] − c u r r e n t d a y ) ;

/ / DO t h e smooth ing and i n t e r p o l a t i o n on ly i f t h e new p o i n t ( xres2 [ p ] [ i ] )

w i l l be w i t h i n tau / 1 . 0 o f a p o i n t i n t h e o r i g i n a l t ime s e r i e s .f i l t e r i d

c o n t r o l s whether to use gauss ian or e x p o n e n t i a l smoother− 1 = Gaussian ,

2 = expn l .

f o r ( k =0; k<p s r [ p ] . nobs ; k++)

{

i f ( f a b s ( x r e s [ p ] [ k ] − c u r r e n t d a y )< minDi f f ) m inDi f f = f a b s ( x r e s [ p ] [ k ]

− c u r r e n t d a y ) ; / / cou ld use wh i le loop here− f a s t e r .

}

p r i n t f ( ” m inDi f f = %g \n” , m inDi f f ) ;

/ / i f t h e minimum d i f f e r e n c e i s s t i l l more than tau / 1 . 0 , thenDON’T pu t down

an i n t e r p o l a t e d p o i n t .

i f ( m inDi f f <= ( avgTau / 1 . 0 ) ) / / t hen do t h e i n t e r p o l a t i o n

{

sum1 = 0 . 0 ;

y r e s i n t e r p [ p ] [ count1 ] = 0 ; v a r i n t e r p [ p ] [ count1 ] = 0 ;

f o r ( k =0; k<p s r [ p ] . nobs ; k++)

{

i f ( f i l t e r i d == 1) weight = exp (−0.5 ∗ pow ( x r e s [ p ] [ k ] −

c u r r e n t d a y , 2) / avgTau ) ;
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e l s e i f ( f i l t e r i d == 2) weight = exp(− f a b s ( x r e s [ p ] [ k ] − c u r r e n t d a y ) /

avgTau ) / pow ( e r r [ p ] [ k ] , 2 ) ;

sum1+= weight ;

y r e s i n t e r p [ p ] [ count1 ]+= weight∗ y r e s [ p ] [ k ] ;

v a r i n t e r p [ p ] [ count1 ]+=pow ( weight∗ e r r [ p ] [ k ] , 2 ) ;

}

y r e s i n t e r p [ p ] [ count1 ] = y r e s i n t e r p [ p ] [ count1 ] / sum1 ;

v a r i n t e r p [ p ] [ count1 ] = v a r i n t e r p [ p ] [ count1 ] / pow ( sum1 , 2 ) ;

x r e s i n t e r p [ p ] [ count1 ] = c u r r e n t d a y ;

++ count1 ; / / one more o b s e r v a t i o n in t h e pos t−i n t e r p o l a t e d s e r i e s .

}

e l s e / / t h i s p o i n t i n t h e pos t− i n t e r p o l a t e d s e r i e s i s too f a r from t h e

n e a r e s t p o i n t i n t h e raw data s e r i e s .

cont inue ; / / r e t u r n to s t a r t o f loop over o b s e r v a t i o n number in

i n t e r p o l a t e d s e r i e s .

}

n r e s i n t e r p [ p ] = count1 ; / / count1 now measures t h e c o r r e c t number o f p o i n t s .

}

/ / now a d j u s t e r r o r bars us ing an EQUAD term , which may be d i f fe r e n t f o r t h e f i r s t

few years o f data compared to t h e l a s t few years f o r t h e ”2−p o r t i o n ” p u l s a r s .

varp 1 = 0 . 0 , va rp 2 = 0 . 0 ; / / t h e v a r i a n c e o f two d i f f e r e n t s e c t i o n s o f t ime s e r i e s

− e . g . i f sudden change in wh i te n o i s e v a r i a n c e .

coun t 1 = 0 , coun t 2 = 0 ; / / t h e number o f p o i n t s b e f o r e and a f t e r t h e c u t o f f p o i n t

f o r t h e non−s t a t i o n a r i t y o f t h e t ime s e r i e s .

i f (noEQUAD == 1)

{

i f ( s t rcmp ( p s r [ p ] . name , ”1600−3053 ” ) ==0)

{

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

{

i f ( x r e s i n t e r p [ p ] [ i ] + t o f f s e t − t o f f s e t 2 < 52654 . 0 ) { y r e s i n t e r p 1 [ p

] [ coun t 1 ] = y r e s i n t e r p [ p ] [ i ] ; ++ coun t 1 ; }

e l s e { y r e s i n t e r p 2 [ p

] [ coun t 2 ] = y r e s i n t e r p [ p ] [ i ] ; ++ coun t 2 ; }

}

varp 1 = TKvar iance d ( y r e s i n t e r p 1 [ p ] , coun t 1 ) ; va rp 2 = TKvar iance d (

y r e s i n t e r p 2 [ p ] , coun t 2 ) ;

/ / Co r rec t e r r o r bar us ing unweighted v a r i a n c e o f i n t e r p o l at e d t ime s e r i e s ,

i n 2 p i e c e s :

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

{

i f ( x r e s i n t e r p [ p ] [ i ] + t o f f s e t − t o f f s e t 2 < 52654 . 0 ) { e r r i n t e r p [ p ] [ i ]

= s q r t ( v a r i n t e r p [ p ] [ i ]+ va rp 1 ) ; }

e l s e { e r r i n t e r p [ p ] [ i ]

= s q r t ( v a r i n t e r p [ p ] [ i ]+ va rp 2 ) ; }

}

}

e l s e i f ( s t rcmp ( p s r [ p ] . name , ” 1713+0747” ) ==0)

{

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

{

i f ( x r e s i n t e r p [ p ] [ i ] + t o f f s e t − t o f f s e t 2 < 52462 . 5 ) { y r e s i n t e r p 1 [ p

] [ coun t 1 ] = y r e s i n t e r p [ p ] [ i ] ; ++ coun t 1 ;}

e l s e { y r e s i n t e r p 2 [ p

] [ coun t 2 ] = y r e s i n t e r p [ p ] [ i ] ; ++ coun t 2 ;}

}
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varp 1 = TKvar iance d ( y r e s i n t e r p 1 [ p ] , coun t 1 ) ; va rp 2 = TKvar iance d (

y r e s i n t e r p 2 [ p ] , coun t 2 ) ;

/ / Co r rec t e r r o r bar us ing unweighted v a r i a n c e o f i n t e r p o l at e d t ime s e r i e s ,

i n 2 p i e c e s :

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

{

i f ( x r e s i n t e r p [ p ] [ i ] + t o f f s e t − t o f f s e t 2 < 52462 . 5 ) { e r r i n t e r p [ p ] [ i ]

= s q r t ( v a r i n t e r p [ p ] [ i ]+ va rp 1 ) ; }

e l s e { e r r i n t e r p [ p ] [ i ]

= s q r t ( v a r i n t e r p [ p ] [ i ]+ va rp 2 ) ; }

}

}

e l s e i f ( s t rcmp ( p s r [ p ] . name , ”1744−1134 ” ) ==0)

{

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

{

i f ( x r e s i n t e r p [ p ] [ i ] + t o f f s e t − t o f f s e t 2 < 52462 . 61 ) { y r e s i n t e r p 1 [ p

] [ coun t 1 ] = y r e s i n t e r p [ p ] [ i ] ; ++ coun t 1 ; }

e l s e { y r e s i n t e r p 2 [ p

] [ coun t 2 ] = y r e s i n t e r p [ p ] [ i ] ; ++ coun t 2 ; }

}

varp 1 = TKvar iance d ( y r e s i n t e r p 1 [ p ] , coun t 1 ) ; va rp 2 = TKvar iance d (

y r e s i n t e r p 2 [ p ] , coun t 2 ) ;

/ / Co r rec t e r r o r bar us ing unweighted v a r i a n c e o f i n t e r p o l at e d t ime s e r i e s ,

i n 2 p i e c e s :

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

{

i f ( x r e s i n t e r p [ p ] [ i ] + t o f f s e t − t o f f s e t 2 < 52462 . 61 ) { e r r i n t e r p [ p ] [ i

] = s q r t ( v a r i n t e r p [ p ] [ i ]+ va rp 1 ) ; }

e l s e { e r r i n t e r p [ p ] [ i

] = s q r t ( v a r i n t e r p [ p ] [ i ]+ va rp 2 ) ; }

}

}

e l s e i f ( s t rcmp ( p s r [ p ] . name , ” J1732−5049” ) ==0)

{

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

{

i f ( x r e s i n t e r p [ p ] [ i ] + t o f f s e t − t o f f s e t 2 < 52967 . 5 ) { y r e s i n t e r p 1 [ p

] [ coun t 1 ] = y r e s i n t e r p [ p ] [ i ] ; ++ coun t 1 ; }

e l s e { y r e s i n t e r p 2 [ p ] [

coun t 2 ] = y r e s i n t e r p [ p ] [ i ] ; ++ coun t 2 ; }

}

varp 1 = TKvar iance d ( y r e s i n t e r p 1 [ p ] , coun t 1 ) ; va rp 2 = TKvar iance d (

y r e s i n t e r p 2 [ p ] , coun t 2 ) ;

/ / Co r rec t e r r o r bar us ing unweighted v a r i a n c e o f i n t e r p o l at e d t ime s e r i e s ,

i n 2 p i e c e s :

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

{

i f ( x r e s i n t e r p [ p ] [ i ] + t o f f s e t − t o f f s e t 2 < 52967 . 5 ) { e r r i n t e r p [ p ] [ i ]

= s q r t ( v a r i n t e r p [ p ] [ i ]+ va rp 1 ) ; }

e l s e { e r r i n t e r p [ p ] [ i

] = s q r t ( v a r i n t e r p [ p ] [ i ]+ va rp 2 ) ; }

}

}

e l s e i f ( s t rcmp ( p s r [ p ] . name , ”2124−3358 ” ) ==0)

{

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

{
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i f ( x r e s i n t e r p [ p ] [ i ] + t o f f s e t − t o f f s e t 2 < 52984 . 5 ) { y r e s i n t e r p 1 [ p

] [ coun t 1 ] = y r e s i n t e r p [ p ] [ i ] ; ++ coun t 1 ; }

e l s e { y r e s i n t e r p 2 [ p ] [

coun t 2 ] = y r e s i n t e r p [ p ] [ i ] ; ++ coun t 2 ; }

}

varp 1 = TKvar iance d ( y r e s i n t e r p 1 [ p ] , coun t 1 ) ; va rp 2 = TKvar iance d (

y r e s i n t e r p 2 [ p ] , coun t 2 ) ;

/ / Co r rec t e r r o r bar us ing unweighted v a r i a n c e o f i n t e r p o l at e d t ime s e r i e s ,

i n 2 p i e c e s :

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

{

i f ( x r e s i n t e r p [ p ] [ i ] + t o f f s e t − t o f f s e t 2 < 52984 . 5 ) { e r r i n t e r p [ p ] [ i ]

= s q r t ( v a r i n t e r p [ p ] [ i ]+ va rp 1 ) ; }

e l s e { e r r i n t e r p [ p ] [ i

] = s q r t ( v a r i n t e r p [ p ] [ i ]+ va rp 2 ) ; }

}

}

e l s e i f ( s t rcmp ( p s r [ p ] . name , ”2129−5721 ” ) ==0) / / change in f r o n t end ! ! ! no t back

end ! ! ! r e s t are due to change in back end . . .

{

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

{

i f ( x r e s i n t e r p [ p ] [ i ] + t o f f s e t − t o f f s e t 2 < 51410 . 0 ) { y r e s i n t e r p 1 [ p

] [ coun t 1 ] = y r e s i n t e r p [ p ] [ i ] ; ++ coun t 1 ; }

e l s e { y r e s i n t e r p 2 [ p ] [

coun t 2 ] = y r e s i n t e r p [ p ] [ i ] ; ++ coun t 2 ; }

}

varp 1 = TKvar iance d ( y r e s i n t e r p 1 [ p ] , coun t 1 ) ; va rp 2 = TKvar iance d (

y r e s i n t e r p 2 [ p ] , coun t 2 ) ;

/ / Co r rec t e r r o r bar us ing unweighted v a r i a n c e o f i n t e r p o l at e d t ime s e r i e s ,

i n 2 p i e c e s :

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

{

i f ( x r e s i n t e r p [ p ] [ i ] + t o f f s e t − t o f f s e t 2 < 51410 . 0 ) { e r r i n t e r p [ p ] [ i ]

= s q r t ( v a r i n t e r p [ p ] [ i ]+ va rp 1 ) ; }

e l s e { e r r i n t e r p [ p ] [ i

] = s q r t ( v a r i n t e r p [ p ] [ i ]+ va rp 2 ) ; }

}

}

e l s e i f ( s t rcmp ( p s r [ p ] . name , ”2145−0750 ” ) ==0)

{

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

{

i f ( x r e s i n t e r p [ p ] [ i ] + t o f f s e t − t o f f s e t 2 < 52975 . 5 ) { y r e s i n t e r p 1 [ p

] [ coun t 1 ] = y r e s i n t e r p [ p ] [ i ] ; ++ coun t 1 ; }

e l s e { y r e s i n t e r p 2 [ p

] [ coun t 2 ] = y r e s i n t e r p [ p ] [ i ] ; ++ coun t 2 ; }

}

varp 1 = TKvar iance d ( y r e s i n t e r p 1 [ p ] , coun t 1 ) ; va rp 2 = TKvar iance d (

y r e s i n t e r p 2 [ p ] , coun t 2 ) ;

/ / Co r rec t e r r o r bar us ing unweighted v a r i a n c e o f i n t e r p o l at e d t ime s e r i e s ,

i n 2 p i e c e s :

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

{

i f ( x r e s i n t e r p [ p ] [ i ] + t o f f s e t − t o f f s e t 2 < 52975 . 5 ) { e r r i n t e r p [ p ] [ i ]

= s q r t ( v a r i n t e r p [ p ] [ i ]+ va rp 1 ) ; }

e l s e { e r r i n t e r p [ p ] [ i

] = s q r t ( v a r i n t e r p [ p ] [ i ]+ va rp 2 ) ; }

}
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}

e l s e / / t h e r e are no s i g n i f i c a n t sudden wh i te n o i s e changes in t h edata se t , and

we p r e f e r u n i f o r m i t y where p o s s i b l e .

{

varp 1 = TKvar iance d ( y r e s i n t e r p [ p ] , n r e s i n t e r p [ p ] ) ;

va rp 2 = 0 . 0 ;

/ / Co r rec t e r r o r bar us ing unweighted v a r i a n c e o f i n t e r p o l at e d t ime s e r i e s :

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

e r r i n t e r p [ p ] [ i ] = s q r t ( v a r i n t e r p [ p ] [ i ]+ va rp 1 ) ;

}

}

e l s e / / don ’ t do t h e c o r r e c t i o n by an EQUAD term .

{

varp 1 = 0 . 0 ;

va rp 2 = 0 . 0 ;

/ / Co r rec t e r r o r bar us ing unweighted v a r i a n c e o f i n t e r p o l at e d t ime s e r i e s :

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

e r r i n t e r p [ p ] [ i ] = s q r t ( v a r i n t e r p [ p ] [ i ] ) ;

}

}

}

e l s e / / don ’ t do any smooth ing or i n t e r p o l a t i o n , bu t DO do t h e e r r or bar augmen ta t ion s t e p

! ! ! ! Th is makes t h e l e a s t squa res f i t t e r work b e t t e r .

{

f o r ( p =0; p<∗nps r ; p++)

{

f o r ( i =0 ; i<n r e s [ p ] ; i ++)

{

x r e s i n t e r p [ p ] [ i ] = x r e s [ p ] [ i ] ;

y r e s i n t e r p [ p ] [ i ] = y r e s [ p ] [ i ] ;

e r r i n t e r p [ p ] [ i ] = e r r [ p ] [ i ] ;

v a r i n t e r p [ p ] [ i ] = e r r [ p ] [ i ] ∗ e r r [ p ] [ i ] ;

}

n r e s i n t e r p [ p ] = n r e s [ p ] ;

va rp 1 = 0 . 0 , va rp 2 = 0 . 0 ; / / t h e v a r i a n c e o f two d i f f e r e n t s e c t i o n s o f t ime s e r i e s

− e . g . i f sudden change in wh i te n o i s e v a r i a n c e .

coun t 1 = 0 , coun t 2 = 0 ; / / t h e number o f p o i n t s b e f o r e and a f t e r t h e c u t o f f p o i n t

f o r t h e non−s t a t i o n a r i t y o f t h e t ime s e r i e s .

i f (noEQUAD == 1)

{

i f ( s t rcmp ( p s r [ p ] . name , ”1600−3053 ” ) ==0)

{

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

{

i f ( x r e s i n t e r p [ p ] [ i ] + t o f f s e t − t o f f s e t 2 < 52654 . 0 ) { y r e s i n t e r p 1 [ p

] [ coun t 1 ] = y r e s i n t e r p [ p ] [ i ] ; ++ coun t 1 ; }

e l s e { y r e s i n t e r p 2 [ p

] [ coun t 2 ] = y r e s i n t e r p [ p ] [ i ] ; ++ coun t 2 ; }

}

varp 1 = TKvar iance d ( y r e s i n t e r p 1 [ p ] , coun t 1 ) ; va rp 2 = TKvar iance d (

y r e s i n t e r p 2 [ p ] , coun t 2 ) ;

/ / Co r rec t e r r o r bar us ing unweighted v a r i a n c e o f i n t e r p o l at e d t ime s e r i e s ,

i n 2 p i e c e s :

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

{

i f ( x r e s i n t e r p [ p ] [ i ] + t o f f s e t − t o f f s e t 2 < 52654 . 0 ) { e r r i n t e r p [ p ] [ i ]

= s q r t ( v a r i n t e r p [ p ] [ i ]+ va rp 1 ) ; }
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e l s e { e r r i n t e r p [ p ] [ i ]

= s q r t ( v a r i n t e r p [ p ] [ i ]+ va rp 2 ) ; }

}

}

e l s e i f ( s t rcmp ( p s r [ p ] . name , ” 1713+0747” ) ==0)

{

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

{

i f ( x r e s i n t e r p [ p ] [ i ] + t o f f s e t − t o f f s e t 2 < 52462 . 5 ) { y r e s i n t e r p 1 [ p

] [ coun t 1 ] = y r e s i n t e r p [ p ] [ i ] ; ++ coun t 1 ; }

e l s e { y r e s i n t e r p 2 [ p

] [ coun t 2 ] = y r e s i n t e r p [ p ] [ i ] ; ++ coun t 2 ; }

}

varp 1 = TKvar iance d ( y r e s i n t e r p 1 [ p ] , coun t 1 ) ; va rp 2 = TKvar iance d (

y r e s i n t e r p 2 [ p ] , coun t 2 ) ;

/ / Co r rec t e r r o r bar us ing unweighted v a r i a n c e o f i n t e r p o l at e d t ime s e r i e s ,

i n 2 p i e c e s :

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

{

i f ( x r e s i n t e r p [ p ] [ i ] + t o f f s e t − t o f f s e t 2 < 52462 . 5 ) { e r r i n t e r p [ p ] [ i ]

= s q r t ( v a r i n t e r p [ p ] [ i ]+ va rp 1 ) ; }

e l s e { e r r i n t e r p [ p ] [ i ]

= s q r t ( v a r i n t e r p [ p ] [ i ]+ va rp 2 ) ; }

}

}

e l s e i f ( s t rcmp ( p s r [ p ] . name , ”1744−1134 ” ) ==0)

{

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

{

i f ( x r e s i n t e r p [ p ] [ i ] + t o f f s e t − t o f f s e t 2 < 52462 . 61 ) { y r e s i n t e r p 1 [ p

] [ coun t 1 ] = y r e s i n t e r p [ p ] [ i ] ; ++ coun t 1 ; }

e l s e { y r e s i n t e r p 2 [ p

] [ coun t 2 ] = y r e s i n t e r p [ p ] [ i ] ; ++ coun t 2 ; }

}

varp 1 = TKvar iance d ( y r e s i n t e r p 1 [ p ] , coun t 1 ) ; va rp 2 = TKvar iance d (

y r e s i n t e r p 2 [ p ] , coun t 2 ) ;

/ / Co r rec t e r r o r bar us ing unweighted v a r i a n c e o f i n t e r p o l at e d t ime s e r i e s ,

i n 2 p i e c e s :

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

{

i f ( x r e s i n t e r p [ p ] [ i ] + t o f f s e t − t o f f s e t 2 < 52462 . 61 ) { e r r i n t e r p [ p ] [ i

] = s q r t ( v a r i n t e r p [ p ] [ i ]+ va rp 1 ) ; }

e l s e { e r r i n t e r p [ p ] [ i

] = s q r t ( v a r i n t e r p [ p ] [ i ]+ va rp 2 ) ; }

}

}

e l s e i f ( s t rcmp ( p s r [ p ] . name , ” J1732−5049” ) ==0)

{

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

{

i f ( x r e s i n t e r p [ p ] [ i ] + t o f f s e t − t o f f s e t 2 < 52967 . 5 ) { y r e s i n t e r p 1 [ p

] [ coun t 1 ] = y r e s i n t e r p [ p ] [ i ] ; ++ coun t 1 ; }

e l s e { y r e s i n t e r p 2 [ p ] [

coun t 2 ] = y r e s i n t e r p [ p ] [ i ] ; ++ coun t 2 ; }

}

varp 1 = TKvar iance d ( y r e s i n t e r p 1 [ p ] , coun t 1 ) ; va rp 2 = TKvar iance d (

y r e s i n t e r p 2 [ p ] , coun t 2 ) ;

/ / Co r rec t e r r o r bar us ing unweighted v a r i a n c e o f i n t e r p o l at e d t ime s e r i e s ,

i n 2 p i e c e s :
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f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

{

i f ( x r e s i n t e r p [ p ] [ i ] + t o f f s e t − t o f f s e t 2 < 52967 . 5 ) { e r r i n t e r p [ p ] [ i ]

= s q r t ( v a r i n t e r p [ p ] [ i ]+ va rp 1 ) ; }

e l s e { e r r i n t e r p [ p ] [ i

] = s q r t ( v a r i n t e r p [ p ] [ i ]+ va rp 2 ) ; }

}

}

e l s e i f ( s t rcmp ( p s r [ p ] . name , ”2124−3358 ” ) ==0)

{

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

{

i f ( x r e s i n t e r p [ p ] [ i ] + t o f f s e t − t o f f s e t 2 < 52984 . 5 ) { y r e s i n t e r p 1 [ p

] [ coun t 1 ] = y r e s i n t e r p [ p ] [ i ] ; ++ coun t 1 ; }

e l s e { y r e s i n t e r p 2 [ p ] [

coun t 2 ] = y r e s i n t e r p [ p ] [ i ] ; ++ coun t 2 ; }

}

varp 1 = TKvar iance d ( y r e s i n t e r p 1 [ p ] , coun t 1 ) ; va rp 2 = TKvar iance d (

y r e s i n t e r p 2 [ p ] , coun t 2 ) ;

/ / Co r rec t e r r o r bar us ing unweighted v a r i a n c e o f i n t e r p o l at e d t ime s e r i e s ,

i n 2 p i e c e s :

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

{

i f ( x r e s i n t e r p [ p ] [ i ] + t o f f s e t − t o f f s e t 2 < 52984 . 5 ) { e r r i n t e r p [ p ] [ i ]

= s q r t ( v a r i n t e r p [ p ] [ i ]+ va rp 1 ) ; }

e l s e { e r r i n t e r p [ p ] [ i

] = s q r t ( v a r i n t e r p [ p ] [ i ]+ va rp 2 ) ; }

}

}

e l s e i f ( s t rcmp ( p s r [ p ] . name , ”2129−5721 ” ) ==0) / / change in f r o n t end ! ! ! no t back

end ! ! ! r e s t are due to change in back end . . .

{

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

{

i f ( x r e s i n t e r p [ p ] [ i ] + t o f f s e t − t o f f s e t 2 < 51410 . 0 ) { y r e s i n t e r p 1 [ p

] [ coun t 1 ] = y r e s i n t e r p [ p ] [ i ] ; ++ coun t 1 ; }

e l s e { y r e s i n t e r p 2 [ p ] [

coun t 2 ] = y r e s i n t e r p [ p ] [ i ] ; ++ coun t 2 ; }

}

varp 1 = TKvar iance d ( y r e s i n t e r p 1 [ p ] , coun t 1 ) ; va rp 2 = TKvar iance d (

y r e s i n t e r p 2 [ p ] , coun t 2 ) ;

/ / Co r rec t e r r o r bar us ing unweighted v a r i a n c e o f i n t e r p o l at e d t ime s e r i e s ,

i n 2 p i e c e s :

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

{

i f ( x r e s i n t e r p [ p ] [ i ] + t o f f s e t − t o f f s e t 2 < 51410 . 0 ) { e r r i n t e r p [ p ] [ i ]

= s q r t ( v a r i n t e r p [ p ] [ i ]+ va rp 1 ) ; }

e l s e { e r r i n t e r p [ p ] [ i

] = s q r t ( v a r i n t e r p [ p ] [ i ]+ va rp 2 ) ; }

}

}

e l s e i f ( s t rcmp ( p s r [ p ] . name , ”2145−0750 ” ) ==0)

{

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

{

i f ( x r e s i n t e r p [ p ] [ i ] + t o f f s e t − t o f f s e t 2 < 52975 . 5 ) { y r e s i n t e r p 1 [ p

] [ coun t 1 ] = y r e s i n t e r p [ p ] [ i ] ; ++ coun t 1 ; }

e l s e { y r e s i n t e r p 2 [ p

] [ coun t 2 ] = y r e s i n t e r p [ p ] [ i ] ; ++ coun t 2 ; }
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}

varp 1 = TKvar iance d ( y r e s i n t e r p 1 [ p ] , coun t 1 ) ; va rp 2 = TKvar iance d (

y r e s i n t e r p 2 [ p ] , coun t 2 ) ;

/ / Co r rec t e r r o r bar us ing unweighted v a r i a n c e o f i n t e r p o l at e d t ime s e r i e s ,

i n 2 p i e c e s :

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

{

i f ( x r e s i n t e r p [ p ] [ i ] + t o f f s e t − t o f f s e t 2 < 52975 . 5 ) { e r r i n t e r p [ p ] [ i ]

= s q r t ( v a r i n t e r p [ p ] [ i ]+ va rp 1 ) ; }

e l s e { e r r i n t e r p [ p ] [ i

] = s q r t ( v a r i n t e r p [ p ] [ i ]+ va rp 2 ) ; }

}

}

e l s e / / t h e r e are no s i g n i f i c a n t sudden wh i te n o i s e changes in t h edata se t , and

we p r e f e r u n i f o r m i t y where p o s s i b l e .

{

varp 1 = TKvar iance d ( y r e s i n t e r p [ p ] , n r e s i n t e r p [ p ] ) ;

va rp 2 = 0 . 0 ;

/ / Co r rec t e r r o r bar us ing unweighted v a r i a n c e o f i n t e r p o l at e d t ime s e r i e s :

f o r ( i =0 ; i<n r e s i n t e r p [ p ] ; i ++)

e r r i n t e r p [ p ] [ i ] = s q r t ( v a r i n t e r p [ p ] [ i ]+ va rp 1 ) ;

}

p r i n t f ( ” p s r = %s , n r e s i n t e r p [ p ] = %d , coun t 1 = %d , va rp 1 = %g , so unweighted rms

= %g , coun 2 = %d , va rp 2 = %g , unw rms = %g\n” , p s r [ p ] . name , n r e si n t e r p [ p ] ,

count 1 , varp 1 , s q r t ( va rp 1 ) , count 2 , varp 2 , s q r t ( va rp 2 ) ) ;

}

}

}

/ /NOW READ in t r a n s f e r f u n c t i o n s in p r e p a r a t i o n f o r t h e a 2 z et a a r i a n c e c a l c u l a t i o n . We care

about t h e p r e f i t spect rum too , s i n c e t h i s i s a measure o f t h e wh i te n o i s e d e s c r i b e d by

t h e e r r o r bars . The t r a n s f e r f u n c t i o n s go to much h igher f r e qu e n c i e s than t h e ”average ”

Nyqu is t f r equency , because when we t a k e t h e o v e r l a p p i n g p o rt i o n s between d i f f e r e n t data

s e t s , t h a t o v e r l a p p i n g p o r t i o n may co r respond to a reg ion w ith a much h igher d e n s i t y o f

p o i n t s than t h e o v e r a l l da ta se t , meaning t h a t t h e average Nyqu is t f r e q u e n c y i s much

h igher f o r t h e o v e r l a p p i n g p o r t i o n than f o r t h e o v e r a l l d a t as e t .

f o r ( p =0; p<∗nps r ; p++)

{

nXFER[ p ] = 0 ;

s p r i n t f ( fname , ” T r a n s f e r f u n c t i o n S m o o t h I n P l a c e . d a tp s r%s ” , p s r [ p ] . name ) ;

i f ( ( f i n = fopen ( fname , ” r ” ) ) == NULL)

{

p r i n t f ( ” Unable to open / f i n d f i l e %s\n” , fname ) ;

e x i t ( 1 ) ;

}

whi le ( ! f e o f ( f i n ) )

{

i f ( f g e t s ( l i n e , 1000 , f i n ) !=NULL)

{

nread = s s c a n f ( l i n e , ”%lg %lg %f %lg ” ,&XFERx [ p ] [ nXFER [ p ] ] ,& meanPre [ p ] [ nXFER [ p

] ] ,& meanPost [nXFER [ p ] ] ,&XFER[ p ] [ nXFER[ p ] ] ) ;

XFER x [ p ] [ nXFER [ p ] ] ∗= 86400.0L ; / / t o c o n v e r t back to c y c l e s per day

nXFER [ p ]++ ;

}

}

f c l o s e ( f i n ) ;

}

/ /NOW READ IN MODELS f o r each p u l s a r power spect rum in p r e p a ra t i o n f o r c a l c u l a t i n g e r r o r s on

t h e c r o s s power spect rum .

f o r ( p =0; p<∗nps r ; p++)
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{

s p r i n t f ( fname , specMode lF i l e ) ;

s t r c a t ( fname , p s r [ p ] . name ) ;

i f ( ( f i n = fopen ( fname , ” r ” ) ) == NULL)

{

p r i n t f ( ” Unable to open / f i n d f i l e %s\n” , fname ) ;

e x i t ( 1 ) ;

}

whi le ( ! f e o f ( f i n ) )

{

i f ( f g e t s ( l i n e , 1000 , f i n ) !=NULL)

{

nread = s s c a n f ( l i n e , ”%s %lg %lg ” ,dummy,& modelspecy [ p ] [ 1 ] , & modelspec y [ p ] [ 0 ] ) ;

i f ( s t rcmp ( p s r [ p ] . name , dummy ) !=0 )

{

p r i n t f ( ”ERROR IN MODEL SCANNING! %s does no t equa l %s\n” , p s r [ p ] . name , dummy ) ;

f p r i n t f ( s t d e r r , ”ERROR scann ing %s\n” , fname ) ;

e x i t ( 1 ) ;

}

}

}

f c l o s e ( f i n ) ;

}

/ /NOW read in a l l t h e c a l i b r a t i o n f a c t o r s from a f i l e .

double ca lFac [∗ nps r ∗ ∗nps r ] [ numCal ] ; / / t h i s i s t h e c a l i b r a t i o n f a c t o r

double c a l F r e q [∗ nps r ∗ ∗nps r ] [ numCal ] ; / / t h i s i s t h e f r e q u e n c y o f t h e f i r s t 10 f a c t o r s

s i n c e we on ly care about t h e f i r s t 10 c a l i b r a t i o n f a c t o r s .

double c a l F a c E r r [∗ nps r ∗ ∗ nps r ] [ numCal ] ; / / p robab ly don ’ t need t h i s , bu t i t ’ s good to read

i t i n s i n c e t h e CalFac f i l e s w i l l now be 10 columns wide .

char dummy2 [ 1 0 0 ] , dummy3 [ 1 0 0 ] ;

n c o r r = 0 ;

f o r ( p2 =1; p2<∗nps r ; p2 ++)

{

f o r ( p1 =0; p1<p2 ; p1 ++) / / so p1 i s a lways l e s s than p2 , which makes more sense g iven

t h e i r names .

{

i f ( yesCalFac == 1)

{

s p r i n t f ( fname , ” C a l i b r a t i o n F a c t o r s%s%s%s ” , o u t F i l e P a i r s , p s r [ p1 ] . name , p s r [ p2 ] . name

) ;

i f ( ( f i n = fopen ( fname , ” r ” ) ) == NULL)

{

p r i n t f ( ” Unable to open / f i n d f i l e %s\n” , fname ) ;

e x i t ( 1 ) ;

}

i = 0 ;

whi le ( i < numCal )

{

i f ( f g e t s ( l i n e , 1000 , f i n ) !=NULL)

{

nread = s s c a n f ( l i n e , ”%s %s %lg %lg %lg ” ,&dummy2 , &dummy3 , &c a l F r e q [ n c o r r

] [ i ] ,& ca lFac [ n c o r r ] [ i ] ,& c a l F a c E r r [ n c o r r ] [ i ] ) ;

i ++;

}

}

f c l o s e ( f i n ) ;

}

e l s e
{
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f o r ( i =0 ; i<numCal ; i ++)

{

ca lFac [ n c o r r ] [ i ] = 1 . 0 ;

}

}

n c o r r ++;

}

}

/ /NOW read in t h e e r r o r s o b t a i n e d from s i m u l a t i o n f o r each e st i m a t e o f a 2 z e t ae r r . Th is s t e p

saves hav ing to run my ” f i t H D f a s t . csh ” s c r i p t eve ry t ime . I tmeans t h a t t h i s code now

in a s i n g l e pass produces t h e c o r r e c t e s t i m a t e o f Aˆ2 and t h e co r r e c t e r r o r bar on t h a t

e s t i m a t e .

double junk1 , junk2 ;

i n t f oundE r rs = 0 ;

n c o r r = 0 ;

s p r i n t f ( fname , ”REALPAIR RESULTS” ) ;

i f ( ( f i n = fopen ( fname , ” r ” ) ) == NULL)

{

p r i n t f ( ” Unable to open / f i n d f i l e %s\n” , fname ) ;

}

e l s e f oundE r rs = 1 ; / / yes , we found a f i l e w i th e r r o r s in i t .

i f ( f oundE r rs == 1) / / i . e . , i f we ’ ve found a f i l e c o n t a i n i n g t h e c o r r e c t s i m u l a te d er ro r s

, then read i t .

{

f o r ( p2 =1; p2<∗nps r ; p2 ++)

{

f o r ( p1 =0; p1<p2 ; p1 ++) / / so p1 i s a lways l e s s than p2 , which makes more sense

g iven t h e i r names .

{

i f ( f g e t s ( l i n e , 1000 , f i n ) !=NULL)

{

nread = s s c a n f ( l i n e , ”%s %s %lg %lg %lg %lg %lg ” ,&dummy2 , &dummy3 , &ang le [

n c o r r ] ,& a 2 z e t a [ n c o r r ] ,& a 2 z e t ae r r [ n c o r r ] , &junk1 , &junk2 ) ;

}

n c o r r ++;

}

}

f c l o s e ( f i n ) ;

}

/ /NOW CALCULATE CORRELATION AND A2ZETAARIANCE BETWEEN DATA SETS IN THE FREQUENCY DOMAIN

i n t ex t raObsF lag = 0 ;

n c o r r = 0 ;

double ch isqsum = 0 . 0 ; / / CONSISTENCY check ! ! ! ! t h i s i s t h e sum of t h e c h i s q o f t h e

imag ina ry p a r t o f each a2ze ta e s t i m a t e .

double ch isq im = 0 . 0 ; / / t h e ch isqua red o f t h e imag ina ry p a r t ( i s ch isqsum / t o t a l co r r ) .

i n t s t a r t 1 , s t a r t 2 , end1 , end2 ; / / t h e s t a r t i n g and end ing o b s e r v a t i o n s o f each p u l s a r in

t h i s p a i r . So , s t a r t 1 i s t h e f i r s t o b s e r v a t i o n from p u l s a r 1 which IS i n c l u d e d in t h e

o v e r l a p p i n g reg ion ( so ” s t a r t 1− 1” w i l l be t h e f i r s t 1 NOT to be i n c l u d e d . )

FILE ∗ f o u t 2 ;

s p r i n t f ( fname , ” P u l s a rP a i r s R e s u l t s ” ) ;

f o u t = fopen ( fname , ” a ” ) ;

f o r ( p2 =1; p2<∗nps r ; p2 ++)

{

f o r ( p1 =0; p1<p2 ; p1 ++) / / so p1 i s a lways l e s s than p2 , which makes more sense g iven

t h e i r names .

{

p r i n t f ( ” \n−−−−−− p1 = %s , p2 = %s−−−−−−\n” , p s r [ p1 ] . name , p s r [ p2 ] . name ) ;

/ / f o r each p u l s a r pa i r , t h e r e w i l l be a d i f f e r e n t number o f o ve r l a p p i n g p o i n t s :
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count1 = 0 ;

count2 = 0 ;

/ / f i n d e a r l i e s t and l a t e s t common data p o i n t s f o r t h e s e two pu l s a r s

f irstCommonX = x r e s i n t e r p [ p1 ] [ 0 ] ;

lastCommonX = x r e si n t e r p [ p1 ] [ n r e s i n t e r p [ p1 ]−1];

i f ( f irstCommonX < x r e s i n t e r p [ p2 ] [ 0 ] )

{

f irstCommonX = x r e s i n t e r p [ p2 ] [ 0 ] ;

}

i f ( lastCommonX> x r e s i n t e r p [ p2 ] [ n r e s i n t e r p [ p2 ]−1]) lastCommonX = x r e si n t e r p

[ p2 ] [ n r e s i n t e r p [ p2 ] − 1 ] ;

/ / f i n d o v e r l a p p i n g p o r t i o n o f p u l s a r p1 , and pu t i n t o xres3 ,yres3 , e r r3

f o r ( i =0 ; i<n r e s i n t e r p [ p1 ] ; i ++)

{

i f ( x r e s i n t e r p [ p1 ] [ i ] − f irstCommonX >= −1.0e−3 && x r e s i n t e r p [ p1 ] [ i ] −

lastCommonX <= 1 . 0 e−3)

{

/ / i f t h e p r e v i o u s obs does NOT f a l l i n t h e o v e r l a p p i n g reg ion, then s e t t h e

s t a r t 1 number .

i f ( ( x r e s i n t e r p [ p1 ] [ i−1] − f irstCommonX < −1.0e−3 && x r e s i n t e r p [ p1 ] [ i−1] −

lastCommonX <= 1 . 0 e−3) | | i == 0)

{

s t a r t 1 = i ;

p r i n t f ( ” s t a r t 1 = %d\n” , s t a r t 1 ) ;

}

/ / i f t h e n e x t obs does NOT f a l l i n t h e o v e r l a p p i n g reg ion , then s e t t h e end1

number .

i f ( ( x r e s i n t e r p [ p1 ] [ i +1] − f irstCommonX >= −1.0e−3 && x r e s i n t e r p [ p1 ] [ i +1]

− lastCommonX> 1 . 0 e−3) | | i == n r e s i n t e r p [ p1 ]−1)

{

end1 = i ;

p r i n t f ( ” end1 = %d\n” , end1 ) ;

}

x res3 [ p1 ] [ count1 ] = x r e si n t e r p [ p1 ] [ i ] ;

y res3 [ p1 ] [ count1 ] = y r e si n t e r p [ p1 ] [ i ] ;

e r r 3 [ p1 ] [ count1 ] = e r r i n t e r p [ p1 ] [ i ] ;

++ count1 ;

}

}

/ / do same f o r p u l s a r p2 .

f o r ( i =0 ; i<n r e s i n t e r p [ p2 ] ; i ++)

{

i f ( x r e s i n t e r p [ p2 ] [ i ] − f irstCommonX >= −1.0e−3 && x r e s i n t e r p [ p2 ] [ i ] −

lastCommonX <= 1 . 0 e−3)

{

/ / i f t h e p r e v i o u s obs does NOT f a l l i n t h e o v e r l a p p i n g reg ion, then s e t t h e

s t a r t 1 number .

i f ( ( x r e s i n t e r p [ p2 ] [ i−1] − f irstCommonX < −1.0e−3 && x r e s i n t e r p [ p2 ] [ i−1] −

lastCommonX <= 1 . 0 e−3) | | i == 0)

{

s t a r t 2 = i ;

p r i n t f ( ” s t a r t 2 = %d\n” , s t a r t 2 ) ;

}

/ / i f t h e n e x t obs does NOT f a l l i n t h e o v e r l a p p i n g reg ion , then s e t t h e end1

number .

i f ( ( x r e s i n t e r p [ p2 ] [ i +1] − f irstCommonX >= −1.0e−3 && x r e s i n t e r p [ p2 ] [ i +1]

− lastCommonX> 1 . 0 e−3) | | i == n r e s i n t e r p [ p2 ]−1)

{

end2 = i ;
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p r i n t f ( ” end2 = %d\n” , end2 ) ;

}

x res3 [ p2 ] [ count2 ] = x r e si n t e r p [ p2 ] [ i ] ;

y res3 [ p2 ] [ count2 ] = y r e si n t e r p [ p2 ] [ i ] ;

e r r 3 [ p2 ] [ count2 ] = e r r i n t e r p [ p2 ] [ i ] ;

++ count2 ;

}

}

nres3 [ p1 ] = count1 ; n res3 [ p2 ] = count2 ;

/ /NOW f i t ou t a q u a d r a t i c from both data s e t s in t h e o v e r l a p p in g p o r t i o n i f

r e q u e s t e d .

i f ( noquad == 1)

{

TKremoveWtdPoly d ( x res3 [ p1 ] , y res3 [ p1 ] , e r r 3 [ p1 ] , n res3 [ p1 ] , 3 ) ;

TKremoveWtdPoly d ( x res3 [ p2 ] , y res3 [ p2 ] , e r r 3 [ p2 ] , n res3 [ p2 ] , 3 ) ;

}

/ / so now xres3 , yres3 , er r3 , n res3 d e s c r i b e t h e two smoothed, i n t e r p o l a t e d , o v e r l a p p i n g

data s e t s we have f o r t h i s pa i r , p o s s i b l y i n c l u d i n g remova l of a we igh ted

q u a d r a t i c from t h e o v e r l a p reg ion .

p r i n t f ( ” \n−−−−−− p1 = %s , p2 = %s−−−−−−\n numpts1 = %d , numpts2 = %d ,\ n f i r s t d a y p 1

= %g , f i r s t d a y p 2 = %g , l a s t d a y p 1 = %g , l a s t d a y p 2 = %g\nfirstCommonX = %g ,

lastCommonX = %g , \nnum o v e r l a p p i n g : count1 = %d , count2 = %d [ may be d i f f e r e n t

due to d i f f e r i n g gap s i z e w i thou t t h e ’− r e g u l a r ’ o p t i o n ] , \nspan of o v e r l a p = %g

y e a r s\n” , p s r [ p1 ] . name , p s r [ p2 ] . name , n r e si n t e r p [ p1 ] , n r e s i n t e r p [ p2 ] ,

x r e s i n t e r p [ p1 ] [ 0 ] , x r e s i n t e r p [ p2 ] [ 0 ] , x r e s i n t e r p [ p1 ] [ n r e s i n t e r p [ p1 ] − 1 ] ,

x r e s i n t e r p [ p2 ] [ n r e s i n t e r p [ p2 ]−1] , firstCommonX , lastCommonX , n res3 [ p1 ] , n res3 [

p2 ] , ( lastCommonX− f irstCommonX ) / 365 . 25 ) ;

/ /NOW c a l c u l a t e t h e ONE−SIDED power spect rum o f each o f p1 and p2 in t h e o v e r l a p p i n g

p o r t i o n .

double ofacp1 =1 . 0 , o facp2 =1 . 0 , f r e q 0 ;

/ / now s e t t h e v a l u e s o f o fac such t h a t t h e l o w e s t f r e q u e n c y i sa t t h e SHORTER of t h e

two data spans

i f ( ( x res3 [ p1 ] [ n res3 [ p1 ]− 1] − x res3 [ p1 ] [ 0 ] ) − ( x res3 [ p2 ] [ n res3 [ p2 ]− 1] − x res3 [ p2

] [ 0 ] ) > 1 . 0 e−8)

{

/ / t hen p1 has a longer data span than p2 , so t a k e t h e f r e q u e n c yt h a t goes w i th

p2 :

f r e q 0 = 1 . 0 / ( ( x res3 [ p2 ] [ n res3 [ p2 ]− 1] − x res3 [ p2 ] [ 0 ] ) ∗ 86400 . 0 ) ;

o facp1 = 1 . 0 / f r e q 0 / ( ( x res3 [ p1 ] [ n res3 [ p1 ]− 1] − x res3 [ p1 ] [ 0 ] ) ∗ 86400 . 0 ) ;

o facp2 = 1 . 0 ;

}

e l s e i f ( ( x res3 [ p1 ] [ n res3 [ p1 ]− 1] − x res3 [ p1 ] [ 0 ] ) − ( x res3 [ p2 ] [ n res3 [ p2 ]− 1] −

x res3 [ p2 ] [ 0 ] ) < − 1 . 0 e−8)

{

/ / t h i s means p2 has a longer data span than p1 , so t a k e t h e f r e qt h a t goes w i th

p1 .

f r e q 0 = 1 . 0 / ( ( x res3 [ p1 ] [ n res3 [ p1 ]− 1] − x res3 [ p1 ] [ 0 ] ) ∗ 86400 . 0 ) ;

o facp1 = 1 . 0 ;

o facp2 = 1 . 0 / f r e q 0 / ( ( x res3 [ p2 ] [ n res3 [ p2 ]− 1] − x res3 [ p2 ] [ 0 ] ) ∗ 86400 . 0 ) ;

}

e l s e
{

/ / t h i s means t h e y are t h e same leng th , so use ofacp1 = ofacp2 =1 . 0 ;

ofacp1 = 1 . 0 ;

o facp2 = 1 . 0 ;

}

TKspectrum ( x res3 [ p1 ] , y res3 [ p1 ] , e r r 3 [ p1 ] , n res3 [ p1 ] , 0, 0 , 0 , 0 , 0 , 6 , ofacp1 , 1 . 0 , 1 , xspec [ p1

] , yspec [ p1 ] ,& nspec [ p1 ] , 0 , 0 , y s p e cr e [ p1 ] , yspec im [ p1 ] , useWeight ) ;
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TKspectrum ( x res3 [ p2 ] , y res3 [ p2 ] , e r r 3 [ p2 ] , n res3 [ p2 ] , 0, 0 , 0 , 0 , 0 , 6 , ofacp2 , 1 . 0 , 1 , xspec [ p2

] , yspec [ p2 ] ,& nspec [ p2 ] , 0 , 0 , y s p e cr e [ p2 ] , yspec im [ p2 ] , useWeight ) ;

/ / Check o v e r l a p has worked because t h e y shou ld have t h e samenumber o f channe ls .

i f ( i n t e r p != 0)

{

i f ( f a b s ( nspec [ p1 ]− nspec [ p2 ] ) >= 1 ) { p r i n t f ( ”ERROR in o v e r l a p p i n g d a t a : nspec

p1 = %d , nspec p2 = %d\n” , nspec [ p1 ] , nspec [ p2 ] ) ; f p r i n t f ( s t d e r r , ”ERROR in

o v e r l a p\n” ) ; e x i t ( 1 ) ;}

}

/ / choose t h e maximum loop index to be t h e s h o r t e r o f t h e two s pe c t r a

i n t maxloop = nspec [ p1 ] ;

i f ( nspec [ p1 ] > nspec [ p2 ] ) maxloop = nspec [ p2 ] ;

/ / s e t number o f c r o s s s p e c t r a l channe ls

numCrossspec [ n c o r r ] = maxloop ;

/ /NOW i n t e r p X fe r func o f each d a t a s e t onto x−v a l u e s g iven by t h e i r power s p e c t r a

above i f t h e data span has changed by t a k i n g t h e o v e r l a p p i n g po r t i o n

i f ( TKrange d ( x r e s i n t e r p [ p1 ] , n r e s i n t e r p [ p1 ] ) − TKrange d ( x res3 [ p1 ] , n res3 [ p1 ] )>

1 . 0 e−20)

{

/ / f i r s t check t h a t XFER f u n c t i o n i s long enough f o r i n t e r p o la t i o n

i f ( TKrange d ( x res3 [ p1 ] , n res3 [ p1 ] )− 1 . 0 / XFERx [ p1 ] [ 0 ] > 1 . 0 e−8)

{

f p r i n t f ( s t d e r r , ”Huge problem wi th p1 because LOWFREQ t r a ns f e r f u n c t i o n i s

too s h o r t − code w i l l c r a s h : p s r = %s , p s r # = %d , d a t a l e n g t h = %.20g ,

lowes t XFER func f requency = %.20g\n” , p s r [ p1 ] . name , p1 , TKranged (

x r e s i n t e r p [ p1 ] , n r e s i n t e r p [ p1 ] ) , 1 . 0 / XFERx [ p1 ] [ 0 ] ) ;

e x i t ( 1 ) ;

}

p r i n t f ( ” i n t e r p o l a t i n g XFER %s , s i n c e range has changed by %g days due to o v e r l a p

\n” , p s r [ p1 ] . name , TKranged ( x r e s i n t e r p [ p1 ] , n r e s i n t e r p [ p1 ] ) − TKrange d (

x res3 [ p1 ] , n res3 [ p1 ] ) ) ;

i n t e r p o l a t e S p l i n e S m o o t h F i x e d X P t s ( XFERx [ p1 ] , XFER[ p1 ] , nXFER [ p1 ] , xspec [ p1 ] ,

XFER interp [ p1 ] , nspec [ p1 ] ) ;

}

e l s e / / t h e range hasn ’ t changed , so t h e f r e q u e n c y sampl ing i s t h esame and t h e

va lue o f t h e i n t e r p o l a t e d f u n c t i o n i s t h e same .

{

p r i n t f ( ” A l l p u l s a r %s d a t a c o n t a i n e d in o v e r l a p p i n g p o r t i on\n” , p s r [ p1 ] . name ) ;

f o r ( i =0 ; i<nspec [ p1 ] ; i ++) XFERinterp [ p1 ] [ i ] = XFER[ p1 ] [ i ] ;

}

/ /NOW do t h e same f o r p u l s a r p2 .

i f ( TKrange d ( x r e s i n t e r p [ p2 ] , n r e s i n t e r p [ p2 ] ) − TKrange d ( x res3 [ p2 ] , n res3 [ p2 ] )>

1 . 0 e−8)

{

/ / f i r s t check t h a t XFER f u n c t i o n i s long enough a t t h e low f r eq u e n c y end

i f ( TKrange d ( x res3 [ p2 ] , n res3 [ p2 ] )− 1 . 0 / XFERx [ p2 ] [ 0 ] > 1 . 0 e−8)

{

f p r i n t f ( s t d e r r , ”Huge problem wi th p2 because LOWFREQ t r a ns f e r f u n c t i o n i s

too s h o r t − code w i l l c r a s h : p s r = %s , p s r # = %d , d a t a l e n g t h = %.20g ,

lowes t XFER func f requency = %.20g\n” , p s r [ p2 ] . name , p2 , TKranged (

x r e s i n t e r p [ p2 ] , n r e s i n t e r p [ p2 ] ) , 1 . 0 / XFERx [ p2 ] [ 0 ] ) ;

e x i t ( 1 ) ;

}

p r i n t f ( ” i n t e r p o l a t i n g XFER %s , s i n c e range has changed by %g days due to o v e r l a p

\n” , p s r [ p2 ] . name , TKranged ( x r e s i n t e r p [ p2 ] , n r e s i n t e r p [ p2 ] ) − TKrange d (

x res3 [ p2 ] , n res3 [ p2 ] ) ) ;

i n t e r p o l a t e S p l i n e S m o o t h F i x e d X P t s ( XFERx [ p2 ] , XFER[ p2 ] , nXFER [ p2 ] , xspec [ p2 ] ,

XFER interp [ p2 ] , nspec [ p2 ] ) ;

}
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e l s e / / t h e range hasn ’ t changed , so t h e f r e q u e n c y sampl ing i s t h esame and t h e

va lue o f t h e i n t e r p o l a t e d f u n c t i o n i s t h e same .

{

p r i n t f ( ” A l l p u l s a r %s d a t a c o n t a i n e d in o v e r l a p p i n g p o r t i on\n” , p s r [ p2 ] . name ) ;

f o r ( i =0 ; i<nspec [ p2 ] ; i ++) XFERinterp [ p2 ] [ i ] = XFER[ p2 ] [ i ] ;

}

/ / t h e f o l l o w i n g v a r i a b l e i s a b i t o f a fudge f a c t o r− somet imes t h e r e i s a numer i ca l

g l i t c h w i th t h e l a s t few channe ls o f t h e c r o s s spec t ra , or t h eh igh f r e q e u n c i e s

in t h e t r a n s f e r f u n c t i o n are no t s u f f i c i e n t because t h e i r r eg u l a r sampl ing

means t h a t i f , as p a r t o f an o v e r l a p p i n g reg ion , we encoun te rt h e h igher than

average po in t−d e n s i t y , then t h e t r a n s f e r f u n c t i o n w i l l sudden ly be too s h or t a t

t h e h igh f r e q u e n c y end because t h e h i g h e s t f r e q u e n c y in t h e tr a n s f e r f u n c t i o n i s

c a l c u l a t e d as t h e AVERAGE s e p a r a t i o n o f p o i n t s .

i n t ex t raSpecChans = 4 ;

i f ( xspec [ p1 ] [ maxloop− ex t raSpecChans− 1] − XFER x [ p1 ] [ nXFER [ p1 ] − 1] > 1 . 0 e−8)

{

f p r i n t f ( s t d e r r , ”Huge problem wi th p1 because HIGHFREQ t r an s f e r f u n c t i o n i s too

s h o r t − code w i l l c r a s h : p s r = %s , p s r # = %d , p a i r # = %d , max xspec = %.20

g , max XFERfunc f r e q = %.20g\n” , p s r [ p1 ] . name , p1 , ncor r , xspec [ p1 ] [ nspec [

p1 ] − ex t raSpecChans− 1 ] , XFER x [ p1 ] [ nXFER[ p1 ] − 1 ] ) ;

e x i t ( 1 ) ;

}

i f ( xspec [ p2 ] [ maxloop− ex t raSpecChans− 1] − XFER x [ p2 ] [ nXFER [ p2 ] − 1] > 1 . 0 e−8)

{

f p r i n t f ( s t d e r r , ”Huge problem wi th p2 because HIGHFREQ t r an s f e r f u n c t i o n i s too

s h o r t − code w i l l c r a s h : p s r = %s , p s r # = %d , p a i r # = %d , max xspec = %.20

g , max XFERfunc f r e q = %.20g\n” , p s r [ p2 ] . name , p2 , ncor r , xspec [ p2 ] [ nspec [

p2 ] − ex t raSpecChans− 1 ] , XFER x [ p2 ] [ nXFER[ p2 ] − 1 ] ) ;

e x i t ( 1 ) ;

}

/ /NOW form c r o s s spect rum o f p u l s a r s p1 and p2 , on ly need r e a lp a r t s i n c e when we

sum i t to f i n d t h e a2ze taa r ia nc e , t h e imag ina ry p a r t s w i l l cance l ou t f o r

n e g a t i v e and p o s i t i v e f r e q u e n c i e s : t h e r e f o r e Re{FT[ p1 ] xFT [ p2 ]∗} = FT re [ p1 ] x

FT re [ p2 ] + FT im [ p1 ] x FT im [ p2 ] . However t h e imag ina ry p a r t maybe u s e f u l f o r

g i v i n g us a good e s t i m a t e o f t h e n o i s e on each p u l s a r ( s i n c e i tw i l l no t be

a f f e c t e d by GWs or c l o c k e r r o r s )

f o r ( i =0 ; i<maxloop ; i ++)

{

i f ( i n t e r p !=0 )

{

i f ( f a b s ( xspec [ p1 ] [ i ]− xspec [ p2 ] [ i ] ) > 1e−3) { p r i n t f ( ”ERROR in o v e r l a p p i n g

d a t a : i = %d , f r e q %s = %g , f r e q %s = %g\n” , i , p s r [ p1 ] . name , xspec [ p1 ] [ i ] ,

p s r [ p2 ] . name , xspec [ p2 ] [ i ] ) ; f p r i n t f ( s t d e r r , ”ERROR in ov e r l a p\n” ) ; e x i t

( 1 ) ;}

}

i f ( f a b s ( XFERx [ p1 ] [ i ] − xspec [ p1 ] [ i ] ) < 0 | | f a b s ( XFERx [ p2 ] [ i ] − xspec [ p2 ] [ i ] )

< 0) { p r i n t f ( ” T r a n s f e r f u n c t i o n has i n c o r r e c t sampl ing− l e a d s to

e x t r a p o l a t i o n no t i n t e r p o l a t i o n ! ! %g %g %g %g %g %g %g %g\n” , XFER x [ p1 ] [ i ] ,

XFER[ p1 ] [ i ] , xspec [ p1 ] [ i ] , XFER interp [ p1 ] [ i ] , XFER x [ p2 ] [ i ] , XFER[ p2 ] [ i ] ,

xspec [ p2 ] [ i ] , XFER interp [ p2 ] [ i ] ) ; f p r i n t f ( s t d e r r , ”ERROR in o v e r l a p\n” ) ;

e x i t ( 1 ) ;}

c r o s s s p e cx [ n c o r r ] [ i ] = xspec [ p1 ] [ i ] ; / / p1 and p2 have same x−v a l u e s

c r o s s s p e cy r e [ n c o r r ] [ i ] = y s p e c r e [ p1 ] [ i ] ∗ y s p e c r e [ p2 ] [ i ] + yspec im [ p1 ] [ i ] ∗

yspec im [ p2 ] [ i ] ; / / r e a l p a r t o f 2−s i d e d c r o s s spect rum in (DFT u n i t s ) ˆ2

c r o s s s p e cy i m [ n c o r r ] [ i ] = yspec im [ p1 ] [ i ] ∗ y s p e c r e [ p2 ] [ i ] − y s p e c r e [ p1 ] [ i ] ∗

yspec im [ p2 ] [ i ] ; / / imag p a r t o f 2−s i d e d c r o s s s p e c t in (DFT u n i t s ) ˆ2

/ /NOW c o n v e r t t h e u n i t s o f t h e r e a l and imag ina ry p a r t s o f t h e2−s i d e d c r o s s

spect rum i n t o u n i t s o f 1−s i d e d PSD us ing t h e same c o n v e r s i o n f a c t o r as we

use f o r t h e power s p e c t r a . Th is c o n v e r s i o n f o r t h e power s p e ct r a i s outY [ j
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] = ( outY [ j ] / pow (365 . 25∗864 0 0 . 0 , 2 ) )∗2∗ ( t span / 3 6 5 . 2 5 ) / ( doub le ) n / ( doub le ) n ;

no te t h e f a c t o r o f 2 t h a t c o n v e r t s 2−s i d e d to 1−s i d e d spect rum .

c r o s s s p e cy r e [ n c o r r ] [ i ] = ( c r o s s s p e cy r e [ n c o r r ] [ i ] / pow (365 . 25∗864 0 0 . 0 , 2 ) )

∗2∗ ( 1 / s q r t ( xspec [ p1 ] [ 0 ]∗ xspec [ p2 ] [ 0 ] ) / 3 6 5 . 2 5 ) / (double ) n res3 [ p1 ] / (double )

n res3 [ p2 ] ;

c r o s s s p e cy i m [ n c o r r ] [ i ] = ( c r o s s s p e cy i m [ n c o r r ] [ i ] / pow (365 . 25∗864 0 0 . 0 , 2 ) )

∗2∗ ( 1 / s q r t ( xspec [ p1 ] [ 0 ]∗ xspec [ p2 ] [ 0 ] ) / 3 6 5 . 2 5 ) / (double ) n res3 [ p1 ] / (double )

n res3 [ p2 ] ;

/ / CONSISTENCY CHECK: r e a l p a r t o f t h e c r o s s spect rum can ’ t exceed t h e s q r t o f

t h e p roduc t o f t h e 2 i n p u t power s p e c t r a . Th is i s a consequence o f t h e

i d e n t i t y (A−B) ˆ2 >= 0 , w i th A = Rp1∗ Ip2 ; B = Rp2∗ Ip1 .

i f ( c r o s s s p e cy r e [ n c o r r ] [ i ] / s q r t ( yspec [ p1 ] [ i ] ∗ yspec [ p2 ] [ i ] ) > 1 . 01 )

{

f p r i n t f ( s t d e r r , ”ERROR! Cross spect rum exceeds s q r t o f p r od u c t o f i n p u t power

s p e c t r a : f reqnum = %d , c r o s s spec = %g , s q r t ( yspec [ p1 ]∗ yspec [ p2 ] = %g

\n” , i , c r o s s s p e cy r e [ n c o r r ] [ i ] , s q r t ( yspec [ p1 ] [ i ] ∗ yspec [ p2 ] [ i ] ) ) ;

e x i t ( 1 ) ;

}

}

/ /NOW d i v i d e t h e 1−s i d e d c r o s s spect rum by t h e square r o o t o f t h e p roduc t o f t h e

XFER f u n c t i o n s . A lso d i v i d e each p u l s a r spect rum by i t s own tr a n s f e r f u n c t i o n .

double s q r t p r o d ; / / f o r c o m p u t a t i o n a l speed

f o r ( i =0 ; i<maxloop ; i ++)

{

s q r t p r o d = s q r t ( XFERinterp [ p1 ] [ i ] ∗ XFER interp [ p2 ] [ i ] ) ;

i f ( noXFER == 0) s q r t p r o d = 1 . 0 ;

yspec [ p1 ] [ i ] /= XFER interp [ p1 ] [ i ] ;

yspec [ p2 ] [ i ] /= XFER interp [ p2 ] [ i ] ;

c r o s s s p e cy r e [ n c o r r ] [ i ] /= s q r t p r o d ;

c r o s s s p e cy i m [ n c o r r ] [ i ] /= s q r t p r o d ;

P g [ n c o r r ] [ i ] = preWhAmp ∗ preWhAmp ∗ pow ( (double ) ( xspec [ p1 ] [ i ] ∗ 365 . 2425 )

, ( 2 . 0∗ alphaGWB − 3 . 0 ) ) / 12 . 0 / M PI / M PI ;

c r o s s s p e ce r r [ n c o r r ] [ i ]= s q r t ( ( modelspecy [ p1 ] [ 0 ] ∗ pow ( xspec [ p1 ] [ i ] / 8 6 4 0 0 . 0 ,

modelspecy [ p1 ] [ 1 ] ) + P g [ n c o r r ] [ i ] ) ∗ ( modelspecy [ p2 ] [ 0 ] ∗ pow ( xspec [ p1 ] [ i

] / 8 6 4 0 0 . 0 , modelspecy [ p2 ] [ 1 ] ) + P g [ n c o r r ] [ i ] ) / 2 . 0 ) ;

/ /NOW INCLUDING THE CALIBRATION FACTOR ! ! ! ! ! ! remember to ca l i b r a t e t h e e r r o r as

w e l l .

i f ( i < numCal && yesCalFac == 1)

{

c r o s s s p e cy r e [ n c o r r ] [ i ] = 1 . 0 / ca lFac [ n c o r r ] [ i ] ∗ ( c r o s s s p e cy r e [ n c o r r ] [ i

] ) ;

c r o s s s p e cy i m [ n c o r r ] [ i ] = 1 . 0 / ca lFac [ n c o r r ] [ i ] ∗ ( c r o s s s p e cy i m [ n c o r r ] [ i

] ) ;

c r o s s s p e ce r r [ n c o r r ] [ i ] = 1 . 0 / ca lFac [ n c o r r ] [ i ] ∗ ( c r o s s s p e ce r r [ n c o r r ] [ i

] ) ;

}

}

/ / Now c a l c u l a t e t h e e s t i m a t e o f Aˆ2 t i m e s z e t a ( us ing t h e b igsummation fo rmu lae )

where t h e e r r o r s in t h e c r o s s spect rum are NOT independe n t o ff r e q u e n c y ( because

t h e s p e c t r a are no t wh i te in g e n e r a l ) . Note t h e r e are 2 a v a i l ab l e v e r s i o n s here

− t h e pre−w h i t e n i n g v e r s i o n where we a l low f o r t h e idea t h a t t h e g r a v i ta t i o n a l

wave s i g n a l might be l a r g e enough t h a t PG ˜ P N , and t h e non−pre−w h i t e n i n g

v e r s i o n where we assume PG << P N .

sum1 = 0 . 0 ;

sum2 = 0 . 0 ;

sum4 = 0 . 0 ;

f o r ( k =0; k<maxloop − ex t raSpecChans ; k++)

sum1+= ( c r o s s s p e cy r e [ n c o r r ] [ k ]∗pow ( ( double ) ( k +1) ,−1.0∗ (3 .0 − 2.0∗alphaGWB ) ) /

c r o s s s p e ce r r [ n c o r r ] [ k ] / c r o s s s p e ce r r [ n c o r r ] [ k ] ) ;
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sum2+= ( pow ( (double ) ( k +1) ,−2.0∗ (3 .0 − 2.0∗ alphaGWB ) ) / c r o s s s p e ce r r [ n c o r r ] [ k ]

/ c r o s s s p e ce r r [ n c o r r ] [ k ] ) ;

/ / CONSISTENCY CHECK− we don ’ t e x p e c t t h e imag ina ry p a r t to be c o r r e l a t e d , so

t h e c h i squared o f t h e imag ina ry p a r t shou ld be 1 .

sum4 += ( c r o s s s p e cy i m [ n c o r r ] [ k ]∗pow ( ( double ) ( k +1) ,−1.0∗ (3 .0 − 2.0∗ alphaGWB ) )

/ c r o s s s p e ce r r [ n c o r r ] [ k ] / c r o s s s p e ce r r [ n c o r r ] [ k ] ) ;

a 2 z e t a [ n c o r r ] = 12.0∗M PI∗M PI∗pow ( ( xspec [ p1 ] [ 0 ] ∗ 365 . 2425 ) , ( 3 . 0− 2.0∗alphaGWB ) ) ∗

sum1 / sum2 ;

/ / CONSISTENCY check w i th imag ina ry p a r t o f t h e c r o s s power spect rum .

a2ze ta im [ n c o r r ] = 12.0∗M PI∗M PI∗pow ( ( xspec [ p1 ] [ 0 ] ∗ 365 . 2425 ) , ( 3 . 0− 2.0∗ alphaGWB )

) ∗ sum4 / sum2 ;

/ /NOW c a l c u l a t e t h e e r r o r on t h e e s t i m a t e o f a2ze ta g iven t h at t h e e r r o r on t h e

c r o s s spect rum DOES vary w i th f r e q u e n c y .

sum3 = 0 . 0 ;

f o r ( k =0; k<maxloop − ex t raSpecChans ; k ++)

{

/ / us ing t h e c a l i b r a t e d e r r o r e s t i m a t e on t h e c r o s s spect rum

sum3+= ( 1 . 0 / c r o s s s p e ce r r [ n c o r r ] [ k ] / c r o s s s p e ce r r [ n c o r r ] [ k ] / pow ( (double ) ( k

+1) , 2 . 0∗ ( 3 . 0 − 2.0∗alphaGWB ) ) ) ;

}

/ / I f we haven ’ t found a f i l e w i th t h e e r r o r s from our p r o c e s s co n t a i n e d in i t , t hen

c a l c u l a t e t h e e r r o r a n a l y t i c a l l y .

i f ( f oundE r rs == 0)

{

a 2 z e t a e r r [ n c o r r ] = 12 . 0 ∗ M PI ∗ M PI ∗ pow ( xspec [ p1 ] [ 0 ] ∗ 3 6 5 . 2 4 2 5 , ( 3 . 0− 2.0∗

alphaGWB ) ) / s q r t ( sum3 ) ;

p r i n t f ( ” c a l c u l a t i n g e r r o r s from t h e s p e c t r a l models ! ! ! ! DUE to no f i l e c a l l e d

REAL PAIR RESULTS ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! \ n” ) ;

}

/ / CONSISTENCY CHECK wi th c h i s q o f imag ina ry p a r t

ch isqsum += ( a2ze taim [ n c o r r ] / a 2 z e t a e r r [ n c o r r ] ) ∗ ( a2ze ta im [ n c o r r ] /

a 2 z e t a e r r [ n c o r r ] ) ;

ang le [ n c o r r ] = p s r a n g l e ( p s r [ p2 ] . param [ p a r a mr a j ] . v a l [ 0 ] , p s r [ p2 ] . param [ paramdec j ] .

v a l [ 0 ] ,

p s r [ p1 ] . param [ p a r a mr a j ] . v a l [ 0 ] , p s r [ p1 ] . param [ paramdec j ] .

v a l [ 0 ] ) ;

p r i n t f ( ” A2ze taE s t i m a t e s %s %s %d %g %g %g %g\n” , p s r [ p1 ] . name , p s r [ p2 ] . name , ncor r ,

ang le [ n c o r r ] , a 2 z e t a [ n c o r r ] , a 2 z e t ae r r [ n c o r r ] , a 2 z e t a [ n c o r r ] / a 2 z e t ae r r [ n c o r r

] ) ;

/∗ Quick c o r r e l a t i o n ∗ /

sum1 = 0 . 0 ;

sum2 = 0 . 0 ;

sum3 = 0 . 0 ;

f o r ( i =0 ; i<nres3 [ p1 ] ; i ++)

{

sum1 += y res3 [ p1 ] [ i ]∗ y res3 [ p2 ] [ i ] ;

sum2 += y res3 [ p1 ] [ i ]∗ y res3 [ p1 ] [ i ] ;

sum3 += y res3 [ p2 ] [ i ]∗ y res3 [ p2 ] [ i ] ;

}

c o r r [ n c o r r ] = ( f l o a t ) ( sum1 / s q r t ( sum2∗sum3 ) ) ;

T over lap [ n c o r r ] = 1 . 0 / xspec [ p1 ] [ 0 ] ; / / t h e o v e r l a p p i n g t ime i n t e r v a l o f t h e two

pu lsa r s , i n u n i t s o f days .

f p r i n t f ( f ou t , ”%s %s %.8g %.8g %.8g %.8g %.8g %.8g\n” , p s r [ p1 ] . name , p s r [ p2 ] . name ,

ang le [ n c o r r ] , a 2 z e t a [ n c o r r ] , a 2 z e t ae r r [ n c o r r ] , T over lap [ n c o r r ] / 365.2425 , c o r r

[ n c o r r ] , a2ze ta im [ n c o r r ] ) ;

i f ( yesXSpec == 1)

{
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/ / NB ! ! I f you change t h e name o f t h e C a l i b r a t i o n f a c t o r f i l e s, you need to

change t h e name o f t h e s e ones too ! !

s p r i n t f ( fname , o u t F i l e P a i r s ) ;

s t r c a t ( fname , p s r [ p1 ] . name ) ;

s t r c a t ( fname , p s r [ p2 ] . name ) ;

f o u t 2 = fopen ( fname , ” a ” ) ;

f p r i n t f ( fou t2 , ”%.2g %.2g %.2g %.2g %.2g %.2g %.2g %.2g %.2g%.2g %.2g %.2g %.2g

%.2g %.2g %.2g %.2g %.2g %.2g %.2g %.2g %.2g %.2g %.2g %.2g %.2g %.2g %.2g

%.2g %.2g ” , c r o s s s p e cy r e [ n c o r r ] [ 0 ] , c r o s s s p e cy i m [ n c o r r ] [ 0 ] ,

c r o s s s p e ce r r [ n c o r r ] [ 0 ] , c r o s s s p e cy r e [ n c o r r ] [ 1 ] , c r o s s s p e cy i m [ n c o r r ] [ 1 ] ,

c r o s s s p e ce r r [ n c o r r ] [ 1 ] , c r o s s s p e cy r e [ n c o r r ] [ 2 ] , c r o s s s p e cy i m [ n c o r r ] [ 2 ] ,

c r o s s s p e ce r r [ n c o r r ] [ 2 ] , c r o s s s p e cy r e [ n c o r r ] [ 3 ] , c r o s s s p e cy i m [ n c o r r ] [ 3 ] ,

c r o s s s p e ce r r [ n c o r r ] [ 3 ] , c r o s s s p e cy r e [ n c o r r ] [ 4 ] , c r o s s s p e cy i m [ n c o r r ] [ 4 ] ,

c r o s s s p e ce r r [ n c o r r ] [ 4 ] , c r o s s s p e cy r e [ n c o r r ] [ 5 ] , c r o s s s p e cy i m [ n c o r r ] [ 5 ] ,

c r o s s s p e ce r r [ n c o r r ] [ 5 ] , c r o s s s p e cy r e [ n c o r r ] [ 6 ] , c r o s s s p e cy i m [ n c o r r ] [ 6 ] ,

c r o s s s p e ce r r [ n c o r r ] [ 6 ] , c r o s s s p e cy r e [ n c o r r ] [ 7 ] , c r o s s s p e cy i m [ n c o r r ] [ 7 ] ,

c r o s s s p e ce r r [ n c o r r ] [ 7 ] , c r o s s s p e cy r e [ n c o r r ] [ 8 ] , c r o s s s p e cy i m [ n c o r r ] [ 8 ] ,

c r o s s s p e ce r r [ n c o r r ] [ 8 ] , c r o s s s p e cy r e [ n c o r r ] [ 9 ] , c r o s s s p e cy i m [ n c o r r ] [ 9 ] ,

c r o s s s p e ce r r [ n c o r r ] [ 9 ] ) ;

f p r i n t f ( fou t2 , ”\n” ) ;

f c l o s e ( f o u t 2 ) ;

}

n c o r r ++;

p r i n t f ( ” ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗END OF THIS PAIR∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗\ n” ) ;

}

}

f c l o s e ( f o u t ) ;

t o t a l c o r r = n c o r r ; / / t h i s i s t h e t o t a l number o f e s t i m a t e s o f t h e c o r r e l a t i o n s ,equa l to

t h e nmber o f p u l s a r p a i r s .

/ / CONSISTENCY CHECK

ch isq im = ch isqsum / (double ) t o t a l c o r r ;

p r i n t f ( ” c h i squared of t h e im ag ina ry p a r t o f t h e %d a 2 z e t a e st i m a t e s i s %g ; t h i s number

shou ld be c l o s e to 1\n” , t o t a l c o r r , ch i sq im ) ;

/ / Determine t h e we igh ted average Tover lap ( in u n i t s o f days ) in t h e data se t , we igh ted by

e r r o r on each Aˆ2 z e t a e s t i m a t e .

double wts [ t o t a l c o r r ] ;

f o r ( i =0 ; i<t o t a l c o r r ; i ++)

wts [ i ] = 1 . 0 / a 2 z e t a e r r [ i ] / a 2 z e t a e r r [ i ] ;

avT over lap = TKWeightedmeand ( Tover lap , wts , t o t a l c o r r ) ;

p r i n t f ( ” ave rage o v e r l a p t ime i s %g y e a r s\n” , avT over lap / 365 . 2425 ) ;

/ / C a l c u l a t e s i g n i f i c a n c e o f d e t e c t i o n us ing t h e J e n e t e t a l. s i g n i f i c a n c e parameter ”S”

double R s ig = c a l c S i g n i f i c a n c e ( co r r , ang le , t o t a l c o r r ,∗ nps r ) ;

/ / PERFORM Leas t Squares f i t t o A 2 z e t a a r i a n c e s . . .

/ / 2 f i t pa ramete r s i f we are s e a r c h i n g f o r t h e HD curve AND a c on s t a n t . J u s t 1 i f we are

on ly s e a r c h i n g f o r HD curve .

p r i n t f ( ” nharm = %d\n” , nharm ) ;

double A2[ nharm ] , eA2 [ nharm ] , a func [ 1 0 ] , e [ t o t a l c o r r ] ;

i n t outN ;

eA2 [ 0 ] = 0 . 0 ;

i f ( nharm == 2) eA2 [ 1 ] = 0 . 0 ;

/ / Do LSQ F i t o f t h e HD f u n c t i o n to t h e data .

f o r ( i =0 ; i<t o t a l c o r r ; i ++)

{

e [ i ] = a 2 z e t a e r r [ i ] ;

}

i n t wErr = 1 ; / / w i th Er ror

i f ( wErr == 0) p r i n t f ( ”\n\n\n\nwErr = 0 ! ! ! Th is means no t us ing e r r o r s\n\n\n” ) ;

double r e d u c e d c h i s q [ 1 ] ;

/ /DO THE FIT
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/ / FIT TO THE REAL PART ( which c o n t a i n s t h e c o r r e l a t e d s i g n a l) .

f i tHDcurve ( ang le , a2ze ta , e , t o t a l c o r r , wErr , nharm , A2,&outN , eA2 , r e d u c e dc h i s q ) ;

f o u t = fopen ( o u t F i l e , ” a ” ) ;

char msg [ 1 0 0 ] ;

double B s ig = A2 [ 0 ] / eA2 [ 0 ] ; / / s i g n i f i c a n c e o f d e t e c t i o n

double gwAmp, UpperBoundAmp ;

i f (A2 [ 0 ] < 0) / / i f t h e e s t i m a t e o f Aˆ2 i s nega t i ve , then :

gwAmp = 0 ;

e l s e
gwAmp = s q r t (A2 [ 0 ] ) ;

i f ( ngw==0) gwamp = 0 . 0 ;

p r i n t f ( ” d e r i v e d gwAmp = %g , i n p u t gwAmp = %g\n” , gwAmp, gwamp / pow (365 . 2425∗86400 . 0 , a lpha ) ) ;

/ / t h e f a c t o r i s to g e t t h e i n p u t gwamp norma l i sed to 1 year ( i ns t e a d o f 1 second )

i f ( B s ig < −1.7)

UpperBoundAmp = 0 . 0 ;

e l s e
UpperBoundAmp = s q r t (A2 [ 0 ] + 1 . 7∗ eA2 [ 0 ] ) ; / / t h e number 1 . 7 comes from t h e e r f f u n c t i o n ;

i t g i v e s us a 90% c o n f i d e n c e i n t e r v a l ; s i n c e we on ly want t h e upper s ide , t h i s

co r responds to a 95% c o n f i d e n c e upper bound .

/ / Now de te rm ine t h e e q u i v a l e n t v a l u e s o f omega f o r t h e e s t i ma t e and t h e l i m i t , us ing eq . 36

from Anholm e t a l . paper

double h = 0 . 7 2 ; / / assumed va lue o f H0 = 72 km / s / Mpc

double alphaOmegaGWB = 2 ∗ alphaGWB + 2 . 0 ; / / t h i s i s t h e s p e c t r a l exponen t o f t h e omega

background

double H 0 = h ∗ 100.0 ∗ 1000.0 / 3 .08568025 e22∗ 365.2425 ∗ 86400 . 0 ; / / hubb le c o n s t a n t

in 1 / yea rs

double f 1 y r = 1 . 0 ; / / 1 / 1 year in yea rs

double omegaGWB = A2 [ 0 ] ∗ 2 . 0 ∗ M PI ∗ M PI / 3 . 0 / H 0 / H 0 / pow ( f 1y r , 2 . 0∗ alphaGWB ) ∗

pow ( ( 1 . 0 / avT over lap ) , 2 .0∗ alphaGWB + 2. 0− alphaOmegaGWB ) ;

double errOmegaGWB = eA2 [ 0 ] ∗ 2 . 0 ∗ M PI ∗ M PI / 3 . 0 / H 0 / H 0 / pow ( f 1y r , 2 . 0∗ alphaGWB )

∗ pow ( ( 1 . 0 / avT over lap ) , 2 .0∗alphaGWB + 2. 0− alphaOmegaGWB ) ;

double UpperOmegaGWB = omegaGWB + 1.64485 ∗ errOmegaGWB ;

i f ( gwamp > 0) / / i f we have added an i n p u t GWB wi th p o s i t i v e amp l i t ude :

{

i f ( nharm == 2) / / i . e . i f we have f i t t e d a c l o c k e r r o r as wel l , t hen p r i n t ou t th e

pa ramete r s o f t h e e s t i m a t e d c l o c k e r r o r

f p r i n t f ( f ou t , ”%.4g\ t %.4g\ t %.4g\ t %.4g\ t %.4g\ t %.4g\ t %.4g\ t %.4g\ t%d\ t %.4g\ t %.4g\ t %.4g\n” ,

B s ig , gwAmp, gwamp∗1e5 , UpperBoundAmp , A2 [ 0 ] , eA2 [ 0 ] , r e d u c e dc h i s q [ 0 ] , ch isq im ,

t o t a l c o r r , A2 [ 1 ] , eA2 [ 1 ] , A2 [ 1 ] / eA2 [ 1 ] ) ;

e l s e i f ( nharm == 1)

f p r i n t f ( f ou t , ”%.4g\ t %.4g\ t %.4g\ t %.4g\ t %.4g\ t %.4g\ t %.4g\ t %.4g\ t%d\n” , B s ig , gwAmp,

gwamp∗1e5 , UpperBoundAmp , A2 [ 0 ] , eA2 [ 0 ] , r e d u c e dc h i s q [ 0 ] , ch isq im , t o t a l c o r r ) ;

}

e l s e / / no s i m u l a t e d GWB added

{

i f ( nharm == 2) / / i . e . i f we have f i t t e d a c l o c k e r r o r as wel l , t hen p r i n t ou t th e

pa ramete r s o f t h e e s t i m a t e d c l o c k e r r o r

f p r i n t f ( f ou t , ”%.4g\ t %.4g\ t %.4g\ t %.4g\ t %.4g\ t %.4g\ t %.4g\ t%d\ t %.4g\ t %.4g\ t %.4g\n” , B s ig

, gwAmp, UpperBoundAmp , A2 [ 0 ] , eA2 [ 0 ] , r e d u c e dc h i s q [ 0 ] , ch isq im , t o t a l c o r r , A2 [ 1 ] ,

eA2 [ 1 ] , A2 [ 1 ] / eA2 [ 1 ] ) ;

e l s e i f ( nharm == 1)

f p r i n t f ( f ou t , ”%.4g %.4g\ t %.4g\ t %.4g\ t %.4g\ t %.4g\ t %.4g\ t %.4g\ t %.4g\ t%d\n” , R s ig , B s ig

, gwAmp, UpperBoundAmp , A2 [ 0 ] , eA2 [ 0 ] , r e d u c e dc h i s q [ 0 ] , ch isq im , c o r r [ 0 ] , t o t a l c o r r ) ;

}

f c l o s e ( f o u t ) ;

re tu rn 0 ;
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}

/ / TKfindWeightedRMS i s a f u n c t i o n to f i n d t h e we igh ted RMS of an i n p u t s e r i e s . x i s t h e a r ray

o f va lues , wt i s t h e a r ray o f weights , n i s l e n g t h o f s e r i e s . This shou ld agree w i th p l k

bu t i s DIFFERENT to f i n d i n g t h e rms o f t h e we igh ted mean ! !

double TKfindWeightedRMS d ( double ∗x , double ∗wt , i n t n )

{

i n t i ;

double mean , sdev =0 . 0 , sumwt = 0 . 0 ;

mean = TKWeightedmeand ( x , wt , n ) ;

f o r ( i =0 ; i<n ; i ++)

{

sdev += pow ( x [ i ]−mean , 2 )∗wt [ i ] ;

sumwt += wt [ i ] ;

}

sdev /= sumwt ;

sdev∗=( double ) n / ( double ) ( n−1) ;

sdev = s q r t ( sdev ) ;

re tu rn sdev ;

}

/ / TKfindWeightedRMS i s a f u n c t i o n to f i n d t h e we igh ted RMS of an i n p u t s e r i e s . x i s t h e a r ray

o f va lues , wt i s t h e a r ray o f weights , n i s l e n g t h o f s e r i e s . NOT rms o f we igh ted mean .

f l o a t TKfindWeightedRMS f ( f l o a t ∗x , double ∗wt , i n t n )

{

i n t i ;

f l o a t mean ;

double sdev = 0 . 0 ;

double sumwt = 0 . 0 ;

mean = TKWeightedmeanf ( x , wt , n ) ;

f o r ( i =0 ; i<n ; i ++)

{

sdev += pow ( x [ i ]−mean , 2 )∗wt [ i ] ;

sumwt += wt [ i ] ;

}

sdev /= sumwt ;

sdev∗=( double ) n / ( double ) ( n−1) ;

sdev = (f l o a t ) s q r t ( sdev ) ;

re tu rn sdev ;

}

/ / p s r a n g l e : c a l c u l a t e s ang le on t h e sky between ps r 1 and ps r2

double p s r a n g l e (double c e n t r e l o n g ,double c e n t r e l a t , double p s r l o n g ,double p s r l a t )

{

double dlon , d l a t , a , c ;

double deg2rad = MPI / 1 8 0 . 0 ;

/∗ Apply t h e Havers ine fo rmu la∗ /

d lon = ( p s r l o n g − c e n t r e l o n g ) ;

d l a t = ( p s r l a t − c e n t r e l a t ) ;

a = pow ( s i n ( d l a t / 2 . 0 ) , 2 ) + cos ( c e n t r el a t ) ∗

cos ( p s r l a t )∗pow ( s i n ( d lon / 2 . 0 ) , 2 ) ;

i f ( a ==1)

c = M PI / deg2rad ;

e l s e
c = 2 . 0 ∗ a tan2 ( s q r t ( a ) , s q r t (1.0− a ) ) / deg2rad ;

re tu rn c ;

}
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double c a l c S i g n i f i c a n c e (double ∗ co r r ,double ∗ang le ,i n t ncor r , i n t nps r )

{

double meanR , meanR2 , meanEta , meanEta2 , sigmaRho , sigmaR , s igmaEta ;

double hd , rho , s ig , s igmag2 , rE ta , c l o c k e r r ;

i n t i ;

char s t r [ 1 0 0 ] ;

sigmaRho = s q r t ( 2 ) / s q r t ( nps r∗ ( npsr−1) ) ;

meanR = 0 . 0 ;

meanR2 = 0 . 0 ;

meanEta = 0 . 0 ;

meanEta2 = 0 . 0 ;

r E t a = 0 . 0 ;

f o r ( i =0 ; i<n c o r r ; i ++)

{

meanR += c o r r [ i ] ; / / meanR i s average c o r r e l a t i o n

meanR2 += c o r r [ i ]∗ c o r r [ i ] ;

hd = calcHD ( ang le [ i ] ) ; / / t h e H e l l i n g s Downs c o e f f i c i e n t

meanEta += hd ;

meanEta2 += hd∗hd ;

r E t a += c o r r [ i ]∗ hd ; / / r e l a t e d to a 2 z e t a a r i a n c e between HD curve and our measured

c o r r e l a t i o n s .

}

meanR /= n c o r r ;

meanEta /= n c o r r ;

r E t a /= n c o r r ;

sigmaR = meanR2− meanR∗meanR ;

s igmaEta = meanEta2− meanEta∗meanEta ;

rho = 0 . 0 ;

/∗ Note : s u b t r a c t i n g t h e means i m p l i e s t h a t any c l o c k e r r o r g e ts removed ∗ /

f o r ( i =0 ; i<n c o r r ; i ++)

rho += ( c o r r [ i ]−meanR )∗ ( calcHD ( ang le [ i ] )−meanEta ) / s q r t ( sigmaR∗s igmaEta ) ;

s i g = rho / sigmaRho ;

s igma g2 = 0 . 0 ;

f o r ( i =0 ; i<n c o r r ; i ++)

s igma g2 += c o r r [ i ]∗ calcHD ( ang le [ i ] ) ;

s igma g2 /= meanEta2 ;

s p r i n t f ( s t r , ” S i g n i f i c a n c e of GW background s i g n a l = %.2g ”, s i g ) ;

/∗ C a l c u l a t e c l o c k e r r o r ∗ /

{

c l o c k e r r = ( meanEta2∗meanR−meanEta∗ r E t a ) / s igmaEta ;

p r i n t f ( ” Var iance of c lock e r r o r = %g ( s ˆ 2 )\n” , c l o c k e r r ) ;

}

/∗ S t r e n g t h o f g r a v i t y wave background∗ /

p r i n t f ( ”GW background = %g ( s ˆ 2 ) s q r t ( ) = %g ( s )\n” , rho∗ s q r t ( sigmaR / s igmaEta ) , s q r t ( rho∗ s q r t (

sigmaR / s igmaEta ) ) ) ;

re tu rn s i g ;

}

double calcHD (double ang le )

{

i f ( ang le == 0) re tu rn 0 . 5 ;

double x , c t h e t a ;

c t h e t a = cos ( ang le∗M PI / 1 8 0 . 0 ) ;

x = (1.0− c t h e t a ) / 2 . 0 ;

re tu rn ( x∗ l og ( x )−x / 6 . 0 + 1 . 0 / 3 . 0 )∗ 3 . 0 / 2 . 0 ;

}

/ / Th is v e r s i o n does a f i t o f t h e HD curve on ly
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vo id f i tHDcurve (double ∗x , double ∗y , double ∗e , i n t n , i n t wErr , i n t nharm ,double ∗A2 , i n t ∗outN ,

double ∗eA2 , double ∗ r e d u c e d c h i s q )

{

FILE ∗ f o u t ;

i n t i , j ;

long idum2 = TKsetSeed ( ) ;

double ∗∗cvm ;

double c h i s q = 0 . 0 ;

cvm = (double∗∗ ) mal loc ( nharm∗ s i z e o f( double ∗ ) ) ;

f o r ( i =0 ; i<nharm ; i ++)

cvm [ i ] = ( double∗ ) mal loc ( nharm∗ s i z e o f( double ) ) ;

i f ( nharm == 1) T K l e a s t S q u a r e ss v d ( x , y , e , n , A2 , eA2 , nharm , cvm,& ch isq , HDfunc , wErr ) ;

e l s e i f ( nharm == 2) T K l e a s t S q u a r e ss v d ( x , y , e , n , A2 , eA2 , nharm , cvm,& ch isq , HDfuncClk , wErr );

f o r ( i =0 ; i<nharm ; i ++)

f o r ( j =0 ; j<nharm ; j ++)

p r i n t f ( ”cvm[%d][%d ] = %g\n” , i , j , cvm [ i ] [ j ] ) ;

f o r ( i =0 ; i<nharm ; i ++)

f o r ( j =0 ; j<nharm ; j ++)

p r i n t f ( ” c o r r e l a t i o n m at r i x [%d ][%d ] = %g\n” , i , j , cvm [ i ] [ j ] / s q r t ( cvm [ i ] [ i ] ∗cvm [ j ] [ j ] ) ) ;

∗outN = nharm ;

r e d u c e d c h i s q [ 0 ] = c h i s q / ( n− nharm ) ; / / t h e c h i squared d i v i d e d by t h e number o f deg rees

o f f reedom = n p t s− n u m f i t s

p r i n t f ( ” c h i s q = %g & r e d u c e dc h i s q = %g and wErr = %d\n\n” , ch isq , r e d u c e dc h i s q [ 0 ] , wErr ) ;

/ /NOW Cor rec t t h e e r r o r bars on t h e ”nharm” f i t t e d pa ramete rs f o r t h e ch i−squared va lue :

i f ( wErr == 1)

{

p r i n t f ( ” C o r r e c t i n g e r r o r s on f i t us ing t h e square r o o t o f t he reduced c h i s q u a r e d\n” ) ;

f o r ( i =0 ; i<nharm ; i ++)

eA2 [ i ] ∗= ( s q r t ( r e d u c e dc h i s q [ 0 ] ) ) ;

}

i f ( nharm == 2) p r i n t f ( ” c lock e r r o r = %g +/− %g , s i g n i f i c a n c e of c lock e r r o r = %g\n” , A2

[ 1 ] , eA2 [ 1 ] , A2 [ 1 ] / eA2 [ 1 ] ) ;

}

/ / Th is f u n c t i o n i s used when f i t t i n g f o r a c l o c k e r r o r as w e l las t h e GWB

vo id HDfuncClk (double x1 , double a func [ ] , i n t ma)

{

i n t i ;

double x ;

double c t h e t a ;

c t h e t a = cos ( x1∗M PI / 1 8 0 . 0 ) ;

x = (1.0− c t h e t a ) / 2 . 0 ;

a func [ 0 ] = ( x∗ l og ( x )−x / 6 . 0 + 1 . 0 / 3 . 0 )∗ 3 . 0 / 2 . 0 ;

a func [ 1 ] = 1 . 0 ; / / f i t s a c o n s t a n t s i m u l t a n e o u s l y

}

/ / Th is f u n c t i o n f i t s on ly f o r t h e GWB

vo id HDfunc (double x1 , double a func [ ] , i n t ma)

{

i n t i ;

double x ;

double c t h e t a ;

c t h e t a = cos ( x1∗M PI / 1 8 0 . 0 ) ;

x = (1.0− c t h e t a ) / 2 . 0 ;

a func [ 0 ] = ( x∗ l og ( x )−x / 6 . 0 + 1 . 0 / 3 . 0 )∗ 3 . 0 / 2 . 0 ;

}

/ / Adapted from S t e f a n / George ’ s p l u g i n
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/ / i n t e r p o l a t i o n ( s p l i n e ) : t h i s f u n c t i o n i n t e r p o l a t e s a data s e t us ing c o n s t r a i n e d s p l i n e onto

an i n p u t s e t o f i n t e r p X and n I n t e r p v a l u e s

vo id i n t e r p o l a t e S p l i n e S m o o t h F i x e d X P t s (double ∗ inX , double ∗ inY , i n t inN , double ∗ in terpX ,

double ∗ in terpY , i n t n I n t e r p )

{

/ / a r r ay needed by TKcmonot

double yd [MAX OBSN] [ 4 ] ;

/ / a u x i l a r y ’ i ’

i n t i ;

double tempX [MAX OBSN] ;

i n t nTemp = n I n t e r p ;

f o r ( i =0 ; i<nTemp ; i ++)

{

tempX [ i ] = i n t e r p X [ i ] ;

}

TKcmonot ( inN , inX , inY , yd ) ;

T K s p l i n e i n t e r p o l a t e ( inN , inX , inY , yd , tempX , in terpY , nTemp ) ;

} / / i n t e r p o l a t e S p l i n e S m o o t h F i x e d X P t s
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