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“One man’s noise is another man’s signal.”

— Edward Ng,The New York Time#larch 20, 1990



Abstract

This thesis addresses the problem of gravitational-waW)(Getection using radio timing
observations of pulsars. We study GW signals in real andlaibed pulsar timing observations,
and describe the astrophysical implications for cases iiclwho GW signal is detected. We
simulate timing observations from a range of hypotheticdar timing array projects. The
pulse arrival times are then perturbed by an individual sewf GWs. One of the simulated
data sets comprises an array of 20 pulsars timed with a reanrmquare residual of 10 ns
over 10 years. If there is no detectable GW signal in this datathen the merger rate of
supermassive black-hole binaries (SMBHBs) with a chirpsw#s0° solar masses is less than
one merger every(0® years up to a redshift of = 2. This constraint rules out estimates of
the SMBHB merger rate based on hierarchical galaxy formatith standard assumptions on
the merger parameters. Applying a similar analysis to ridggrublished observations from
the Parkes Pulsar Timing Array (PPTA) yields a constraintr@enmerger rate of SMBHBSs of
less than one merger every five years for SMBHBs with chirpsnas)!® solar masses up to
a redshift ofz = 2. The results also indicate that it is unlikely that an indivel GW source
could be detected with existing data sets.

We consider the signal caused by an isotropic stochastidtgtianal-wave background
(GWB), and show that, with a few more years of observatioiteeethe GWB will be de-
tected or the parameter space of most current galaxy ewolutiodels will be significantly
constrained. An analysis of the cross-correlation betwkeniming residuals of different pul-
sars in the PPTA shows that there is no detectable GWB sigrthkicurrent data. The GWB
detection statistic is dominated by only a few pulsars incilmeent PPTA data. There are good
prospects for detection of the GWB using radio timing of ptésin the next decade. We con-
clude that the effect of instabilities in realisations o terrestrial timescale and inaccuracies in
the solar system ephemeris must be removed from the timgiguais in order to detect a GW
signal in pulsar timing observations in the future. TheHoaming International Pulsar Timing
Array project will also significantly increase the probdlibf detection of GW signals using

pulsar timing.
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Chapter 1

Introduction to Pulsar Timing and
Gravitational Waves

Chapter Outline: In this Chapter, we describe:

e pulsars and their properties;

¢ millisecond pulsars and techniques for observing them;

e gravitational waves including some common sources of taawnal waves and a sum-
mary of projects aiming to detect them,;

e techniques for detecting gravitational waves using radidrig observations of millisec-
ond pulsars;

¢ the current state of the field in detecting and placing linoitsgravitational waves with
pulsar timing;

e an outline of the thesis.

1.1 Pulsars

A pulsar is a rapidly rotating magnetised neutron star thatssbeams of electromagnetic (EM)
radiation. The first pulsar was discovered in 1967 (Hewistl.e1968). Because the EM beams
periodically sweep over the Earth (like a lighthouse beamegs across an observer), the pulsar
detection was made by observing a sequence of pulses in a¢ines that J. Bell had obtained
using a radio telescope (reproduced in Figure 1.1). Theepugere periodic and appeared at
the same sidereal time every day. This led Bell and Hewisbméront the possibility that these
were artificially-generated signals from extraterresplanets (Hewish, 1975). It was soon
realised that the pulses could be the radio emission fronstiper-dense stellar remnant of a
supernova (e.g., Gold, 1968), and, in the 44 years that lndlesvied, almost 2000 pulsars have

been catalogued (Manchester et al., 2605)

1The ATNF Pulsar Cataloguét t p: / / www. at nf . csi ro. au/ resear ch/ pul sar/ psrcat/ .

1
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Figure 1.1: The pen chart showing the detection of pulseb raghission from a pulsar, with
time on the horizontal axis and intensity given by verticaflections (in the top trace). The
pulses have a 1.33 s period, and appear at the same siderea@uery day. [Image reproduced
from Hewish (1975)]

1.1.1 Properties

A typical pulsar is born after a star with initial mass appnoately in the range 8l to 15M,
wherelM, ~ 2 x 103°kg is one Solar mass, undergoes core collapse to produceemsvp
(Lyne & Smith, 2005). The core of the progenitor usually remafter the supernova explosion
and forms a neutron star with a typical mass afM ., radius of 10 km and surface magnetic
field of ~ 10'? gauss (Chandrasekhar, 1935; Pacini, 1967; Gold, 1968)s fdutron star
can be detected as a pulsar if it emits EM radiation from itgmesic poles, the magnetic and
rotation axes are misaligned and its emission beams imtetise line of sight to the Earth.
Because pulsars lose energy through a range of procesgese(uitting a relativistic particle
wind; Lorimer & Kramer, 2005), their angular velocity wiledrease as they age. We can model

the rate of decrease in the pulsar's angular velagias a power lad

wox —w". (1.1

2A power-law model is chosen because it gives simple estsiateseveral pulsar properties, without assuming
that the pulsar spin-down is caused by magnetic dipole bgaki vacuum.
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If we assume that the only mechanism that reduces the rotedte of the pulsar is magnetic
dipole braking (Jackson, 1962), then= 3 in Equation (1.1). This, combined with the assump-
tion that the pulsar’s present day period is much greatar itisgperiod at birth, allows for an

estimate of the pulsarsharacteristic agde.g., Lorimer & Kramer, 2005):

P

Te

whereP is the pulsar rotational period (assumed equal to the piseq) andP is its time-
derivative.

We can extend this analysis to estimate the magnetic fiedshgtin at the surface of the
pulsar. We assume not only that the magnetic field is a pueal{as above), but also that the
magnetic axis is perpendicular to the rotation axis. Takeagpnical values of the radius and the
moment of inertia of the pulsar (10 km and®® kgm? respectively), we obtain the following
formula for the surface magnetic field at the pulsar's magrequator (e.g., Manchester &
Taylor, 1977):

Baurfeq = 3.2 x 101°(PP)Y? G | (1.3)

whereP is in units of seconds. However, the assumptions on thesaaid moment of inertia of
the pulsar and that the magnetic and rotation axes are pigpder will be inaccurate. Hence,
Equation (1.3) gives at best an order of magnitude estinfatg,9,.,. The magnetic field

strength at the poles is expected to be a factor of two lagjeagiro & Teukolsky, 1983; Usov
& Melrose, 1995).

It is apparent from equations (1.2) and (1.3) tRa&nd P are instrumental in determining
the present properties of a given pulsar, and also its evolarty history and future. A popu-
lar graphical representation for the pulsar populatiomé?-P diagram, which is plotted in
Figure 1.2 for 1702 pulsars. The thin-dotted lines corregpo lines of constant characteristic
age, indicating that most pulsars are born in the upperctafter of the diagram. As pulsars
age, it was originally thought that the magnetic field deaysonentially with a~5 x 10°yr
timescale (Bhattacharya & van den Heuvel, 1991). Howeesemt work suggests that early
pulsar evolution may include an increase in magnetic fielength for some pulsars (Lyne,
2004; Lyne & Smith, 2005). In the standard model, a pulsagisqal increases and its period
derivative decreases such that it joins the population ofrfral” pulsars with periods- 1s,

and period derivatives 10~1°.



The pulsar will eventually evolve to a state in which it canloieger produce its character-
istic beams of EM radiation. While the pulsar emission madma is not well-understood, it is
believed that an electron-positron pair cascade procesgusred (Melrose, 2004). When there
is insufficient energy for this cascade process to contipuésars will cease their emission.
This occurs when a pulsar’s rotation rate slows, and thugges a “death line” on Figure 1.2.

This death line is thought to occur at (adapted from Ruderén&atherland, 1975)
PP3=28x10""7 s73. (1.4)

However, this line is by no means a hard limit; Lyne & Smith @3 point out that some
pulsars become faint enough to avoid detection well befaresing the death line, while others
are detected with large? and smaller® than this “limit” allows.

After crossing the death line, some pulsars can be rebomuisemf accretion from a binary

companion. These “recycled” pulsars form the topic of the S&ction.

1.1.2 Recycled and Millisecond Pulsars

A review of a variety of formation mechanisms for recycledsans and so-called “millisecond
pulsars” (MSPs) is given by Bhattacharya & van den Heuved{)9The most widely accepted

mechanism contains the following essential steps:

1. The larger mass member (the primary) of a sufficiently madsinary system evolves
to supernova before the smaller mass member (the secoreavgs the main sequence.
The supernova will disrupt the binary orbit in at least 90%ca$es (Radhakrishnan &
Shukre, 1985; Dewey & Cordes, 1987).

2. After the supernova explosion, the primary forms a neustar. In the rare case that the
binary system is not disrupted, the secondary remainshawygerturbed. The neutron

star primary may or may not evolve to cross the death lineguife 1.2.

3. The secondary evolves and leaves the main sequencengéisi expand until it over-
flows its Roche lobe. This causes accretion onto the neutaopsmary, which transfers
angular momentum to the neutron star, increasing its ostatifrequency. If the primary

is visible as a pulsar, it will now be termed a “recycled ptlsa
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Figure 1.2: TheP — P diagram for all 1702 pulsars with measurementsPoind P (‘+'
symbols), where” > 0, as at February 19th, 2011. Also shown are the lines of consher-
acteristic age (dotted lines) and constant magnetic fieddHed lines). The “death line” (solid
line with label) indicates a rough lower limit on the produeP—3 (see Equation 1.4), below
which the pulsar emission will cease. Some pulsars in biegsgems can then be “recycled”
to the lower-left quadrant and reappear as short-perioshpsi(see Section 1.1.2). The “Spin-
up Line” (solid line with label) indicates an estimate of timénimum spin period of recycled

pulsars for a given value a?.



4. The final rotational period of the recycled pulsar depemadsong other things, on the
mass of the secondary star. If the secondary star is not weassough to experience
core-collapse, then its red giant phase will provide acogetnatter to the primary for
~ 10"years or more. The primary star will then be spun up to a nati period of
~ms. The weakening of the primary’s magnetic field during tberetion process also
ensures that the primary will spin down slowly compared tongpulsars. The primary

star is now a MSP.

A lower bound on the period of the MSP can be found by analysiegnteraction of the
magnetised accreting matter with the magnetosphere of t8E. Mhe accretion flow exerts
torque on the MSP at the outer boundary of its magnetospkeogn as the “Alfvén surface”
(Lyne & Smith, 2005). The spin-up process continues unéldahgular velocity of the magne-
tosphere equals the angular velocity of the accreting mattthe Alfvén surface. When this

condition is satisfied? and P will be related by (Arzoumanian et al., 1999):
P =aP'?, (1.5)

where the value ofv is uncertain; we have assumad= 8.3 x 10~'6s~%/3, Equation (1.5)
provides a lower bound of for a given value ofP that is labelled “Spin-up Line” in Figure
1.2. Thus, the population of MSPs is expected to populatecthien between the spin-up line
and the death line.

The first MSP was discovered in 1982 (Backer et al., 1982 witotational frequency
of 642Hz. About 7% of all known pulsars today can be classeM&Ps, and they form a
population in the lower left corner of Figure 1.2 that is gist from normal pulsars. They are
useful laboratories for astrophysics because of their kigfly matter density, extreme rotational

speeds and predictable spin-down behaviour.

1.2 Observing Pulsars

Pulsars are observed using large-aperture radio telesdigel with low system-temperature
receivers. The signal from the telescope is processed ashlmarkend” system, which is usually
a digital signal processor. When observing their radiogmjla range of effects must be taken

into account during each pulsar observation. The dispeediects of the interstellar medium
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(ISM) must be corrected, as the ISM acts to “smear out” eadbepisee Lorimer & Kramer,
2005). Charged patrticles in the ISM change the group veladitadio waves as a function of
frequency, which gives the following formula for their gpuelocity (Shapiro & Teukolsky,

1983):
2

1/2
U(fEM) =C <1 — © ) HlS_1 s (16)

fin

where fry IS the radio frequency; is the group velocity of the wavesjs the speed of light in

vacuum and, is the plasma frequency for the ISM, which is a function ofdeasity of charged
particlesn.. According to Equation (1.6), a wave of infinite frequencyl wavel atc through
plasma. The difference in arrival time at the telescope Viar tadio waves with frequencies

fema and fry 2 after travelling a distanc® from their source with velocities, andw, is

At = /O oy (17" — vy (1)~ Ydl

62

Q

D
(s — i) / ne(l)dl 1.7)

2mmec

where we have writterf, in terms of the fundamental constanis (the charge of an electron)
andm, (the rest mass of an electron). The charged particle dessatfunction ofl because the
density of charged particles varies throughout the Galdaylpr & Cordes, 1993). The integral
of n. along the line of sight is called the dispersion measure (DM can thus calculate the
delay — compared to EM radiation travelling in vacuum — aswation of frequency by assuming
that fpnv 2 = oo and fev1 = frw in Equation (1.7). This leads to the following expression fo

the delay of a pulse of frequendgy,; because of plasma in the ISM:

D
At =~ 4.15 x 10° {/ ne(Z)dz} fo S - (1.8)
0

This means that each pulse from the pulsar is smeared out ivieonbserved at the radio

telescope, because each pulse consists of a range of freesiésee Figure 1.3).

1.2.1 Incoherent De-dispersion

The dispersion effect described in the preceding Sectiarbeacorrected using the process of
de-dispersion, which is often performed by the observingkbad system. One method for
de-dispersion is known as “incoherent” de-dispersion,re/tiiee range of observed frequencies

is divided into many small segments, or “frequency charinefdter measuring the DM, a
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Figure 1.3: Pulse dispersion and “incoherent” de-dispersT he abscissa gives the pulsar rota-
tional phase. The pulse signal arrives at the telescopeédtime in lower frequency channels
because of the dispersion induced by the interstellar [daasmdescribed by Equation (1.8). In
the case shown here, the pulse is so dispersed comparedpolsieeperiod that the difference
in time-of-arrival between the highest frequency channdlthe lowest is larger than two pulse
periods. Thus, the delayed signal has wrapped across teutiyiples of pulse phase. The to-
tal bandwidth for this observation was 288 MHz, comprisibgc@annels of 3 MHz bandwidth
each. An artificial delay is induced in all frequency chasifgl; ; with respect to the lowest fre-
quency channelfgy » using Equation (1.7). The addition of the signal in eachyksddrequency
channel gives the incoherently de-dispersed pulse shotireilower panel. The absolute delay
experienced by the lowest frequendyy; ~ 1233 Hz) can be calculated using Equation (1.8).
[Image obtained from:http://wwm. cv. nrao. edu/ cour se/ astr534/ Pul sars. htmni ;
original image by Lorimer & Kramer (2005)]

time delay (described by Equation 1.7) is then induced i ed@nnel relative to the lowest
observed frequency, as shown in Figure 1.3. The delayedlsifrom each frequency channel
can then be summed to produce a time series of de-disperkses pehere the pulse arrival time

is approximately independent of frequency.
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1.2.2 Coherent De-dispersion

Incoherent de-dispersion cannot correct the pulse digpeasross the bandwidth of each fre-
guency channel; for example, the dispersion across the 3baiHdwidth of each channel in the
observation in Figure 1.3. This effect can be overcome usiafgerent” de-dispersion (Hank-
ins & Rickett, 1975). This technique is based on the fact thatfrequency-dependent delays
introduced by propagation through the ISM can be repredeagghase rotations of the pulsar
signal. These phase rotations depend on the frequency ardistiance travelled by the pulse
(e.g., Lorimer & Kramer, 2005). The effect of the ISM is todilthe pulsar signal using a filter
with transfer function/. If the centre of the telescope’s observing frequency rasg fj,
then the value of the transfer function at frequerigy f will be (Lorimer & Kramer, 2005)

H(fo+ f) = exp ((?[f%] 2f2) (1.9)

wherei = /—1, D =4.15 x 103 MHz? pc ! cm® s is the dispersion measure constant from
Equation (1.8) andDM] is the dispersion measure, which can be measured by thedpkes

To perform the coherent de-dispersion, the phase rotatrmhgced by the ISM are first
determined by measuring the complex voltage signal obdeav¢he telescope. These phase
rotations are then “unwound” by applying the inverse of tia@sfer function in Equation (1.9)
to the observed signal. This process has been implemensegiénal observing systems around
the world (see Bailes, 2003; Demorest et al., 2004).

1.2.3 Folding

After coherent or incoherent de-dispersion, the mean puistie is formed using a “timing
model” for the pulsar's behaviour. This model can be extigrdetailed, and will include the
pulsar’s basic properties, such as its period, dispersieasore and sky-position, as well as a
range of other effects if the pulsar is a member of a binartesysThis model is used to “fold”
the incoming signal at the apparent pulse period, whicleg®es the signal-to-noise (S/N) ratio
of a pulsar observation by summing the individual pulsess Pphocess forms the mean pulse
profile, or “folded” profile. After folding, the mean pulsegdile of an MSP is largely invariant
for that MSP (Lorimer, 2005). We can thus develop a standargptate pulse profile, which is

either an analytic model of a high S/N ratio observation efgthisar, or simply a very high S/N
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ratio observation of the pulsar. By comparing the templateliservations of the pulsar over
a period of~years (see Section 1.5.1), predictable spin-down behaisambserved for many
pulsars (Hobbs et al., 2011). This predictable spin-dowrak@ur will be the focus of most
of this thesis, in particular the way this property of MSPa b& used to detect gravitational

waves.

1.3 Gravitational Waves

Gravitational waves (GW3jre one of the predictions of general relativity (GR; Eiirst&916).

A GW is a travelling perturbation in space-time, and its effen a ring of freely-moving test
particles with fixed coordinates is shown in Figure 1.4. TIW &retches space in one direc-
tion and simultaneously compresses it in the perpendiclitaction (e.g., Shawhan & LIGO
Scientific Collaboration, 2003). GWs exhibit two orthogbp@larisation modes - the’ polar-
isation (shown in Figure 1.4) and the " polarisation. The X’ polarisation causes space-time
deformations that are offset by an anglgl from those caused by &' polarised GW. The

strength of a GW is generally defined by the strainnduced in a rod of lengthas:
he = Al/L, (1.10)

whereAl is the maximum change innduced by the GW over one period (for a periodic GW).
GWs are emitted by any object undergoing acceleration wimmdn is neither spherically nor
cylindrically symmetric, such as any two objects orbitingit common centre of mass (Peters
& Mathews, 1963).

Any system that emits GWs will lose energy via GW radiatioméein, 1918; Peters &
Mathews, 1963; Phinney, 2001). The energy loss caused by @Ms®n has been indirectly
inferred using observations of the binary pulsar PSR B¥9¥3(Hulse & Taylor, 1975; Tay-
lor & Weisberg, 1982). The detection was based on observatighe orbital decay of PSR
B1913+16, measured by the cumulative advance of the periastranfomthe orbit (see Fig-
ure 1.5). That is, the difference between consecutive tmb&ghich the pulsar is closest to its
companion is decreasing. The decrease in the time takemiplete each orbit is consistent

with GR and inconsistent with some other theories of graema(Will, 1977; Taylor & Weis-

3Note that “gravitational waves” are not to be confused wighatity waves”, which are waves for which the
restoring force is gravity, e.g., water waves in the operance
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Figure 1.4: The effect of a GW with strength = 0.5 on a ring of freely-moving test particles
when the GW propagates perpendicularly to the plane of thgt e.g., caused by a GW prop-
agating into the page. The ring (1st image from left) is coesped East-West and expanded
North-South (2nd image from left), then returned to its v state (3rd image from left), then
compressed North-South and expanded East-West (4th imageléft), then returned to its
orignal state (5th image from left). If the GW is periodic e period of7,,, then these im-
ages show the form of the ring at times t =IQ,, /4, T}, /2, 314, /4 andT,,,. [Image reproduced
from Shawhan & LIGO Scientific Collaboration (2003)]

berg, 1982). In Figure 1.5 we reproduce an updated versitredamous image from Taylor &
Weisberg (1982), showing the remarkable level of agreeimetmieen the theoretical prediction
of GR and the observed orbital shrinkage over 30 years ofrehens of PSR B191.816%. As

a result of such investigations, we are now all but sure otttistence of GWSs.

1.4 Detecting Gravitational Waves

The results of Taylor & Weisberg (1982) and Weisberg et &1l1(® do not constitute a direct
detection of GWSs, as they have not explicitly detected tretcting and compressing of space-
time expected of a GW (see Figure 1.4). Direct detection ofSGW! herald a new era in the

study of astronomy and astrophysics.

GWs provide a unique way to study the Universe as they praaidemation about systems
in a completely different way to EM waves. In particular, sonegions of the Universe that
are opaque to EM radiation - including, for example, the first 10° yr after the Big Bang
(Sathyaprakash & Schutz, 2009) - may be observable using &&¥copes. Similarly, much
recent work (e.g., Bloom et al., 2009; Sesana & Vecchio, a(d%,@Corbin & Cornish, 2010) has

outlined the benefits for detecting EM counterparts for G\WWrses and vice versa.

4A similar figure was presented by Weisberg et al. (2010).
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Figure 1.5: The shrinking of the orbit of the binary pulsarRP81913+16 (as mea-
sured by the decreasing time taken for each complete orbithefpulsar) as a func-
tion of year number. The measurements of the cumulative redvan the peri-
astron time (points) are remarkably consistent with thedigt®n of GR (parabolic
line). If the system were not emitting GWSs, its orbit wouldtnbe decaying and
the points would follow the line of zero orbital decay (hanial line). [Image credit:
htt p: // ww. peopl e. car |l et on. edu/ ~j wei sber/ bi narypul sar/ B1913+16. gi f |
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1.4.1 Current and Future Gravitational-Wave Detection Prgects

The huge scientific gains expected from directly observikgshas led to the establishment of
many current global efforts to detect GWs. The Laser Interfeeter Gravitational-Wave Ob-
servatory (LIGO; e.g., Abbott et al., 2009YIRGO (Acernese et al., 2006and The Australian
International Gravitational Observatory (Barriga et2010) are some of the more well-known
projects that aim to detect and analyse GW signals from gisgical objects. Each of these
projects aims to detect the delay of a locally-generated K¥lad along one direction being
correlated with the advance of a locally-generated EM signa perpendicular direction. For
example, each of the widely-separated LIGO stations ctsnsigwo evacuated 4 km chambers
at 90 degrees to each other. Laser signals are sent andagteiough these chambers with the
objective of detecting a relative delay between the two.hSudetection could correspond to a
detection of the compression of space-time in one direaurring simultaneously with an
expansion of space-time along a perpendicular directidmginis the expected action of GWs
(see Figure 1.4). Measuring the delay and advance of lighttdithe action of GWs requires
exquisitely precise measurement instruments. For exgrhffBO is attempting to measure a
path length difference of10-'® m between its two perpendicular arms over 4 km (Shawhan
& LIGO Scientific Collaboration, 2003). For comparison, thiameter of an atomic nucleus is

~10"*m (e.g., Pohl et al., 2010).

Typical GW sources for LIGO and other ground-based interfesters include the coales-
cence of compact binaries (containing white dwarfs, neustars or low-mass black holes),
supernova explosions and nearby non-axisymmetric rgtatgutron stars, whose rotation pe-
riod and sky-position are known if they are detectable asgral(Shawhan & LIGO Scientific
Collaboration, 2003). These sources all emit GWs with feggpes fron~Hz to ~kHz, corre-
sponding to the frequency range over which LIGO is most sigasiAdvanced LIGO (Smith
& LIGO Scientific Collaboration, 2009, and references thrés an upgrade to LIGO that
is currently being implemented and should improve the detscsensitivity by two orders of

magnitude while retaining a similar range of detectablguencies.

A GW detection experiment in its planning stages is the psedoLaser Interferometer

5Seent t p: / / www. | i go. cal t ech. edu/ advLlI GO .
6Seeht t p: //www. virgo.infn.it/ .
’Seeht t p: / / www. ai go. org. au/ .
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Space Antenna (LISA; Larson et al., 2000).ISA will consist of three instruments in space
forming three laser interferometers. For LISA, the evaeda&avities that are required for LIGO
to function on Earth are replaced by the near-perfect vacoimterplanetary space, which
means that the length of these “cavities” can be much gredtee three LISA components
are expected to be separatedbyx10°km. LISA will be sensitive to the final inspiral and
coalescence of binary black holes (with member masses iratige103M, to 10'°M,) and a
galactic foreground of neutron star and white dwarf bireriEhese processes emit GWs with
frequencies ofvuHz to ~mHz. The sensitivity ranges and likely sources for LIGO ah8A.

are summarised in Figure 1.6.

1.5 Detecting Gravitational Waves with Millisecond Pulsas

GWs can also be detected using the predictable rotatiorvimehraof MSPs and their beams of
EM radiation. This was first suggested by Sazhin (1978) antd/&ker (1979). The likely GW
sources whose signals may be detected with MSPs will emitlififerent GW frequency range
to sources for the other detection experiments mentionedealiMSPs can detect GWs in the

frequency range-nHz to~uHz. Such GWs will be emitted by a range of sources, including:

e supermassive black-hole binaries (SMBHBSs) at the coresefjad galaxies (Jaffe &

Backer, 2003; Wyithe & Loeb, 2003; Jenet et al., 2004; Seshanh, 2008);
e a network of cosmic superstrings (e.g., Damour & VilenkidQ32);

¢ relic GWs from the interaction of the large-scale dynamg&mological metric with quan-
tum instabilities in metric perturbations that existed e tearly Universe (Grishchuk,

2005);

¢ the quantum chromodynamic (QCD) phase transition in tHg Egniverse, when the Uni-
verse’s temperature wasl00 MeV (Maggiore, 2000; Caprini et al., 2010, and reference

therein).

These sources are plotted in Figure 1.6, indicating theicg} frequency ranges.

8Seeht t p: // | i sa. nasa. gov/ .
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Figure 1.6: GW strain sensitivity as a function of frequeriay GW analysis with pulsars
(“PTA"), LISA and LIGO. The ordinates show the logarithm dfet GW strain,h.., defined

in equations (1.10) and (1.11). In the nHz:Hz frequency range, we have listed sources of
stochastic GWBs (“Cosmic strings”, “Supermassive blaolelbinaries in galaxies” and “Relic
G-waves”) and the limits that have been placed on their dog#i (see Section 1.6.2 for de-
tails; “JO6” is the Jenet et al., 2006 limit; “Current limii§ the van Haasteren et al., 2011
limit). The wedge-shaped limits are derived under the axipration that the pulsar sensitiv-
ity to GWSs is maximum aff = 1/, WhereTqps is the time-span of the observations. The
pulsar sensitivity is assumed to be zero for lower frequenand proportional to frequency for
higher frequencies, as described in Equation (53) of Sestaala(2008). “Unresolved Galactic
binaries” includes white-dwarf and neutron-star binarilse region labelled “Coalescing mas-
sive black-hole binaries” shows the expected range of &8dram the final inspiral of massive
black-hole binary systems with member masses in the ranéd., to 101°M,. The “Current”
LIGO sensitivity shows the capabilities of existing datasehile “Advanced” LIGO expects to
improve GW sensitivity by two orders of magnitude. “SN [supmva] core collapse” and “NS-
NS [neutron star] coalescence” are typical signals thatQ Expects to detect. [This image is
based on figure 7 presented by Manchester (2010)]
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Superstrings, relic GWs and the QCD phase transition atesgmt GW sources for which
the resultant GW signal is believed to be independent ottioe and stochastic Each source
forms an isotropic stochastic gravitational-wave backgb(GWB). Very massive or nearby
SMBHBs can be considered as individual sources of GWs (Lom&®&acker, 2001; Jenet
et al., 2004; Sesana et al., 2009). Alternatively, the qagmetion of the GW signals from many
SMBHBs throughout the Universe will form a GWB (e.g., Jaff@&cker, 2003).

Detection of the GWs from an individual SMBHB will requireryeprecise pulsar observa-
tions over a period of several years (Sesana et al., 2009.cdmbination of new observing
systems and recently discovered pulsars means we are apprgahe required level of preci-
sion (Demorest, 2011; Manchester, 2011). However, obsengamust continue at this level
over at least five years to achieve the level of precisionutaiied by Sesana et al. (2009) as the
minimum requirement for detection of a single source of G@s.the other hand, some of the
GWB sources provide a relatively large amplitude signal sray be detected or ruled out in

the coming years (Jenet et al., 2006).

GWB sources can be described using many parametrisationsiNVise the characteristic

strain spectrunk.( f), which takes the following form for most GWBs:

he(f) = A(f/fiy)® (1.11)

whereA = h.(f = fi,.) is a dimensionless constant termed the “amplitude” of theBGW
(see Equation 1.10);,, = 1/(1yr) anda is a constant that satisfies < 0 for all expected
backgrounds (Jenet et al., 2005). Another quantity oftexu tis discuss GWB sources is the
energy density of the GWB per unit logarithmic frequencgimal, 2., () (adapted from Jenet
et al., 2006):

272

U )HG = —=he(f)°F* (1.12)

where H, is the Hubble constant. Typical values fdrand« are in the range$s0—!" < A <
107 and—-7/6 < a < —2/3 respectively.

However, the GWB due to merging and coalescing SMBHBs etshibislightly different
form from that shown in Equation (1.11). It is now generalpuight that the large elliptical

galaxies seen in the present day have formed from the meofisigaller galaxies. Since most

9The stochastic signal consists of many GW emitters, eadhtiag GWs with a different amplitude, frequency
and phase.
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nearby galaxies appear to have solitary supermassive btdek (SMBHSs) at their centre, this
implies that the SMBHSs at the core of each of the progenittapg@s must coalesce in some
way. It is unknown whether most of the mass transfer thatstakece during coalescence is via
accretion or via the merging of the two black holes (BHs). Wanthors have considered the
expected GWB that would result from hierarchical galaxynfation models (Phinney, 2001,
Jaffe & Backer, 2003; Wyithe & Loeb, 2003; Enoki et al., 20&&sana et al., 2008). GR
predicts that the characteristic strain spectrum has arspegponent otv = —2/3 (Phinney,
2001), and most authors have concluded that the amplitugetise rangel0= < A <
10~*. However, a recent analysis based on Monte Carlo simuktidrthe population of
SMBHBs was performed by Sesana et al. (2008), which showetdthie discrete nature of
the GW-emitting sources has a measurable effect on the GV¥BadBMBHBs. This led to the

derivation of a different form foh.(f) (Sesana et al., 2008):

B i —2/3< i)%
he(f) = ho (fo) 1+ I (1.13)

with the following ranges for the variables, f, andh,:
e v  —104<y<-—1.11
o fo 1 1.4x10%Hz < fy < 5.3 x 10" Hz
e hy : 0.65x 1075 < hy < 2.15x 10715

from the results of the four models of SMBHB assembly corrgidén their paper. These ranges

imply that the predicted range &f = h.(f = fiy:) IS
1079 < A<3x107".

In Figure 1.7, we have reproduced a figure from Sesana e0&l8§2hat shows their prediction

for the characteristic strain spectrum of the GWB and theettamty in that prediction.

The obvious next question i$fow can we use MSPs to study such sourt&¢e choose to

study GWs with MSPs as the detector by using a techniquedcgildsar timing”.
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Figure 1.7: The characteristic strain spectrum of the GWBR &snction of GW frequency
as calculated by Sesana et al. (2008). This spectrum isndieted by the parameters of the
SMBHB population, which is determined by the evolution of BMk. Four recent models of
SMBH evolution are compared (dashed lines; see Volonteal.e2003; Koushiappas et al.,
2004; Begelman et al., 2006; Volonteri et al., 2006), aloritlp whe average signal calculated
by Sesana et al. (2008) (thick solid line) and its Lncertainty (hatched region). The signal
resulting from the standard GR assumption of a spectralrexutoofa = —2/3 for the charac-
teristic strain spectrum is also shown (thin solid line; Egeation 1.11), calculated using the
SMBHB assembly model discussed by Volonteri et al. (200&)ape reproduced from Sesana
et al. (2008)]
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1.5.1 Millisecond Pulsar Timing

The aim of a pulsar timing observation is to measure a preaigeaccurate time-of-arrival
(ToA) for a pulse of EM radiation from a pulsar. Mean pulsefipes are very stable (e.qg.,
Lorimer & Kramer, 2005), which means precise and unbiasé&T@an be obtained over many
years.

To perform the most precise pulsar timing, a range of effieetst be taken into account dur-
ing each observation. The dispersive effects of the ISM rhestorrected using de-dispersion
(Sections 1.2.1 and 1.2.2). The mean pulse profile is thanddrby folding the de-dispersed
pulses (Section 1.2.3). The observation will typically @aduration oi~1 hr for precision
MSP timing, meaning that the data containg0° pulses for a typical MSP.

The observed pulse profile is compared with the standardlstenfor the MSP by measur-
ing the time shift that gives maximum cross-correlatiomtssn the two, following the method
described by Taylor (1992). This measurement results instimate of a ToA (that is, the
arrival time of the pulse at the radio telescope) and its dacgy.

The ToA is then corrected using a chain of clock correctiomsereby the observatory
timescale is first referenced to Universal Coordinated TIohEC) and then to Terrestrial Time
as realised by International Atomic Time, abbreviated t¢TAT). This corrected ToA is then
transformed to the arrival time at the solar system baryeamging a solar system ephemeris
(see Standish, 2004). This ephemeris includes, amongatthings, the relativistic time trans-
formations between the Earth and the solar system bargeand the masses and velocities
of each planet and many major dwarf planets and asteroideseTtiansformations provide a
barycentric ToA.

For high precision timing, pulsars are usually observedynigmes per year over at least a
few years. The ToAs obtained can then be used to improve thlieinfior the pulsar’s timing
behaviour that is used to fold the incoming pulses as destréarlier in this Section. For
example, the estimate of the pulsar’s sky-position can hgowed after timing observations
have been carried out for a year or more. Timing models willliseussed in greater detail in
Chapter 2.

By subtracting the arrival time predicted by the pulsar tignimodel from the observed
arrival time, we obtain a “timing residual” for that partlauobservation. Timing residuals are

influenced by noise, but also contain a wealth of informatibaut the telescope hardware and
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processing systems, or about planetary, solar systena-gatactic and cosmological physics.
In particular, MSP timing residuals may contain the sigmatkiced by GWs. Hence, MSPs
may be used to study GW signals from astrophysical and caggiwall sources by examining
the timing residuals. Many authors have developed strgdgr using MSP timing residuals to
study GWs (Romani & Taylor, 1983; Kaspi et al., 1994; Jenel.eR005, 2006; van Haasteren
et al., 2009; Anholm et al., 2009; Burt et al., 2011), and weiioei the present state of the field

in the next Section.

1.6 Techniques for Studying Gravitational Waves with Pul-
sar Timing

1.6.1 Detecting Gravitational Waves with Pulsar Timing

After the pioneering work of Sazhin (1978) and Detweiler{2§ the foundation for detection
of a GWB with pulsars was laid down by Hellings & Downs (1988)s now widely accepted
that a background of low-frequency GWSs that is described gyaEon (1.11) causes ToA
perturbations with power spectruifi,, given by: (Detweiler, 1979; Jenet et al., 2005, 2006)

2 200—3
P =5 (1) (114)

wheref,,, = 1/(1yr). These ToA perturbations (regardless of the source) aoecalselated

between pairs of pulsars in a quadrupolar fashion. Thistaron, which depends only on the
angle between the pair of pulsars as shown in Figure 1.8iftdsl& Downs, 1983), provides
an unambiguous signature of the GWB. The functional fornhisf signature is given by:

3 x 1
C(0;) = ixlogx— 1 +§ ;

(1.15)
wherex = [1 — cos(6;;)]/2 and 6;; is the angle between pulsaisand j subtended at the
observer (Hellings & Downs, 1983; Jenet et al., 2685)he function((6;;) is independent of
GW frequency, and is derived assuming the GW polarisatiodes@re as described by GR;

other GW modes are analysed by Lee et al. (2008) but are nsidayed in this thesis.

10The right-hand-side of Equation (1.15) is a factoBg® larger than the original result of Hellings & Downs
(1983), but identical to the equation given by Jenet et 0%). This is because Hellings & Downs (1983)
correlated GWB-induced Doppler shifts in pulse ToAs, whsréenet et al. (2005) correlated GWB-induced timing
residuals (the integral of the Doppler shift).
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Figure 1.8: The expected correlation in pulsar timing neald due to an isotropic stochastic
GWB. The abscissa gives the angle subtended at the obsgreepdrticular pulsar pair. The
ordinate gives the expected correlation (normalised tdw@evaetween-1 and1) between the
timing residuals of that pair. This signal is independenthef GW frequency and assumes that

GWs behave as predicted by GR.
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Detection of such a correlated signal requires timing ted®lwith overlapping time-spans
from many MSPs in order to sample the curve shown in Figureni8 sufficient density to
claim a detection of the GWB. This goal can be achieved usifpgisar timing array” (PTA).
PTAs are able not only to detect GWs and the GWB, but also ctatderrors in TT(TAI) and

errors in the solar system ephemeris (Foster & Backer, 1990)

The first complete account of a method for detecting the taigé signal induced in timing
residuals by the GWB, and thus directly detecting the GWB@isi PTA, was given by Jenet
et al. (2005). Their method involves the calculation of tlaénpise correlations between the
time series of residuals for each pulsar in the PTA. For aayaof N, pulsars, this process
provides N, (Npsr — 1)/2 measured correlations. A detection of the GWB would then be
possible by calculating the correlation between the exque@®WB signal shown in Figure 1.8
and the observed pairwise correlations. Jenet et al. (2@bB) the value of this correlation as

p and define the “significance” of the detection as
S =plo,, (1.16)

whereaz = 2/Noo(Npse — 1) (Jenet et al., 2005). However, this detection scheme is sub-
optimal; for instance, pulsars with different amounts aieon their timing residuals contribute
equally to this detection statistic. While Jenet et al. @0fid consider the effect of analysing
residuals with different noise levels, each time seriesesfduals is given an equal weight
in calculatingS. There was also no treatment of other issues associatedandtlysing real
pulsar timing residuals, such as the non-simultaneous lgagngf the observations, the highly
variable ToA error bars, large variation in the time-spadifierent time series and the issue of

non-overlapping observations.

Van Haasteren et al. (2009) present a Bayesian techniquiefecting the GWB that im-
proves on the Jenet et al. (2005) technique. The technicueres that the GWB has the form
given in Equation (1.11), but that neithdrnor o are known. A joint distribution in these two
variables can then be calculated. This technique was appieently to observations of six
pulsars from the EPTA as described in van Haasteren et dl1§2This paper also includes the
detection of a simulated GWB signal that has been artificedided to their data set. However,
the GWB detection problem includes many aspects that afieuifto solve exactly and ap-

proximate solutions may only be testable with Monte Cantowation. Tests based on Monte
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Carlo simulation have not yet been performed with the vanskéaian et al. (2009) technique

because these tests would require a very large amount ofutatign time.

A detection technique was also presented by Anholm et aD9RO0 Their method is a
frequency-domain analysis based on the methods of theitaseierometer community. How-
ever, their derivation does not include the effects of thm§tof the pulsar timing model to the
observed ToAs. This fit severely attenuates the GWB sigrditle aim to detect and compli-
cates the analysis of the timing residuals. The effect ofitheag model fit on GWB estimation

is discussed at length in Chapter 6 (also published as Yaedlal., 2011a).

The detection of a GWB requires a 100 ns root-mean-squasy) {rming residual on at least
20 pulsars over a period of at least five years (Jenet et &15)2Wsing extensive observations
of 20 MSPs over several years (see, e.g., table 1 of Manch26tkl), it is apparent that some
MSPs can be timed more precisely than others because ofwnaultse profiles or greater
flux density. This means the reference PTA data set, whiclsistsnof observations of 20
pulsars with 100 ns rms residual timed over five years, wilivbey difficult to obtain with
current observation systems and processing algorithmaekier, the prospects for future GW
detection with pulsars are improved by the fact that the G\igBad from all expected sources
hasa < —2/3 in Equation (1.14). This means that the strength of the arpdeGWB signal
increases with observing time-spadhy,s, at least as fast aﬁjtf’s/?’; for example, doubling the
observed data-span increases the expected signal by a &&&0. Furthermore, recent work
by Sesana et al. (2009) suggests that it may be possibledotlgiidetect a single source of
GWs with a few very precisely timed pulsars, despite the ttaat the GWB signal is expected
to be stronger on average than any individual source. Thisdueto a flurry of recent interest in
detecting single sources of GWs with pulsars (e.g., Corb&ognish, 2010; Sesana & Vecchio,
2010a; van Haasteren & Levin, 2010; Sesana & Vecchio, 20B8hirkov et al., 2010; Burt
etal., 2011).

These works have considered detection of sinusoidal Egmdliced by GWs in MSP timing
residuals, as well as GW “burst” signals caused by SMBHBesx@nce or the periastron ap-
proaches of SMBHBs with highly elliptical orbits. In primde, the algorithm of van Haasteren
& Levin (2010) is suitable for the study of any GW signal for ialn the GW waveform has
known functional form. Many of the techniques for single m@udetection proposed in the

last five years are yet to be applied to real pulsar timing ofasens, with the exception of the
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technique presented in Chapter 4 of this thesis, which iexpfo timing residuals from a PTA
observed with the Parkes radio telescope (see Section 2.1).

However, the noise levels on many current PTA observatioato® high to allow detection
of GW signals at the expected levels (e.g., the levels ginedeisana et al., 2008, 2009). It is
likely that the GWB will be detected within the next decadesfibrest, 2007; Hobbs et al.,
2010a), while a detection of an individual source of GWs delgeon the location of the source
relative to precisely timed pulsars (Burt et al., 2011).He meantime, a wealth of astrophysical
information can be gleaned by placing limits on the expeataglitude of GW signals. These
limits have been calculated using the timing of individualgars, as well as the timing of

multiple pulsars'.

1.6.2 Finding Upper Limits on Gravitational Waves with Pulsar Timing

Historically, most authors have focussed on finding uppembls on parameters of the GWB,
whereas interest in constraining the properties of indialdsources of GWs has been rela-
tively recent. Romani & Taylor (1983) used the timing resilduof a 1.3 s-period pulsar, PSR
B1237+25, to constraif,, (f) at f ~ 10~®Hz, and thus demonstrate that such GWs do not
dominate the energy density of the Universe. While Stimgpeit al. (1990) observed two pul-
sars (PSRs J185710943 and J19392134), their technique was only used to provide an upper
bound o)., H3 using the timing residuals of each pulsar individually. pieet al. (1994) then
used a similar technique to provide an upper boun€gn/73 using similar observations with
a longer time-span. They made the important step of comgpithi@ data from their two pulsars
to find the best constraint on the GWB amplitude. Howeversthgstical method employed by
Kaspi et al. (1994) has been criticised by other authors§éto& Dewey, 1996).

The technique of Kaspi et al. (1994) was modified by Jenet €2@06) in the wake of such
criticism to provide statistically rigorous constraints Q,,, /2 and also orh.(f). Jenet et al.
considered a range of different GWB sources and found a meitvdn the parameters of each

source. In particular, their limit of

he(f = fige) <11 x 1071 (1.17)

A measurement of a binary pulsar’s orbital period and thererr the measurement of the rate of change
of orbital period can constrain the GWB in the frequency e !> Hz< f < 10~? Hz (Bertotti et al., 1983;
Kopeikin, 1997). This thesis does not discuss these methods
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Figure 1.9: MBHB coalescence rates and galaxy merger ratesfanction of redshift. The
galaxy merger models assumed by Jaffe & Backer (2003) (#hlid ne) and Rajagopal &
Romani (1995) (thin dashed line) are inconsistent with mes@nulations of the coalescence
rates for SMBHBs (histograms). Using the model of Jaffe &IBag2003) in the Monte Carlo
simulations of Sesana et al. (2008) yields results thatra@nisistent with recent models of the
evolution with redshift of the SMBHB coalescence rate (tthatted line; Sesana et al., 2008).
[Image reproduced from Sesana et al. (2008)]

as the 95%-confidence upper bound on a GWB with spectral expafic = —2/3 constrains
the galaxy merger rate evolution with redshift (Jenet ¢t24106). Jaffe & Backer (2003) and
Wen et al. (2011) parametrised the merger rate of galdxfessuch that?(z) goes agl + z)”,
wherevy is now thought to be in the rangel < v < 3 (Carlberg et al., 2000; Patton et al., 2002;
Lin et al., 2004; Kartaltepe et al., 2007; Lin et al., 2008heTimit given in Equation (1.17)
constrainsy to be less than 2.6, but only if we allow the formation of SMB&tsvery high
redshifts near = 100 (see Wen et al., 2011). Furthermore, figure 12 of Sesana Q418)
(reproduced in Figure 1.9) suggests that the SMBH coalescete is not a simple power-law

with redshift, and that the rate decreases at redshiftsegréfaanz = 2 for most current models.

MSP timing is yet to provide constraints, via upper limitstba expected GWB signal, that
rule out the most recently proposed models of SMBHB evolu(gee Sesana et al., 2008). A
very recent upper bound on the GWB amplitudé:off = f1,,) < 6 x 107 fora = —2/3
(van Haasteren et al., 2011) does constrain the paramdténs GWB model of Wyithe &
Loeb (2003), but not the currently accepted predictionsiferGWB amplitude of Sesana et al.

(2008). However, significant progress has been made in rednisty the parameter space of
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Figure 1.10: An upper bound on the GWB amplitid¢f = fi,,) as a function otx. The
ordinates are measuredlig(h.(f = fiy:)) (the axis on the left-hand side) andlig (. (f =
fiyr)hZ), wherehy = Hy/100 (the axis on the right-hand side). The 68%-confidence upper
bound (solid line) and the 95%-confidence upper bound (dblshe) from van Haasteren et al.
(2011) are more constraining than the upper bounds publiblgelenet et al. (2006) (dots).
The van Haasteren et al. (2011) upper bound is the first timabeaalculated as a continuous
function of «. For a GWB caused by SMBHBs, it is expected that= —2/3 at the most
sensitive frequencies of current pulsar timing experimétite value indicated by the vertical
dot-dashed line). [Image reproduced from van Haasterehn @04.1)]

cosmic superstring models (Jenet et al., 20DBnez et al., 2010; van Haasteren et al., 2011).
In Figure 1.10, we reproduce a figure from van Haasteren €2@11) that shows the GWB

upper bounds for different values of

With regard to individual GW source limits, MSP timing hassheused to provide use-
ful constraints on the parameters of proposed SMBHBs. Lom#eBacker (2001) used
~1000days of observations on three MSPs (PSRs Jt0187, J18570943, J1939-2134)
to constrain the properties of a range of nearby massive aadcts, if any of these objects
harboured a black-hole binary. Jenet et al. (2004) ruledagatoposed SMBHB at the core
of the radio galaxy 3C66B (Sudou et al., 2003). Using a dtiigward periodogram analy-
sis and seven years of publicly-available pulsar timingeoketions of PSR B185509, Jenet
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et al. (2004) showed that the SMBHB proposed by Sudou et @d3Ris ruled out with 95%
confidence by these observations. They went on to show thgtabuld constrain the mass
ratio of the two BHs and / or the orbital eccentricity of any BNB in 3C66B with very high
confidence.

However, with the exception of the techniques presenteddnyHaasteren et al. (2009)
and in Chapters 4 and 6, many techniques have not been aldedaately account for all the
aspects of real pulsar timing observations. These inclodeare not limited to, non-white
noise sources affecting the timing residuals, the irretpuland non-simultaneously sampled
observations of a PTA, and the effects of fitting the timingdeldo the observed ToAs.

The aim of this thesis is to develop, implement and demotestexhniques for studying
GWs with PTAs that can be applied immediately to almost all pailsar timing observations.
The only data sets to which these techniques may not be dppltbeir present form are those
with time series that exhibit a very steeply-decreasinggy@pectrum with power-law exponent
less than-2, as is seen in many young pulsars and a few MSPs (e.g., PSRJ2934; Hobbs
et al., 2010b). This is not a significant drawback of the témpiies presented because any time
series that exhibits such a steeply-sloping spectrum igelplto be useful for GW detection.
It is also not difficult to augment these techniques usingwa meethod of spectral analysis

appropriate for steeply-decreasing power spectra (Colals, 2011).

1.7 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2:

We show some examples of real pulsar timing data sets fronobttee most prominent
PTA projects, the Parkes Pulsar Timing Array (PPTA). We dbscmethods of simulating
ToAs and GW signals using “plugins” to the software packagero2. We demonstrate that

these simulated observations do resemble real obsersdtmn a radio telescope.

Chapter 3:
We develop a technique for detecting GW signals from indisldSMBHBs that induce
a correlated sinusoidal signal in timing residuals thataherwise uncorrelated. We test the

technique on simulations of a range of possible future PTéeolations. We analyse a set
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of uncorrelated timing residuals observed at the Arecibd Rarkes telescopes to determine
their sensitivity to GW sources that induce sinusoidal aigmn the residuals. We use these
sensitivity calculations to constrain the coalescenceebSEMBHBS as a function of their mass
and redshift using a technique developed by Wen et al. (20¥&)also describe the limitations

of this technique.

Chapter 4:

We improve the technique of Chapter 3 such that we can prdicessost recently published
data from the PPTA, as published by Verbiest et al. (2009)s [Hads to a measurement of the
sensitivity of a PTA to sinusoidal GW sources. We calculagefirst realistic GW-sensitivity
curve for a PTA that can be compared with LIGO and LISA GW-#esity curves. The PTA
sensitivity curve includes GW frequencies from 2 nHz to 4B@ and is calculated for current
observations and future predictions. We calculate thetcains on the coalescence rate of
SMBHBs for the PPTA data set presented by Verbiest et al.§2P009) using the Wen et al.
(2011) technique.

Chapter 5:

We transition from treating individual GW sources to tregtihe incoherent sum of all GW
sources, which forms the isotropic stochastic GWB. We dies¢he software implemented in
TEMPO2 for simulating GWB signals and their effect on timing olvsgions of pulsars. We
useTEMPO2 to calculate a limit on the amplitude of the GWB for a variefydata sets using
the method of Jenet et al. (2006). Each limit leads to a caiméton the coalescence rate of
SMBHBs using the Wen et al. (2011) technique.

Chapter 6:

We introduce a new technique that can detect the expectep gtaver-law GWB signal in
pulsar timing residuals. We demonstrate that no GWB sigaallieen detected in the PPTA
residuals to date, but find previously unpublished effectthe GWB detection process that
must be accounted for. In particular, the full effect of threibhg model fit that produces the

timing residuals must be included in the analysis.

Chapter 7:

We conclude the thesis with some suggestions and predsdiofuture directions of GWB

detection with pulsars. In particular, we briefly discuss timportance of the International
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Pulsar Timing Array collaboration.
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Chapter 2

Real and Simulated Data Sets

Chapter Outline: In this Chapter, we:
e review current PTA projects across the world and the prapserdf their data sets.
e describe two published data sets from the Parkes Pulsam@iray that have been the
focus of our GW analysis and will be used in later Chapters.
e describe methods for simulation of realistic timing resitiu
e describe simulations of GW signals in timing observations.
e give examples of simulated data sets for current and futbhseo/ing programs.

Chapter 1 listed numerous techniques that have been pbfmsestimating the amplitude
of GW signals in pulsar timing residuals (Sections 1.5 a). However, most of these meth-
ods cannot be applied directly to recent observations Isecaf) for example, the sampling of
the observations or the presence of non-white noise in thiduals. In Chapters 3 — 6, we
will introduce new GW-analysis techniques that have beelieg to observations from the
Parkes Pulsar Timing Array. These methods can be applielntosaany set of pulsar timing
observations. To develop algorithms that can be appliedababservations, it is necessary to
parameterise the effects that must be accounted for. IICtiepter, we review the current PTA
projects and describe the data sets that they are prodiwfiagive a detailed description of data
sets that will be analysed in later Chapters. We describenaplgment methods for simulating
pulsar timing observations and derive and implement theceffof GWs on the pulse ToAs.
Finally, we describe the properties of simulated pulsairntgmata sets that will be analysed in

Chapters 3 and 5.

2.1 Current Pulsar Timing Array Projects

Several pulsar timing research groups around the worldaarging out PTA observing projects.

At the time of writing, these are:
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e The “Parkes Pulsar Timing Array” (PPTA; Manchester, 2008;biest et al., 2010, and
references thereit) collaboration, which uses the 64-m diameter Parkes ratiedepe.
The collaboration aims to time 20 MSPs over a period of at l@gears. The majority of
the pulsars are already yielding a weighted rms residualbg|:s, with the rms of a few
pulsars below 200 ns (Manchester, 2010). The project has diggoing since late 2004,
although a subset of the PPTA pulsars have been timed at thkesPabservatory since
1994, albeit with less regularity and precision (Verbidgsale 2008, 2009). The PPTA
data sets are the focus of the GW analysis presented lateisithesis. Details of these

data sets are given below in Sections 2.2.3 - 2.2.5.

e The “European Pulsar Timing Array” (EPTA; e.g., Stapperalgt2006; Ferdman et al.,
2010Y2 collaboration, which currently observes MSPs using forgdaadio telescopes.
These are the 100-m diameter Effelsberg, the 76-m diametezll, the 94-m diameter-
equivalent Nancay, and the 96-m diameter-equivalent &estk synthesis radio tele-
scopes. The EPTA collaboration also intends to observeamigith the 64-m diameter
Sardinia radio telescope, which is expected to become tipeahin 2011 (Tofani et al.,
2008). The combination of these telescopes provides oiseng at a wide range of
frequencies from 0.12 GHz to 95.5 GHz with bandwidths raggimom ~100 MHz to
1 GHz. The EPTA collaboration currently times 24 MSPs (Feadrat al., 2010; Hobbs
et al., 2010a).

e The “North American Nanohertz Observatory for GravitatibiVaves” (NANOGrav;
Jenet et al., 2009 collaboration, which observes MSPs using the 100-m dian@r&en
Bank Telescope and the 300-m diameter telescope at theb&r&ibservatory. Pulsars
are observed at Green Bank at 820 and 1400 MHz, and obsenfedalbo at 327, 430,
1400 and 2300 MHz (Demorest, 20%1) Sources have been observed using coherent
dedispersion systems with a 64 MHz bandwidth, though regpgtades allow a coher-
ently de-dispersed observing bandwidth of up to 800 MHz @Ramet al., 2009). They
are currently timing 20 MSPs (Nice et al., 2011), though neNsars are being added to

Pnttp: // ww. at nf. csiro. au/ research/ pul sar/ ppta/ .

Bntt p: // ww. ept a. eu. org/ .

Ynt t p: // nanogr av. or g/ .

15See also: http://science.nrao. edu/ newsci ence/ 9- Wed/ 17- Denor est / denor est _
santa_fe 2011. pdf .
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the source list.

e A PTA at Kalyazin Observatory, Russia, described by llyasoal. (2004b), is observed
using the 64-m diameter Kalyazin telescope. This telestygpieally times pulsars at
frequencies of 600 and 1400 MHz with a bandwidth of 3.2 MHyg$lov, 2006). Kalyazin
observatory has performed timing observations on an arf&gwen MSPs since 1996
(llyasov & Oreshko, 2007).

Other collaborations and countries, such as China, may sooirmence MSP timing obser-
vations that could lead to their own PTA (Nan, 2008; SmitslgtZ®09; Nan, 2009). Also,
very-low-frequency observations of pulsars using Ind@iant Meterwave Radio Telescope
may facilitate even more precise timing observations (Jehal., 2009).

A new global PTA collaboration is emerging, the Internaéibulsar Timing Array (IPTA),
which is currently a combination of the PPTA, EPTA and NAN@G(Hobbs et al., 2010a).
The current array of pulsars observed as part of the IPTAda/shin Figure 2.1. The IPTA will
provide the most sensitive data sets to date for GW deteetapulsar timing. Even though
a few experiments have already used shared data (e.g., @ragti@l., 2010), more extensive

collaboration and data-sharing agreements have not yatfiredised.

2.2 High-Precision Pulsar Timing at Parkes

Throughout this thesis we will focus on the analysis of datenfthe PPTA to determine its
sensitivity to GWs and other signals that are expected tduyme a correlated signal in the
timing residuals. High-precision timing of pulsars for tReTA project has been conducted
under two long-term observing proposals: P140 and P456aiBetf both projects are given

below.

2.2.1 P140: “Precision Pulsar Timing”

The first project that carried out repeated observations @reay of MSPs at the Parkes tele-
scope commenced in 1994, entitled “P140: Precision Pulsaing’. These observations were
conducted during the same period of time as the Parkes 70craysior MSPs (Bailes et al.,
1994; Lyne et al., 1998) with the original intention of imphag the timing models for pulsars

that were newly discovered as part of the survey. The prajsct observed two of the bright
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Figure 2.1: The position and typical TOA uncertainty for tR&A pulsars (as listed in table 1 of Hobbs et al., 2010a). fidwee shows pulsars
from the PPTA (blue), EPTA (green) and NANOGrav (red) prtgetescribed in Section 2.1. The centre of each circle inelcidne location of
the pulsar in right ascension (RA) and declination (Dec)e Tadius of the circle;.;,., is related to the size of the typical error bay,,, on a
timing observation of that pulsar for that project vig. = 0.011(1 — log(0.250%y,)). Hence, a larger circle on the above plot indicates that a
ToA from the pulsar has a smaller typical error bar. The lalgbf RA is non-standard, such thAfA = 12" is the central meridian.



MSPs discovered earlier at Arecibo, PSRs JH/AB47 and J19392134. With the discovery
of new pulsars in the Swinburne intermediate-latitude sy(Edwards et al., 2001), the list of
pulsars that were being observed under the project wasdedeto 16 MSPs by 2006. The
P140 project ended in 2011. Highlights from the P140 prajezitide:

e the measurement of the 3-dimensional binary orbital gegmat PSR J04374715,
which led to a verification of the space-time distortion nésicompanion via detection
of the Shapiro delay predicted by GR (van Straten et al., 601

¢ the measurement of the mass of the binary companion of PSW®J38344 by observing
its Shapiro delay (Jacoby et al., 2005). This mass measuterm@mbined with other
measurements and predictions of GR, implied that PSR J430%4 has a large mass.
This supported the idea that the cause of the high spin-éreguof MSPs is that they

undergo a recycling phase via accretion from their compgnio

e a comparison between the pulsar timing measurements anadioeinterferometry mea-
surements of the position, parallax and proper motion of B&874715. This led to

independent confirmation of the parallax distance (Deli@t.e2008).

2.2.2 P456: “A millisecond pulsar timing array”

In February 2004, the first observations for the PPTA begaleutihe Parkes observing project
“P456: A millisecond pulsar timing array”. High-precisiabservations (see Section 1.5.1)
were collected from late 2004. This ongoing project diffesn P140 as it specifically aims
to detect GWs. The P456 project also aims to detect error3 {(iAl) and in the solar system
ephemeris. These aims require the extension of the list ofitore@d pulsars from 16 to 20
MSPs, suggested by Jenet et al. (2005) as a minimum requitforeGWB detection. The
project includes low- and high-frequency observationshef pulsars to enable correction for

variations in the pulse DM (You et al., 2007). Some highlggbitthe project so far include:

¢ the use of P456 observations and publicly-available olasiemns (Kaspi et al., 1994) to
measure an upper bound on the GWB amplitude that rules out €aVidB formation

mechanisms (Jenet et al., 2006);

160bservations of this pulsar were later used to constraipainemeters of alternative gravity theories (Verbiest
et al., 2008; Deller et al., 2008).
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e measurement of the instability of Terrestrial Time (TT) realised by TT(TAI), using a

combination of P140 and P456 observations (Hobbs et al1)201

e measurement of the mass of all solar system planetary sggtem Mercury to Saturn,
providing the most precise published value for the Joviatesy mass (Champion et al.,
2010). This paper used observations of three pulsars frof Bhd P456 (published by
Verbiest et al., 2009), as well as some observations of difquuisar made at Effelsberg

and Arecibo.

2.2.3 Properties of the P140/P456 Observations

For the majority of the analysis discussed in this paperPd&6 and P140 data have been com-
bined. Each pulsar has been observedf®® minto 1 h in each observation, depending on the
hardware used at the time. Since 2005, the typical lengtim @bservation isv1 h. Observa-
tions of each pulsar are made every few weeks, though PSRB%-J8415 and J19093744 are
often observed several times during each observing se$smorsome pulsars there are gaps of
several months during which no observations were taken.

Most observations have been performed at wavelengthsecbomtr10/50 cm (3100/685 MHz)
using a dual-frequency receiver (Granet et al., 2005) ofan2 (1400 MHz). Observations in
the 20 cm band between 1994 and November 2002 were takenheitbaltech fast pulsar tim-
ing machine (FPTM; Navarro, 1994). This backend systemdimésars with either one or two
128 MHz-wide bands; the observations varied greatly iniguabservations between Novem-
ber 2002 and June 2010 were taken with the Caltech-Parke¥@me Recorder 2 (CPSR2;
Bailes, 2003). These observations were coherently deedisg over two 64 MHz-wide observ-
ing bands centred at 1341 MHz and 1405 MHz. From 2004, additisimultaneous observa-
tions have been taken with a variety of Parkes digital fik@ksystems with bandwidths from
256 MHz to 1 GHz (Manchester, 2008). Each MSP monitored dtd3dnas been observed for
a different time-span, depending in part on when each pulaardiscovered. The observations
have been made at irregular intervals and the sampling leasd#erent between pulsars.

ToA uncertainties have varied widely over short and longesoales. Short timescale varia-
tion is caused by unequal integration time between obsensand by scintillation in the ISM
(Lyne & Rickett, 1968; Rickett, 1990; Cordes, 2002). Longescale variation in the ToA error

size is caused by upgrades in the receiver and backend syatetime telescope. The magni-
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tude of the average ToA uncertainty can change discontsiy@s a result of these upgrades
in the observing hardware at Parkes. In Figure 2.2, we péotithing residuals obtained from
observations of two pulsars to demonstrate the variatio®A uncertainties, sampling and

time-span described above.
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Figure 2.2: The variation in sampling, TOA uncertaintied ime-spans of MSP timing obser-
vations under P140/P456. The abscissa is time in days asineddsy the Modified Julian Date
(MJD). The ordinate measures the timing residual for eagleation of each pulsar. The dot-
ted lines indicate zero residual for each pulsar, and thgtheof the vertical bar on the left-hand
side in each panel indicates/ € The right-hand column gives the pulsar’'s name in the J2000
coordinate system. The observations of PSRs J42304 and J16003053 shown here are a
subset of the 20 sets of MSP timing observations publishééenlyiest et al. (2009).

2.2.4 Fitting the Timing Model and Estimation of Pulsar Parameters

The ToAs for each pulsar are fit with a model for the pulsarisaweour to minimise the vari-

ance of the timing residuals. A typical model includes the ,Dbtational parameters (pulse
frequency and its first derivative), astrometric paranseterg., position, proper motion) and, if
the pulsar is a member of a binary system, orbital paramg@tersthe Keplerian binary parame-
ters and, if necessary, some post-Keplerian parameter&deards et al., 2006). A significant
parallax has only been measured for pulsars that are rellatilose to Earth or for those with a

small rms residual (Verbiest et al., 2009).

36



For our data, the fitting of the pulsar timing model is careed with TEMPO2 (Hobbs et al.,
2006; Edwards et al., 2006).EMPO2 is a software package designed as a plugin architecture
in the ‘C’ programming language. This enables users to whigé& own programs in C with
access to theeEMPO2 core. TEMPO2 supersedes the earliBEMPO code that was not designed
for processing multiple pulsars simultaneously, whereagpPo2 can simultaneously process
PTA observations (e.g., Hobbs et al., 2006, 2011). Also,T#ePo code does not account
for all effects that cause ToA variations §f100ns. EEMPO2 accounts for all known timing
effects to~1 ns accuracy (Hobbs et al., 2006). This level of accuracy isrder of magnitude
greater than the most precise current timing observatmgs (Manchester, 2011). In particular,

TEMPOZ2 accounts for

e the pulsar’s intrinsic slow-down behaviour;

its orbital motion;

its secular motion or that of its binary system;

dispersion caused by the solar system, Earth’s ionosphedehe ISM,;

the motion of the observatory caused by Earth’s rotatiobitairmotion, precession, nu-

tation and polar motion;

pulse delay induced by Earth’s troposphere; and

gravitational time-delays caused by solar system bodi#gsequulsar’s binary companion.

In this way, TEMPO2 produces very precise parameter estimates for any oluspalear. Pul-
sar model parameters for most of the Parkes pulsars timeer ¥0 and P456 have been
published by Verbiest et al. (2008, 2009).

Compared to other measurement techniques, the pulsar g@anare most precisely de-
termined using the timing observations themselteslowever, it should not be assumed that

every measured parameter has physical meaning. For exati@lmtrinsic rotational period

17A notable exception is the parallax measurement for PSR7J04815 obtained with interferometry that is an
order of magnitude more precise than the best measureroempfulsar timing (Deller et al., 2008; Verbiest et al.,
2008). However, the pulsar timing measurement of othermaters (such as the proper motion) is more precise
than the interferometric measurement. Also, while suchkipeginterferometry measurements are possible for the
very close and bright pulsar PSR J043¥%715, these measurements will not be practical for the gépepulation
of pulsars because of their much greater distance and loweddnsity.
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of a pulsar cannot be directly measured with current techesq The pulse period determined
by TEMPOZ is affected by the pulsar’s radial velocity, intrinsic gail rotational instabilities
(Hobbs et al., 2010b), instabilities in terrestrial timarstards (Hobbs et al., 2011), and even
the existence of GW signals (e.g., Pshirkov, 2009), amamgsierous other factors.

2.2.5 Properties of the P140/P456 Timing Residuals

The timing residuals (see Section 1.5.1) producedtypr0o2 for the P140/P456 observations
are shown in Figures 2.4, 2.5 and 2.6. The error bar on eadueswhich is equal to the
ToA uncertainty, is underestimated on average for almdstfathe PPTA pulsars (Verbiest
et al., 2009). This means that the uncertainty in the paranestimates for these pulsars will
be underestimaté®l In an effort to correct this, the standard approach is totipluleach
measured ToA uncertainty for a particular pulsar by an ‘fefagtor” (EFAC; e.g., Verbiest
et al., 2009). Generally, the EFAC (typically a number betwene and four and defined as
\/@) will be different for each pulsar, though a recent analpsid/erbiest et al. (2009) used
EFACs that were also different for each backend system.

Several deterministic signals have been removed from @iduals because of the timing
model fit that estimates the parameters of the pulsar mauEigure 2.3, we show characteristic
signatures induced in the timing residuals for an incorpetse period (top left), an incorrect
pulse period derivative (top right), an incorrect pulsar-pbksition (bottom left) and an incorrect
pulsar binary orbital period (bottom right). Any physicdigmomenon that induces timing
residuals resembling the signals in Figure 2.3 — such as staanDoppler shift of the pulse
period, acceleration of the pulsar in the local gravitadigrotential (e.g., for pulsars in globular
clusters; see Freire et al., 2001) or GW signals with a peoiotlyr — will be undetectable
after the standard pulsar timing fit has been applied. Theicatpns of this are discussed in
Chapter 4 and Chapter 6 and have been discussed by sevdratsa(g.g., Blandford et al.,
1984; Hellings, 1989; Kopeikin, 1999).

The weighted rms residual varies over two orders of mageituetween different pulsars

(see Table 2.2). This is because of the S/N ratio differefitteegpulse profile between different

8This can be corrected using the “reducgd of the fit, defined as¢? = Yon ;—E/Ndof, wherer,, is then-
th observed post-fit residuat,, is its error andNy.¢ is the number of degrees of freedom in the residuals. By
multiplying each measured parameter uncertaintw@, the correct uncertainty can be obtained if the uncer-
tainties have a normal distribution. Idealfy? is close to unity, indicating that the model fits the obseovet at
the accuracy predicted by the noise level of the obsenation
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Figure 2.3: The signature in simulated pulsar timing resigltor PSR J061:30200 as produced
by an incorrect value of different pulsar parameter measargs. In each plot, the abscissa is
the MJD while the ordinates are the residuals determinatgubie input pulsar parameter file
before fitting is applied withimrEMPO2 to improve the pulsar parameter estimates. Here we plot
the timing residuals after introducing an error in the pésperiod (top left), period derivative
(top right), sky position (bottom left) and binary orbit jped (bottom right). These simulated
observations are sampled once every 14 d with an uncer@idg0 ns on each residual, except
for the data set displaying the binary orbit period errorr #f@ binary orbit period error, one
observation every two days with a 10 ns uncertainty on eastdual was chosen since the
orbital period of PSR J06130200 is 25d. Each image was produced usingribe plugin to
TEMPO2 from simulated data created using teE plugin.
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pulsars and because of unmodelled signals in the timingeditsens. For example, most of the
published observations from these projects have not bdlgrcturected for DM variations (You
et al., 2007%°. This means that the residuals still contain signals duet@tions in the DM.
Other physical effects that have not been included in théngrmodel — such as calibration
and other instrumental errors (van Straten, 2006), timioigenintrinsic to the pulsar system
(Hobbs et al., 2010b; Shannon & Cordes, 2010, and referethegsin), errors in the solar
system ephemeris (Champion et al., 2010), and errors inAlJ (Hobbs et al., 2011) — will
induce timing residuals.

Verbiest et al. (2009) showed that such noise sources wilbrahibit GWB detection with
the PPTA pulsars. Furthermore, these authors provided-dapth analysis of the noise prop-
erties of all the PPTA pulsars. They conclude that instédsliintrinsic to the pulsars or the
observing systems do not induce residuals with tm$00 ns over a five-year timescale for
most PPTA pulsars. Hence, GW detection with the PPTA pulsamains a possibility, using
observations carried out under the observing projects Bhd@®P456. Some recently published
observations of the PPTA pulsars are described in the netioBe Both sets of observations

will be analysed to study GW signals in Chapters 3, 4, 5 and 6.

2.3 Published Observations from the Parkes Pulsar Timing
Array

In this Section we describe the observations that formedehet et al. (2006) data set and those
that formed the Verbiest et al. (2009) data set. We show theaptiming residuals that result
from each timing analysis. In Chapters 3 and 5, we analys@dhet et al. (2006) observations
to determine their sensitivity to individual sources of Gl calculate an upper bound on the
GWB amplitude. In Chapters 4 and 6, we analyse the Verbiesit ¢€2009) observations and

search for single sources of GWs and a GWB signal.

2.3.1 The Jenet et al. (2006) Observations

Jenet et al. (2006) presented a statistically-rigoroustigeie for finding an upper bound on the
GWB amplitude. The Jenet et al. (2006) observations have assembled from:

19Such corrections are now part of the standard PPTA data gsigeand can be applied to most existing
residuals for which observations have been made at two og fnequencies.
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e publicly-available observations of PSR J18%P43 taken with the Arecibo radio tele-
scope between 1986 and 1993 (Kaspi et al., 1994); and

e observations of seven pulsars, including PSR JA&8®9243, made with the Parkes radio
telescope under the P140 and P456 timing projects (Hotdn 2086).

The Arecibo observations of PSR J1881043 were carried out at1400 MHz and span
eight years. The Parkes observations used both the 20 cnveeesad the 10/50 cm dual-
frequency coaxial receiver. The average sampling intes¥dhese data is-16 d, with one
observation at each of the three frequencies taken duricty&d period. The observed pulsar

signals were recorded with a variety of backend systemhjding:

¢ the Wide-Band Correlator system (You et al., 2007) with Zigital sampling at a band-
width of up to 1 GHz;

¢ adigital filterbank with 8 bit digital sampling of a 256 MHz h@dwidth (Yan et al., 2011);

e the Caltech Parkes Swinburne Recorder 2 (CPSR2; detailaila€3 2003; Hotan et al.,
2006), a baseband recorder with coherent dedispersionweabserving bands, each of
64 MHz bandwidth. For observations at 20 cm, these bandseartet! on 1341 and
1405 MHz; for simultaneous observations at 10/50cm theycardgred on 3100 and
685 MHz.

The residuals are summarised in Table 2.1 and plotted inr&igut. The figure shows the
very irregular sampling, the unequal noise levels betweagsaps and the significant variation
in error bar size between observations of a given pulsar. elcti@ 3.3.3, we will analyse
these observations to determine their sensitivity to iigdial GW sources that induce sinusoidal
timing residuals.

Jenet et al. (2006) did not apply their method to all the PRM&P observations that were
available in 2006. This is because their technique for figdin upper bound on the GWB
amplitude (described in Chapter 5) demanded the use of &messthat were consistent with
white noise (i.e., their power spectrum is independent @fdiency). Many time series from
the P140 and P456 projects did not meet their criteria fotemigiss because of calibration- and
hardware-induced artifacts, as well as other unknown gmioise sources (Jenet et al., 2006).

For some other pulsars, only a subset of their observationklde used. This meant that,
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Table 2.1: Parameters of the Jenet et al. (2006) data set.

PSRJ Period DM P,  Weighted RMS  Span No. of
(ms) (cm3pc) (d) Residualgs) (years) Observations
J0437~4715 5.757 2.65 574 0.12 2.2 233
J1024-0719 5.162 6.49 - 1.10 2.4 92
J1713+0747 4.570 15.99 67.83 0.23 3.2 168
J1744-1134 4.075 3.14 — 0.52 3.3 101
J185740943 5.362 13.31 12.33 1.12 20.3 398
J1909-3744 2.947 10.39 1.53 0.29 2.4 2859
J1939+2134 1.558 71.04 - 0.21 2.4 231
I, . e el .. JO437—4715
I, . J1024-0719
I, . . J1713+0747
©
>
© I - 17441134
e
= ;@iﬁfiw o 185740943
I, SO UUUUSU USROS J1909-3744
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Figure 2.4: The timing residuals from the observations weéagulsars published by Jenet et al.
(2006). The abscissa gives the time of the correspondingredson in MJD. The ordinate
measures the timing residual for each observation of ealslap@he dotted lines indicate zero
residual for each pulsar, and the length of the vertical Inathe left-hand side in each panel is
10us. The right-hand column gives the pulsar's name in the J200@dinate system. [Image
produced using theLOTMANY plugin toTEMPO2.]
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Table 2.2: Basic information for the Verbiest et al. (200802) data sets.

PSRJ Period DM P, Weighted RMS  Span No. of
(ms)  (cnT3 pce) (d) Residualgs) (years) Observations

J0437-4715 5.757 2.65 5.74 0.20 9.9 2847
J0613-0200 3.062 38.78 1.20 1.56 8.2 190
J0711-6830 5.491 18.41 - 3.23 14.2 227
J1022+1001 16.453 10.25 7.81 1.62 5.1 260
J1024-0719 5.162 6.49 — 4.22 12.1 269
J1045-4509 7.474 58.15 4.08 6.64 14.1 401
J1600-3053 3.598 52.19 14.34 1.14 6.8 a77
J1603-7202 14.842 38.05 6.31 1.92 12.4 212
J1643-1224 4.622 62.41 147.02 2.50 14.0 241
J1713+0747 4.570 15.99 67.83 0.20 14.0 392
J17306-2304 8.123 9.61 — 2.51 14.0 180
J1732-5049 5.313 56.84 5.26 3.24 6.8 129
J1744-1134 4.075 3.14 — 0.62 13.2 342
J1824-2452 3.054 119.9 - 1.60 2.8 89
J185%4-0943 5.362 13.31 12.33 1.21 2211 376
J1909-3744 2.947 10.39 1.53 0.17 5.2 893
J1939+-2134 1.558 71.04 - 23.9 2373 588
J2124-3358 4.931 4.62 — 4.03 13.8 416
J2129-5721 3.726 31.85 6.63 2.19 125 179
J2145-0750 16.052 9.00 6.84 1.82 13.8 377

observations.

2.3.2 The Verbiest et al. (2009) Observations

because of the nature of their technique, Jenet et al. hatbtard a large fraction of their

Verbiest et al. (2009) presented long time-span obsenatb20 MSPs using the Parkes radio
telescop®. The pulsars were timed with a weighted rms residuakof).2 — 23 us for a
period of~12 years. The specifications of each set of timing residualg&en in Table 2.2,
where, in column order, we present the pulsar name in theQJ266rdinate system, pulse
period, dispersion measure, orbital period, weighted resgdual, data-span and number of
recorded ToAs. For full details of TOA estimation and datagesssing, see Verbiest et al. (2008,
2009). The timing residuals from all observations are shioviigure 1 of Verbiest et al. (2009).

Between different pulsars, there is variation in the nagsell of the residuals and the sampling

23In this thesis, we augment the Verbiest et al. observatigrgiding eight years of ToAs for PSRs J185043
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Figure 2.5: The 10 pulsars with the smallest weighted rmsluasin the Verbiest et al. (2009)
observations. The abscissa gives the date of the observai@ ordinate measures the timing
residual for each observation of each pulsar. The dottexs lindicate zero residual for each
pulsar, and the length of the vertical bar on the left-hani@ $n each panel indicates /1€,
The right-hand column gives the pulsar's name in the J20@0dooate system. Noise levels
vary significantly both between pulsars and at differentclggo The time-span also differs for
different time series, and in general the observations ofi galsar were begun on different
dates.

frequency and start dates for the observations. In Fig&ienz plot the timing residuals for the
10 pulsars with the smallest weighted rms residual with #messcaling on the axes. In Figure

2.6, we plot a similar figure for the remaining 10 pulsars.

The observations were made with a number of different olisgsystems — both the fron-
tend receivers and the backend instrumentation have vaviexdtime. Arbitrary phase offsets
have been fitted for and removed between the ToAs from eatdretit observing system for
a given pulsar. This reduces the standard deviation of thimgi residuals for that pulsar and
can remove significant signals from the residuals, espg@aeér long timescales. This effect
is shown in Figure 2.7 for an extended set of observationsSé&® B04374715 that includes
more recent data than that published by Verbiest et al. (009

The Verbiest et al. (2009) residuals have a number of feathad complicate their analysis.

While the timing residuals of most of the pulsars are whiteemut of the twenty pulsars exhibit
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Figure 2.6: The 10 pulsars with the largest weighted rmgluagiin the Verbiest et al. (2009)
observations. The abscissa gives the date of the observain@ ordinate measures the timing
residual for each observation of each pulsar. The dottess lindicate zero residual for each
pulsar, and the length of the vertical bar on the left-hadd 81 each panel indicates &€ The
right-hand column gives the pulsar's name in the J2000 d¢oatel system. Noise levels vary
significantly both between pulsars and at different epodihe residuals of PSR J1932134
are dominated by a polynomial of unknown origin.

non-white noisé'.

The Verbiest et al. (2009) observations contain a wealtimf@rmation on many physical
effects. However, the techniques for GW analysis presdnotddte have difficulty in analysing
the residuals. The Jenet et al. (2006) technique cannotdedpn its current form, nor can
the Anholm et al. (2009) technique, as outlined in Sectidg I'he technique presented by
van Haasteren et al. (2009) can be applied to these obsmrsakiut this would require a large
amount of computation time and the results would be diffitoltonfirm via Monte Carlo
simulation. This necessitates the development of new tquke for GW analysis that can be
applied to pulsar timing observations. Such methods areritbesl in subsequent Chapters of
this thesis. To develop and test new GW-analysis technjqueeseed to be able to simulate PTA
observations. Many methods are possible for creating siteditiming residuals; we choose to

use the methods implemented in #reE andPSD_.SIMULATOR plugins toTEMPO2.

24This was determined using a simple two-point correlatioalysis to determine the degree of correlation
between adjacent residuals using thee CKWHITE plugin toTEMPO2.
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Figure 2.7: The effect of fitting arbitrary phase offsetswestn different observing systems
on the PSR J04374715 residuals obtained from observations under P140 ab6.PZhe
total time-span of the observations in each figure is 12.2syéhe first 9.9 years of data were
presented by Verbiest et al. (2008) and are described alhiothe phase offsets are measured
using very precise system tests at Parkes (upper figure;ater, 2011), then significant low-
frequency structure is revealed in the residuals, indigetie presence of an unmodelled signal.
If we instead determine these phase offsets usimgnpP 02 fit of the observations, as was done
by Verbiest et al. (2008, 2009) for the first 9.9 years of theepbations, then most of this signal
is removed (lower figure).
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2.4 Simulating Pulsar Timing Observations

2.4.1 The RRKE Pluginto TEMPO2

TheFAKE plugin produces simulated observations at a user-defiried Semes that are affected
by user-selected levels of white noise, red noise or othisaptiming effects such as glitches.
The only required input is the timing model for the pulsar.eTdrrival times predicted by the
input timing model are subtracted from the list of obsenstiimes, which are assumed to
represent pulse ToAs, and the timing residuals are formkdsd timing residuals are then sub-
tracted from the initial ToAs, creating a new set of ToAs tdk be predicted more accurately
by the input timing model than the initial ToOAs. ThemP0o2 modelling and fitting process is
non-linear in general, meaning that this procedure musepeated until the timing residuals
are negligible (Hobbs et al., 2009). The ToAs will then beatiygpredicted by the input timing
model; we refer to these as a set of “ideal TOAs”. The idealgbave the same sample times as
the actual observations. They can then be modified using#afied levels of white noise, red
noise, GWs and any other simulated effects. This procesdéesasimulated pulsar timing ob-
servations for which we know the form of all effects that iefigce the ToAs. In the upper panel
of Figure 2.9, we show simulated timing residuals for PSRL30®200 created with theake
plugin. The simulated residuals have the same time-spanage sampling and weighted rms
residual as the real observations, but the observatiorstiereor bars and spectral properties of

the simulated residuals do not resemble the actual obsezgatiials shown in Figure 2.8.

2.4.2 Simulating Observations with Variable Error Bars and Irregular
Sampling

If we have a list of ToOAs and their uncertainties, it is strafgrward to simulate ToAs with the
same sampling and error bars as the input ToAs usEngP0O2. In particular, this means that
the noise level can vary from one ToA to the next, as occursdak observations of pulsars.
The sampling interval between consecutive observationsatso vary. In the lower panel of
Figure 2.9, we show timing residuals formed from a simulatetiof observations for PSR
J0613-0200. Each simulated observation has the same error bar a3Ddbithe corresponding

real observation.

These simulated observations give residuals that are rmoilasto the observed data in Fig-
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Figure 2.8: The observed timing residuals for PSR JB&1I20 from Verbiest et al. (2009).
The residuals collected with CPSR2 (filled diamonds) andmdblackend systems (open circles)
are shown. We investigate three different methods to sitm@dime series that resembles this
time series as closely as possible. The results of applanl different simulation method are
shown in Figures 2.9 and 2.13.

ure 2.8 than the simulated observations createdaAne. However, the simulations described
here still yield residuals that are consistent with whitesaf varying standard deviation. The
observations in Figure 2.8 exhibit significant low-freqogmoise that should be included in

simulations of observations of this pul&ar

2.4.3 ThePsD_SIMULATOR Pluginto TEMPO2

To simulate significant low-frequency noise in pulsar tignresiduals, we require a mathe-
matical model of the low-frequency spectrum of the “pre-fésiduals. We define the pre-fit
residuals to be the timing residuals obtained before apgltheTEMPO2 parameter fit to de-
termine a new timing model. The predictions of this new tignmodel can be subtracted from
the ToAs to form the “post-fit” residuals. When observinggaut, multiple fits will already
have been applied to the data. For example, in the disco¥eryew pulsar, an estimate of the
pulsar’s pulse period, dispersion measure and sky-pasitibhave been obtained. Subsequent
observations of the pulsar will allow these parameters @bkas the period derivative and other
parameters) to be measured using the standard pulsar imongdure, which includes a pulsar

parameter fit. As the time-span of the observations incegdisis possible to fit for more and

25The low-frequency noise in PSR J0613200 was analysed by Verbiest et al. (2009).
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Figure 2.9: Simulated timing residuals for PSR J060200. The upper panel was created
using therFAKE plugin to TEMPO2 and assuming regular sampling with equal error bars. The
lower panel was created using the same observation epodlesran bars as the observed resid-
uals of PSR J06130200. The random gaussian deviation at each residual ia giv¢he error

bar size, but does not include any low-frequency noise. Tleel filiamonds are the residuals
resulting from simulated observations taken with the CP8B&rving backend system; open
circles show the residuals resulting from simulated olegéras using other observing backend
systems. Neither of the simulated data sets shown here bésehe actual observed timing
residuals in Figure 2.8.
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Figure 2.10: The effective transfer function for the Vesbiet al. (2009) observations of PSR
J0613-0200. The abscissa gives the frequency, while the ordinaés ghe effective transfer
function of theTEMPO2 parameter fitting process. See text for more details.

more pulsar parameters. It is therefore not usually passdtietermine timing residuals that
do not have various signatures subtracted from them by g 02 parameter fit (see Figure
2.3). However, such residuals can be simul&tedhich enables subsequent investigation of
the effect of therEMPO2 fit on the data. The effect of the fitting is particularly ini@mt when
applied to observations affected by non-white noise. Fstaimce, significant low-frequency
power will be removed when estimating the pulsar periodjétsvative (see Figure 2.3) or any
arbitrary phase offsets (see Figure 2.7).

Before simulating pre-fit residuals explicitly as a timeisgrwe first simulate their power
spectrum. This requires an estimate of the average effetieafEMP0O2 pulsar parameter fit
on the particular set of observations being simulated. €ktgnate can be calculated using
the XFER_FUNC plugin to TEMPO2. This plugin estimates the power spectrum — before and
after pulsar parameter fitting — of simulated white noiséawhie same sampling and ToA errors
as the input timing residuals (see Section 2.4.2). Dividhegpost-fit spectrum by the pre-fit
spectrum gives an estimate of the effective “transfer fionétof the TEMPO2 fitting procedure
(e.g., Blandford et al., 1984; Hellings, 1989). This pracesrepeated 1000 times to find the

average effective transfer function.

26We later show how to simulate the timing residuals inducea@ I§W signal. The simulation creates ToAs
from an input timing model by adding user-defined noise ald GW signals to pulse arrival times that are
predicted by the model. Standardmpo2 fits can then be applied to determine the post-fit residhafswould
actually be observed.
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The effective transfer function for the Verbiest et al. (2PObservations of PSR J0618200
is shown in Figure 2.10. A small value of the effective trangtinction indicates a frequency
at which theTEMPO2 parameter fit removes most of the power. There are threeipentrfea-
tures. First, at least 5% of the input power is lost at all freracies during theempo2 fit. This
is mainly caused by the fitting of two arbitrary phase offgetdhe ToAs. Second, a significant
loss of power occurs in the lowest two frequency channelaudmse of therTEMPO2 fits for the
period, period derivative and arbitrary phase offsetsrd;mear-total loss of power occurs at a
frequency o3.1 x 1078 Hz because of theemPO2 fit for the pulsar’s sky-position (see Figure
2.3).

To obtain the pre-fit power spectrum, we divide the measuosekep spectrum of the actual
residuals by the effective transfer function. The pre-fivpospectrum is shown in Figure 2.11,
along with the spectrum of the actual residuals and a modékgbre-fit spectrun®,,oqq (f) =
af® for the low-frequency portion of the spectrum. We aim to dimteia time series that is
consistent with this low-frequency spectral model. Fortigd-frequency noise in the residuals,
we use the ToA error bars in the same way as described in 8&d®. After theTEmPO2 fit
is applied to the total time series, the post-fit simulatesidials will resemble the time series

of actual residuals in Figure 2.8.

We can simulate a time series with user-defined samplinghé& power spectrum con-
sistent with a given spectral model. We first simulate an Bygpspaced time series with the
required power spectral density (e.g., the dashed linegargi2.11). The power spectral den-

sity of a time series,, of N, points with time-spafi,ps at frequencyf;, can be defined 35

P(fi) = 2Tos| F(fi)|* . (2.1)

whereF ( f;,) is the Discrete Fourier Transform (DFT) of the time seriescalculate the DFT,
we use the TKFFT function within the TKSPECTRUMIibrary to TEMPO2. This function uses

the following definition of the DFT:

Npts—1
1 —2m7imn t
f(fm) - ﬁ Z Tne 2 /NPS 3 (22)
pPts  h—0

wherem is an integer between 0 afd/,.; — 1). The power spectral density defined in Equation

2’See, e.g., equation (6.6) of Albrecht et al. (2003).
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Figure 2.11: Power spectra of the pre-fit residuals (sotide) and the actual residuals (dotted
trace) from the Verbiest et al. (2009) observations of PSR.300200. The abscissa gives the
frequency, while the ordinate gives the power level in unftsr®. The “pre-fit” spectrum is
obtained by dividing the power spectrum of the actual resglby the transfer function plotted
in Figure 2.10. We can model the low-frequency portion ofghe-fit spectrum with a power-
law (dashed line).

(2.1) is one-sided, meaning that we only allow positive fieracy channels betweén= 1 and
k = (Nps — 1)/2, rounded down. We defin€(f;) = 0 because there is no information
contained in the mean of a set of pulsar timing residuals.OWRE defined in Equation (2.2) is

two-sided.

Rearranging equation (2.1) yields

P(fx)
F(fe) = . 2.3
FF = 23)
Since the DFT contains real and imaginary pafts &nd I, respectively), we have
P(fx)
2 2 __
R, + 1, = e (2.4)

Our method for simulating a time series that has a random psmextral density consistent

with the inputP( f) uses the following procedure:

e We create two arrays d¥,,;; normally distributed random number3, and/,. N, is a
parameter that can be defined by the user and must be a power f bur implementa-

tion.
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e We multiply each array byP,oqe(f = fx) /4T0bs,]1/ 2 whereP,,.q4q is the model for pre-
fit power spectrum and, = k/Tys R, NOw represents the real part of the DFT while
I, represents the imaginary part. These arrays will now sattie identity in Equation
(2.4).

e We perform an Inverse DFT oR,, + il,, to form a complex array,,. We define the

Inverse DFT as:
Npts—1

=) F( el (2.5)
k=0

The time series,, will be regularly sampled with sampling intervgl = ¢, + n7ops/ Npts,
wheret, is the arbitrary start-time for the series. We shift the tiseeies such thdt, is

the time of the first observation in the actual data.

e We interpolate the residuals onto the arrival times in theeobed time series using a
constrained cubic spline. This interpolation works wellentv,. is sufficiently large, as

shown in Figure 2.12.
e The power spectrum of these interpolated residuals wilbfothe input spectral model.

This procedure can be extended to provide a realistic stiuolaf a set of observed pulsar
timing residuals. We add white noise consistent with thesuead error bars on the real data
to the values of the interpolated time series described@abdhis yields a new time series
affected by white noise and low-frequency noise that is tetated between pulsars. This new
time series has exactly the same sample-times as the aetidiials. This means we can add
each value to a set of ideal ToAs — determined using the pueetkescribed in Section 2.4.1 —
to form a simulated set of ToAs. Timing residuals formed frili@se simulated ToAs will have
the same power spectrum, ToA uncertainties and samplirtgeaactual residuals.

The required transformations described above are impleadein the PSD.SIMULATOR
plugin, which is given in C-code in the Appendix. The implertaion includes the fact
that the timing residuals are real, meaning that the DFT bdlHermitian. This means that
RIF(fr)] = R[F(fnp-k)] @nd [F(fi)] = =1 [F(fnyu—r)], Which can reduce the number
of computations required.

While theFAKE plugin described in Section 2.4.1 can simulate ToAs thdtlygaussian red

noise in the timing residuals, it is restricted to simulgtrower-law models. TheSD.SIMULATOR
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Figure 2.12: Interpolation of the time series calculateBguation (2.5) onto the actual obser-
vation times for PSR J0613200. Only a subset of the full time series of PSR JG81300
residuals is shown here. The time series (dots connectedlioyliae) is initially sampled regu-
larly once every 11.7 d. This is then interpolated onto thaa®bservation times for the ToAs
from PSR J06130200 in the Verbiest et al. (2009) data set (crosses).

plugin can simulate gaussian noise consistent with mostigpenodels. In Figure 2.13 we plot
an example of the residuals formed from simulated ToAs fdR B8613-0200 created using
the PSD_.SIMULATOR plugin, cf. the actual residuals plotted in Figure 2.8.

With the ability to simulate realistic timing residuals, wew seek to add a variety of signals
to these simulations. In this thesis we focus on the adddfatifferent GW signals to the ToAs.
In the next Section, we describe methods for simulating G\Wes and their effect on the

arrival times of pulses from a pulsar.

2.5 Simulating GWs with TEMPO2

TEMPO2 simulates the effect of GW signals on ToAs rather than tgmesiduals, creating data
sets that can be processed using exactly the same methodasdkected with a telescope.
For instance, the same processing tasks (such as pararttatgr fietermining arbitrary phase
jumps or measuring DM variations) can be applied to the satedl ToAs in exactly the same
way as they are applied to the measured ToAs. As describe@dtio8 1.5, ToAs will be
affected by GW signals from SMBHBs. The strain amplitudeuicet by GWs from SMBHBs
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Figure 2.13: Simulated timing residuals for PSR J06Q300. These residuals were created
using thePsSD_SIMULATOR plugin, where the simulated data includes the same sam@ingy
bar sizes and low-frequency noise as the observed resislualg in Figure 2.8. The filled dia-
monds are the residuals resulting from simulated obsemnsitaken with the CPSR2 observing
backend system; open circles show the residuals resultimy §imulated observations using
other observing backend systems.

will vary as a function of time, but for most pulsar timing expnents the variation will be over
such long timescales to cause negligible change in the GWak{gommen & Backer, 2001).
TEMPO2 treats the simulation of an evolving SMBHB differently in¢hat of a non-evolving
SMBHB. We only consider non-evolving GW sources in this theSEMPO2 assumes that non-
evolving GW sources have zero eccentricity. This assumpsioalid because binary systems
tend towards zero eccentricity over a much shorter timestteln the orbital decay timescale
(Peters, 1964).

For a non-evolving source of GWs, the GW-induced ToA pedtidn at the Eartf, R. (),
at timet is given by (Detweiler, 1979; Lee et al., 2011)

R.(t) = Real{/o P+A+;t()1+_i§‘4*<t>dt} (2.6)

28This will be a real number, because measured timing resicaral real-valued. However, the calculation of
R.(t) is greatly simplified by including an imaginary part in thégigrand in Equation (2.6). This imaginary part
corresponds to another set of timing residuals that are fopth@se with the real part and are not measured under
typical observing conditions.

55



whereP, , and-~ are real-valued geometrical terms defined by

P = (lép-e)z—(k?p-gb)Q 2.7)
P, = 2(/5,,-9) (lép-gb) (2.8)
Vo= Rk, (2.9)

wherek, is a unit vector directed from Earth to the pulsar agds a unit vector directed from
Earth to the GW source (so the GW propagates in the direetk}]r). In equations (2.7) - (2.9),

we have the following definitions

k?p -0 = sinf,cosf, — cosb,sinb, cos(¢p, — ¢p) (2.10)
Ap ¢ = cosb,sin(¢, — &p) (2.11)
kp-k, = sinf,sinf, + cosb,cos b, cos(d, — bp) (2.12)

In these equations, we defite,, 6,) to be the right ascension (RA) and declination (Dec) of

the pulsar, respectively, arid,, §,) to be the RA and Dec of the GW source respectively.

Prior to this work, TEMPO2 was only capable of simulating GWs with real-valued pelari
sations; that is, a linear combination.éf and A, with real coefficients. However, in general
we expect SMBHBs to emit elliptically polarised waves (w3sl¢the SMBHB is exactly edge-on
with respect to our line-of-sight; e.g., Blanchet et al. 989 Elliptical polarisation requires the

introduction of complex-valued coefficients df. andA..

The termsA, . in Equation (2.6) are given by
Ap s (t) = Ay e @It (2.13)

where2r f is the GW angular frequency at the Earth @nds a constant phase offset. Assuming
that f is constant over the duration of the observations, we catiragnfrom Equation (2.6) as

follows:

B P_|_A+ + PXAX 6i(27rft+<1>g) -1
R.(t) = Real{ 20— ) X < o f

{P;Real (A;) + P Real (Ay)}sin(2mft + @)
Arf(1 =)
{P;Imag (Ay) + Py Imag (Ay)} {cos(2n ft + ®,) — 1}
Arf(1—7)
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The GW-induced ToA perturbation at the puls&l,(t), is the same except for an additional
phase term due to the GW transit time between the pulsar anBadlth. This phase term is
(adapted from Hobbs et al., 2009; Lee et al., 2011):

AD, = (1 4k, - ky) ==L (2.15)

whereD, is the (in general, unknown) distance from Earth to the pudsal c is the vacuum
speed of light, which is also the speed of the GW. Hence we xprressR,,(t) as

{P;Real (A;) + PcReal (Ay)}sin(2nft + &, — Ad,)

Amf(1 —7)
{PiImag (A;) + Plmag (Ax)} {cos2n ft + &, — AD,) — 1}

Arf(1—7)

Hence, the total ToOA perturbatidi(¢) induced by a GW passing the Earth and the pulsar is

Rp (t) =

(2.16)

R(#) = Ro(t)— Ry(t)
{P;Real (A;) + PiReal (Ay)} {sin(2n ft + ®,) — sin 27 ft + &, — Ad,)}
Arf(1—7)
{PiImag (Ay) + PiImag (Ax)} {cos(2n ft + ;) — cos 2nft + &, — Ad )}
Arf(1 =)

The induced ToA perturbation in Equation (2.17) shows tvatidct physical effects. The GW-

(2.17)

induced ToA perturbation at the EartR, (¢), is given in Equation (2.14) and is called the “Earth
term”. The GW-induced ToA perturbation at the pulsar is gireEquation (2.16) and is called
the “pulsar term”. Equation (2.17) has been implementedemtmpo2 GW simulation engine
GWSIM.H.

We now use the techniques described in Section 2.4 to siendéa sets for a range of future
timing array projects. In the next Chapter, we will inveatgthe sensitivity of these simulated
data sets to individual GW sources that induce sinusoigahg residuals as described above
in Equation (2.17).

2.6 Simulated Timing Array Observations

For analysis in Chapter 3 and Chapter 5, we have simulatesatald¥TA projects with different
characteristics using theake plugin, described in Section 2.4.1. Here, we assume that the

residuals are consistent with white noise with equal eramsb These assumptions will be
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Scenario] Number of Residual Timespan of
Name Pulsars rms (ns) Observations (d)
Arecibo 1/5 10 1750/ 3500 / 525(
PPTA 20 100/500 1750/ 3500 / 525(
IPTA 40 20 @ 100ns, 20 @ 500ns1750 / 3500 / 525(
SKA 20/100 10/100 1750/ 3500 / 525(

Table 2.3: Parameters used to simulate different PTA pit&jec

relaxed in later Chapters. The characteristics of eachs#dtare given in Table 2.3. In every
simulated set of timing residuals, one observation is takemy two weeks. In particular, 1750
days of observing produces 127 data points (including endtg), 3500 days produces 252 data
points and 5250 days produces either 377 or 378 data poip&ndang on the pulsar parameter

file being used.

The characteristics of the “Arecibo” scenarios are intehtdeemulate the very precise tim-
ing but limited sky-coverage attainable with the radio $etgpe at the Arecibo Observatory.
The characteristics of the “PPTA” scenarios illustratesilde data sets that may be obtained by
the end of the project, though these data sets would senadlgquell as a simulation of the
EPTA or NANOGrav data sets. The characteristics of the “IPS@enario are chosen to show
the large number of pulsars observed as part of the projétt,seme precisely timed pulsars.
The “SKA” scenarios correspond to simulated observatioitis the proposed Square Kilome-
tre Array telescope (SKAS. While the SKA will improve timing precision and the number
of observable pulsars, the exact characteristics of any fdfect using the SKA are hard to

predict.

To obtain 100 pulsars for the simulated PTA observed wittstka, it was necessary to read
in pulsars from the pulsar catalogue that have propertiasistent with those of the currently
known MSPs. In particular, most MSPs are in binary systemswil be necessary to fit for
binary parameters for many of the SKA pulsars. All the pidseith P < 60 ms andP < 107
are plotted on & — P diagram in Figure 2.14. 100 of these pulsars were chosehéBKA
simulation.

After choosing pulsars suitable for timing with the SKA, iag/necessary to choose a stan-
dard list of pulsar parameters to include in a model for edch@se pulsars. In subsequent

processing, every parameter measured for each pulsar ebaded in the timing fit, except for:

29Seeht t p: / / www. skat el escope. org/ .
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Figure 2.14: AP — P diagram showing pulsars used in the SKA simulation (crgss@ther
symbols indicate the remaining known pulsar population.

proper motion;

dispersion measure (and any derivatives);

2nd and higher derivatives of rotational frequency;

any post-Keplerian orbital terms, including the sine ofiti@ination angle, mass of the
companion and the 1st derivatives of the longitude of pgnasthe projected semi-major

axis, the orbital period and the eccentricity;

For most pulsars used in the SKA simulation in Chapters 3 atldextiming parallax was also
excluded from the timing model. However, the timing pavalfa was performed for those
pulsars with a significant parallax measurement in the puistalogué’.

Having simulated a range of PTA scenarios, we will analysér thensitivity to individual
GW sources that induce sinusoidal residuals in Chapter ldBgrmining the sensitivity of the
different PTAs to such GW sources, it is possible to constifae merger rate of SMBHBs as a
function of redshift and chirp mass. Such constraints candee to rule out predicted models

for the formation and evolution of black-hole binaries.

30For the SKA simulation described in Section 4.3.4, the togrparallax was included in the timing model of
every pulsar.
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Chapter 3

Using Pulsar Timing to Detect Single
Sources of Gravitational Waves Embedded
In White Noise

Chapter Outline: In this Chapter, we:

e describe a technique for detecting GWs that induce sinadlgidarying perturbations in
the ToAs. This technique can only be applied to timing redgitinat are consistent with
white noise.

e apply this technique to simulated and real pulsar timingeyations. This provides
estimates of the sensitivity of different PTAs to individe@urces of GWSs that induce
sinusoidal residuals.

e constrain the coalescence rate of SMBHBs using these GWigigngstimates.

The results of this work (Section 3.3.4 below) were pubtishe
Wen Z. L., Jenet F. A, Yardley D., Hobbs G. B., Manchester R. N., 2011, ApJ, 730, 29

Some of the introductory work (Section 3.1) was publishé@®ih of:
Yardley D. R. B., Hobbs G. B., Jenet F. A,, et al. 2010, MNRAS, 407, 669

In Chapter 2, we described methods for simulating pulsantgimbservations (Section 2.4)
and showed how GWs affect the timing residuals (Section 2rb)his Chapter, we introduce
a method to measure the sensitivity of pulsar timing obsemato GWs from individual non-
evolving SMBHBs. Such GWs will induce sinusoidal variagomith known amplitude in the
ToAs. Our algorithm can detect these sinusoidal variatiboscan only be applied to timing
residuals that are consistent with white noise. In our dilyor, we perform a Monte Carlo sim-
ulation of the ToAs to determine the strength of the sinuitadl is required to give a significant
detection at each GW frequency. We then inject sinusoidalsgnals with different strair,
and frequencyf, into the ToAs and measure the detection probability fohaadue ofh, and

f. This process gives the sensitivity of the observationsitmdividual non-evolving SMBHB
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that could be in any position on the sky and emits GWs withteaty polarisation (see Section
1.3), and a frequency in the nHz gd1z range.

We apply our method to simulated observations from the PhAsdre described in Section
2.6. We also analyse a set of real timing observations predeoy Jenet et al. (2006) and
described in Section 2.3.1. The resulting estimate of Gigisgity as a function of frequency

and GW strain places a constraint on the rate of coalescdr®dBHBs (Wen et al., 2011).

3.1 Gravitational Waves from Supermassive Black-Hole Bi-
naries

In Section 2.5, we derived the timing residual induced by a. GWV this analysis, we assume
that the total GW-induced ToA perturbation is a sinusoid.isTdssumption is based on two
facts. The first is that, for most SMBHBS, the frequency ofdtgmal will not vary significantly
over the time-span of the observations. For an equal-massybithe lifetime of a SMBHB
scales as (adapted from Lommen & Backer, 2001):

My + My [ Pop \¥?
—51x 10t (AT ‘ 1
T =010 (1091\4@) 00d) Y 3.1)

where M, and M, are the black-hole masses aRgj, is the orbital perio#. For a SMBHB
with M; + M, = 10° Mg, and Py, = 1000 d (which would emit GWs with a 500 d period), the
lifetime is four orders of magnitude larger than the typidata-span of pulsar timing observa-
tions. This means no significant chirping of the GW signal waicur over the duration of the
observations. Therefore, we assume that the GW frequercmnigtant. In this case, Equation
(2.17) can be used to calculate analytically the expectedi@i¥ced residual.

The second fact is that, for most SMBHBS, the light travelidifrom the pulsar to Earth is
much smaller than the evolutionary timescale of the systwlution of the SMBHB over the
timescale of the light travel time from the pulsar to Earttswiaeasured in simulations of the
proposed SMBHB in 3C66B (Jenet et al., 2004). This resultatié sinusoid in the residuals
caused by the Earth term exhibiting a higher-frequency tharsinusoid caused by the pulsar
term (equations 2.14 and 2.16). We now determine whethér eualution will be significant
for a typical SMBHB. The observed frequengyt), of the GWs emitted by a SMBHB changes

3INote that for a binary in a circular orbPow = Porm, WherePgy is the period of the emitted GWs. This is
because the space-time metric for this binary system widlbstical at timeg andt + Po,/2
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at a rate (Peters & Mathews, 1963; Wen et al., 2011):

d MN\?
T (5) g, 32)
C

where( is the gravitational constand/, = (M; M,)*’® (M, + M)~ "/ is the chirp mass of
the SMBHB, ¢ the vacuum speed of light, andhe redshift of the SMBHB. If we assume that
the orbital frequency ig; at timet,, and isf, at timet,, we can integrate this to obtain

15 8/3 8/3 A\
e I/ N _c -8/3 —5/3
At =22 [f2 fi } (GMC) 783(1 4 2)7%3 (3.3)

sincelM . andz are independent of time, and wheke = t,—¢;. As an example, we consider the
time taken for the observed GW frequency to shift by an ameqgnoal to two frequency bins.
If this is less than the light travel time from the pulsar te tgarth, then the sinusoidal pulsar
term and the sinusoidal Earth term will have different frexgcies, meaning our assumption that
the GW-induced ToA perturbation is sinusoidal would be liavaor Typs = 5 yr, whereTops is
the time-span of the observations of the pulsar, the fregquegsolution isl /5 yr ~ 6.34 nHz.
Therefore we sef; = 50 nHz (following Sesana & Vecchio, 2010b) afid= 50 — 12.7nHz =
37.3nHz. ForM, = 10%5M,, (a typical value for a resolvable SMBHB; Sesana et al., 2009;
Sesana & Vecchio, 2010b) and= 0, we obtainAt = 5 x 103yr. A typical pulsar distance
for a PTA pulsar is 1 kpc, giving a light travel time of appnmstely3 x 103 yr, which is less
than At. Hence, we ignore this longer timescale evolution, meattiag, in our model, the
Earth term and the pulsar term always have the same frequidoayever, we have allowed the
two periodicities to be offset in phase. This alters the adugié and phase of the signal in the
timing residuals. We hence reduce the problem of detecto®y @erturbations induced by a
non-evolving circular binary system to the problem of idigimg the presence of a significant
sinusoid in the timing residuals. To confirm that such a s caused by GWs, one would
need to ensure that the expected GW signature is preserd timing residuals of all pulsars
(Equation 2.17).

To determine the signal that a particular SMBHB will induceour timing residuals, we

begin with the expected GW strain averaged over all orbita@ntations of the binaryj,, for
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an individual SMBHB (Thorne, 1987):

L 2Em)? 2
hs = 4\/gm [ﬂ'f (1 + Z)] 3 , (34)

whereD(z) is the comoving distance to the SMBHB, given by

c [* dY
D(z) = Fo/o B (3.5)

where E(z) = H(z)/Hy = +/Q + Q,(1 + 2)3 under a spatially flahCDM cosmological

model (White & Rees, 1978). For our analysis we asstlne= 0.7 (e.g., Komatsu et al.,
2009), giving(2,, = 0.3.

Using equations (2.17) and (3.4), we can calculate the amalglj A,.;, of the sinusoidal
perturbation induced in the ToAs by a non-evolving SMBHBeThasult is (Jenet et al., 2004,

and references therein):

= E(l + cos ) sin(2¢) sin { (3.6)

A 7fD,(1 — cosf)
ToA 27Tf ’

C

where2r f = 27/ Py is the GW angular frequency,is the angle between the direction from
which the GWs emanate and a vector from the Earth to the pulsarthe GW polarisation
angle andD,, is the (usually unknown) distance to the pufdarEquation (3.6) implies that
the signal amplitude in a pulsar GW detector depends on ttegitm of the GW source. For
instance, GWs propagating along the line of sight from thetrBa the pulsar will not induce a

measurable sinusoid in the timing residuals.

However, the observed timing residuals can be significadifferent to the GW-induced
ToA perturbations after the fitting process has been caougdFigure 3.1 shows the effect this
can have on GW detection —a GW signal with a period of one yepiéft panel) will be almost
completely removed after fitting (top right panel) because signal mimics an error in the
pulsar position. A GW signal with a period of two years (baottleft) is only slightly attenuated
by fitting (bottom right). In order to simulate realistic pd# residuals in the presence of a
GW signal, we add the GW-induced perturbation directly tetao$ ideal ToAs as described in
Section 2.4.1. We then perform the standard pulsar timitigdiprocedure on these modified

ToAs to determine the timing residuals.

32For the nearest PPTA pulsar3, can be measured using the parallax distance.
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Figure 3.1: Attenuation of GW signals in timing residualsi®ad by pulsar parameter fitting.
In each panel the abscissa is the MJD and the ordinate gieesntimg residual in seconds.
The dashed lines indicate zero residual. The plotted ratsdue formed by adding a simulated
GW signal to the timing observations for PSR J193344 that are described in Section 2.3.2
and performing theempo2 timing model fit. The top row shows a GW signal with a period
of one year (top left) being completely removed after fittiogthe pulsar timing model (top
right). The bottom row shows a GW signal with a period of twanggbottom left) being largely
unaffected by the fitting procedure (bottom right).
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We now describe an algorithm for detecting the presencei®fGlV-induced perturbation
in the timing residuals. In brief, the algorithm determiriles sensitivity of any set of white

timing residuals from a PTA to the GW signals from individnah-evolving SMBHBS.

3.2 Calculating the Sensitivity of a Pulsar Timing Array to
Individual Non-evolving Sources of Gravitational Waves

The detection of a sinusoid in the presence of noise with knetatistics is a well-studied
problem with a simple optimal solution, the maximum likeldd estimato. A number of

algorithms can be used, depending on the characteristiteafata. For our analysis in this
Chapter, we assume that each time series of residuals istartwith white noise with varying

error bars and irregular sampling.

To detect the GW-induced sinusoid in the timing residuals,use one of the most com-
mon spectral estimation tools: a normalised Lomb-Scargt®mgogram (Lomb, 1976; Scargle,
1982; Press et al., 1992). The periodogram is normalisethdyariance of the input timing
residuals. When processing multiple pulsars, we add theepaveasured in each frequency
channel to form a “summed periodogram”. Note that normadjzaach power spectrum by the
variance of the residuals is equivalent to weighting eaahgo@pectrum by the inverse variance
when summing. Our “detection statistic” is the power levl|,in some frequency channgl
in the summed periodogram. R, exceeds the detection threshdld then a detection of a
sinusoid has been made. We quantify the significance of thissid using the “false alarm
probability”, P;. The false alarm probability gives the probability that éedton is recorded

by our algorithm when no signal is present. For our analysisiseP; = 0.001.

We now describe analytic approximations of the detectioadolds. These analytic ap-
proximations are only valid for equally-spaced samples loitevnoise with constant variance.
To obtain detection thresholds for our pulsar timing data,sge use Monte Carlo simulations

described in Section 3.2.2.

33E.g., Chapter VII, Section 9 in (Mood et al., 1974)
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3.2.1 Analytical Calculation of Detection Thresholds

We analytically determine the threshold power level fonaegiP; for a set of N, time series

of equally-spaced white noise. The powgr, in frequency channélcan be written as

prr

P, = Z (R}, +I7,) (3.7)

whereR; , andI, , are the real and imaginary parts of the DFT of thth time series, respec-
tively (see Equation 2.4)R; , andI, , are independent, normally-distributed random variables,
so P, is distributed as a random variable witl2 V., degrees of freedom. If we assume

Nps = 1, the cumulative distribution function (cdf) @¥, has a simple form:
chf(Pi) =1- e_Pi/Q : (38)

Therefore, for an individual time series, the probabiliatt the value ofP; is less than some
thresholdT’ ; is 1 — e~T1:/2. The probability that?; exceedd ; is thereforeP;; = e~ 11:/2,

We can expres$; ; as a function ofP;; as
Tl,i = —2111(731071) . (39)

ForP;, = 0.001, this yieldsT} ; = 13.8 for all :.

Equation (3.9) does not account for the fact that a falsectlete can occur at any fre-
quency in the power spectrum of the timing residuals. Wi#h data, we calculate the summed
power spectrum ofV,,, time series and, as the frequency of a possible GW signaluiallys
unknown, search for significant power at any frequency. RercaseV,, = 1, the probability
that P; is less than some threshald for all i is (1 — e~ /2) e where Ny,., iS the num-
ber of independent frequency channels in the power spectfama time series consisting of
Nps measurements of white noise, we haVig., = N.s/2 (e.9., Scargle, 1982). Hence, the

probability, P, that P, > T; for at least one value dafis
Pr=1—(1—eT2)M/2 (3.10)
Rearranging (3.10) yields the detection thresliglds a function ofP;:

T, = —2In {1 — (1 — Py)/Moie/DY (3.11)
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whereP; represents the probability of a false detection at any feaqy in the power spectrum.
UsingP; = 0.001 means that, in a given data set, any detection is made withegrthan 3=
confidence.

However, when analysing pulsar timing residuals, equat(@m®) and (3.11) cannot be di-
rectly applied to determine the detection threshold, fart@asons. First, the effect of parameter
fitting on the post-fit timing residuals must be accounted econd, the data sets are irreg-
ularly sampled, meaning that it is difficult to determine thenber of independent frequency
channels in the DFT. Hence, equations (3.9) and (3.11) haee bsed in our analysis only to
confirm the accuracy of simulated estimate§pivhen N, = 1. For N, > 1, we confirmed
the accuracy of simulated estimatesigf, using computations of the cdf of g-distribution

with 2NV, degrees of freedom.

3.2.2 Calculating Detection Thresholds via Monte Carlo Siralation

To calculate the detection thresholds using simulatiorespwast be able to create simulated
timing residuals for each pulsar that are statisticallyieajant to the input timing residuals.
For timing residuals that are consistent with white noise,oneate statistically equivalent sets
of timing residuals by randomly rearranging, or “shufflintfie input residuals for each pulsar.
Any shuffled set of timing residuals for a particular pulsall ave the same sample times,
error bars, mean and variance as the input residuals. Amtay@of this shuffling technique is
that it assumes nothing about the distribution of the timeggduals, it simply re-orders them.
We can thus calculate detection thresholds for white timésiduals fromV,, pulsars using

the following procedure.

1. We calculate the ideal ToAs (defined in Section 2.4.1) &mhepulsar in the input data

set;

2. We creatd 0° sets of observations by shuffling the residuals for eachaptiland adding

them to the ideal ToAs;

3. We carry out thaeEmMPO2 pulsar parameter fit for each realisation to créafesets of

post-fit timing residuals that are statistically equivalerthe input residuals;

34This assumes that there are at least nine timing residualsdgulsar, becaus# < 10°. As typical data sets
have~200 observations, the 1@ata sets are independent.
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4. We calculate the normalised Lomb-Scargle periodograsaoh shuffled set of post-fit
residuals. For our analysis, the periodogram spans freiggebetweer /(30 yr) and
1/(14d). To sample this frequency range in the periodogram, we nugstsample each
pulsar’s periodogram by a factor 60 yr/T,.s,, WhereT,,, is the time-span of the

observations of pulsar.

5. We add the periodograms obtained for each pulsar in eaahsdg givingl0° summed

periodograms;

6. In each frequency channel in the summed periodogram, weHe100th-highest power
level across th@0® power estimates for that channel. This is the detectiorstiole, 7} ;,

corresponding t@,; = 0.001 in that frequency channel.

7. We increasé? ; in each frequency channel by a fixed fagtor 1, such that there are 100
power estimates higher thai; ; across all frequencies in thé®> summed periodograms.
This higher threshold; = 37} ; gives a false alarm probability &, = 0.001 for false

detections at any frequency in the input data set.

In Figure 3.2, we show the detection threshdlds and 37 ; for a simulated set of pulsar
timing observations of PSR J1748747. The simulated observations span 5250d with one
observation every two weeks. Simulating a data set withetpasameters using tiFaKE plugin
to TEMPO2 produces 378 timing observatidhs The pre-fit timing residuals are samples of
white noise. In the detection thresholds, significant pasebsorbed at a range of frequencies
as described in Table 3.1. The left column gives the frequearge at which power is absorbed.
Each absorption is caused by thempo2 fit for the pulsar timing model parameters named in
the right column.

Since the sampling interval in this set of timing residual&did, the sampling frequency is
fs = 1/(14d). Thus, the Nyquist frequency j&,, = 1/ (28d) = 0.0357d~". In an equally-
spaced time series, every sinusoidal component with fregyug cannot be distinguished from
a sinusoid with frequency, — f. This effect is known as “aliasing”, and means that all sondis
with frequency larger thaifv,, are indistinguishable from a lower frequency equivalersgwe

have sampled our power spectra up to twice the Nyquist fregyeur power spectra exhibit

35With input parameters ofpps = 5250d and a sampling interval of4 d, FAKE produces 378 data points
spanning 5263.7 d with a sampling intervall3t96 d.
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Table 3.1: Causes of significant power absorptions in thestiolds in Figure 3.2.

Frequencyd 1) Cause
fi < 0.0004 period, period derivative
fi = 0.003 sky-position
fi = 0.006 parallax
fi =0.015 binary orbit period
fi =0.029 other binary parametefs
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Figure 3.2: Detection thresholds for a single pulsar cpoading toP;; = 0.001 andP; =
0.001 for 378 simulated observations sampled once every two wééleslower trace (solid line
connecting ‘+’ symbols) indicat€g; ;. The upper trace (dashed line connecting Symbols)
indicates/;. Both thresholds shown here have been calculated by simnifgee Section 3.2.2).

aliasing effects. This explains why power absorptions oacpairs in Figure 3.2, reflected

around the frequency ~ 0.036 d .

Ty, is plotted as the lower detection threshold in Figure 3.2e ¥&lue of7; ; agrees with
the expected value from Equation (3.9) in frequency chathelt are negligibly affected by the
TEMPOZ fitting procedure. This agreement has been shown to holthéosimulated detection
thresholds for data sets including up to 100 pulsars. Thewugetection threshold in Figure

3.2 representST; ;. The level of this threshold agrees with the prediction ofi&epn (3.11)
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within 10%. The discrepancy arises because the upper titesalculated from simulation is
calculated using the factor. This factor essentially treats every frequency channéiersame

way, whereas theempPO2 fitting affects the power in each channel in different ways.

3.2.3 Detecting Individual Non-evolving Gravitational-Wave Sources

Having obtained a set of detection thresholds for the olagiemns, we inject simulated GW
signals into simulations of the input data set and measw@watimber of such signals that we
can detect. We use the following procedure to find the detectte for a particular GW strain

and frequency:

1. We simulate 03 sets of timing residuals for each pulsar that are statitieguivalent to

the input timing residuals using the shuffling technique.

2. We add the effect of a GW point source with angular frequehcf;, amplitudeh,,
random sky-position and random polarisation to the ToAsvefe pulsar (see Equation
3.6). This induces sinusoidal ToA perturbations in eactsquul The distance to each
pulsar is assumed to 991 kpc, which is the current best estimate of the distance to PSR

J1857-0943 (Kaspi et al., 1994) and is typical for pulsars in the RBT
3. We perform the standamEmMPO2 pulsar parameter fit.

4. We calculate the periodogram for each pulsar’s time senel add the periodograms to
form the summed periodogram. If the summed power in chanrebreater than the

detection threshold; in that channel, then the simulated GW signal has been @etect

5. We repeat the previous three steps for each of@heealisations of the input data set and

find the detection percentage.

This process is repeated for 50 logarithmically-spacedesbfh, in the rangel0=1¢ < h, <
1071 and 51 GW frequencief. The 51 frequencies include 50 logarithmically-spacedesl
in the range(30yr)~! < f; < (14d)~! and the frequency; = 1/1yr, enabling analysis of

the effect of the pulsar position fit on our sensitivity to G@lUsces. The result is a “sensitivity

37Assuming that the distance to each pulsar remains largethiesGW wavelength, varying the distance to each
pulsar would have little effect on the average detectiomirat Monte Carlo simulation because the GW source is
non-evolving. In some individual realisations, the lagttéa in Equation (3.6) may be exactly zero for particular
values of the pulsar distance.
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matrix”, which is a grid of the detection percentages forhe@W strain and frequency. In
Section 3.3 and Chapter 4, we assume a 95% detection pritypadmibling us to plot the GW

strain sensitivity of a PTA as a function of GW frequency.

3.3 Results and Discussion

In this Section, we present results from applying the methio8ections 3.2.2 and 3.2.3 to
several PTA data sets. Each of the data sets analysed henesistent with white noise. The
simulated PTA observations are discussed in Section 2l&iéfy the timing residuals obtained
from the simulated PTA observations for each pulsar arelbgsjaced and have equal error
bars. In a given simulated PTA data set, each pulsar has the isas residual. For the actual
observations presented by Jenet et al. (2006) and summhari$able 2.1, the ToA uncertainty
varies for each observation, meaning that the timing redsddio not have equal error bars. The
time-span of the observations and the variance of the relsidor each pulsar also vary.

First, we analyse a simulated PTA data set consisting of 28amitimed with a rms of
500 ns over 10yr. The results exhibit typical features of sneaments of the GW sensitivity
of pulsar timing measurements, such as sensitivity losaesed by pulsar parameter fitting.
Second, we analyse several simulated PTA data sets to de¢etine dependence of the PTA
sensitivity on the number of pulsars, the observing timaaspnd the rms residual. Third, we
analyse the Jenet et al. (2006) observations (describegtitinog 2.3.1) and compare the results
to those obtained for a simulated set of optimistic PPTA olzd®ns. Finally, we present the
astrophysical implications of these results via the camstithat can be placed on the coales-

cence rate of SMBHBs (Wen et al., 2011).

3.3.1 Properties of the Sensitivity Curves

In Figure 3.3, we plot the 95% contour of the sensitivity matbtained for a simulated PTA
data set, consisting of observations of 20 pulsars with aresislual of 500 ns, with one obser-
vation taken every two weeks over 10yr. This contour is refitto as a “sensitivity curve”.
There are several frequencies at which the sensitivitygsitantly reduced, as described in
Table 3.2. The left column gives the frequency range ovecktiie sensitivity is reduced, while
the right column describes the cause of the reduction. Fopeoison, the lowest frequency in

the power spectrum of the timing residuals for this PTA satioh is1/10 yr ~ 2.7 x 10~*d .
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Sensitivity Curve for 20 psrs @ 500 ns, 10 yrs
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Figure 3.3: The sky-averaged sensitivity of a PTA data satgisting of 20 pulsars timed with
a rms residual of 500 ns over 10yr) to individual non-evalvgources of GWs. The abscissa
gives the observed GW frequency while the ordinate givesstr@n amplitude of the GW
source. The thick solid line indicates the level at which ve¢edt 95% of the GW sources.
The thin solid lines and arrows indicate the regions wheegtithing parameter fit reduces the
sensitivity, as described in Table 3.2.
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Table 3.2: Causes of significant sensitivity losses showviigare 3.3.

Frequencyd{ 1) Cause
fi < 0.0004 fitting for period & period derivative of every pulsar
0.0023 < f; < 0.0033 fitting for sky-position of every pulsar
fi > 0.061 aliasing+ fitting for period & period derivative

The fitting and aliasing effects for this sensitivity curdescribed in Table 3.2, are similar to

those described in Table 3.1 for the detection thresholdssirgle pulsar.

Fitting for the pulsar’s sky-position causes a sensitilags over aangeof frequencie¥.
This is because of the frequency sampling in the sensitiigyrix and the limited frequency
resolution of the residuals. Figure 3.3 also shows thatumechnique, a GW-induced sinusoid
in these simulated ToAs witfi = 1/1 yr andh, > 107! can be detected in the residuals, even

after fitting for the pulsar sky-position.

The process of fitting for an individual pulsar’s orbital @areters will reduce the sensitivity
of its timing residuals to GWs, but this has only a small dffacthe sensitivity of a PTA. This
is because the estimation of the orbital parameters (suitteasbital period of a binary pulsar)

removes a sinusoid with a different frequency for every au(see Figure 2.3).

At frequencies that are negligibly affected by pulsar patenfitting, such as the range
4 x1073d7t < f < 5 x 1072d7!, the sensitivity curve in Figure 3.3 has unit slope. This
is because, as the GW frequency increases, the magnitute &W-induced sinusoid in the
ToAs decreases according to Equation 3.6. This means tantiplitude of the sinusoid in the
residuals decreases. If the timing residuals from the PBAnat consistent with white noise,
or if the PTA data set includes sets of timing residuals witfecent time-spans, then this slope
would not be constant across this frequency range. The mamisensitivity is at a frequency
of f ~ 1/(0.7Tops). This is because of the opposing effects of the pulsar paearfiding
(which reduces the amplitude of the sinusoid in the resglatllow frequencies) and the low

frequency of the GW source (which increases the amplitudieeoinduced sinusoid).
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Figure 3.4: The sensitivity of two simulated PTAs as a fumttof the number of pulsars,
N, In each array. The abscissa gives the number of pulsars (ogagithmic scale), the
ordinate gives the logarithm of the minimum GW strain, that yields a 95% probability
of detection. The first simulated PTA has all pulsars in thees#ocation on the sky (solid
line), and the second has all pulsars spread over the skiidddme). The upper dotted line
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3.3.2 Scaling of the Sensitivity with Properties of the Obggations

In this Section, we investigate the dependence of the PTAitbaty on N, Tops and the rms
residual. In Figure 3.4, we show the effect on the sengjtséiused by increasingy,., and/or
observing pulsars that are distributed evenly on the skye §dlid line shows the improve-
ment in sensitivity obtained by adding more pulsars to thnérty array that are all in the same
position on the sky. The dashed line shows the improvemertvabserving pulsars that are
spread across the sky. The improvement occurs becauseymmsition of the GW sources
is unknown (see Equation 3.6). However, the magnitude ofrtipgovement depends on the
specific PTA (Burt et al., 2011). For largé,.;, the sensitivity improves a¥).>*, regardless of
the distribution of pulsars on the sky. This is consisterthwirecent estimate of the sensitivity
of PTAs to individual sources of GWs (Lee et al., 26%1)

In Figure 3.5, we plot the sensitivity curves obtained foinatdated PTA observed using the
SKA. For this analysis, we have assumed that the SKA will be sbobserve 100 pulsars that
are suitable for timing. Pulsar ToAs measured using the St€Agpected to be a factor 6fL00
more precise than current observations (Kramer & Wex, 2068)wever, it is unlikely that
timing precision will reach the-ns level because of pulse shape instabilities, calibraitacts
and other noise sources (Cordes et al., 2004). Hence, wednalgsed two SKA simulations
consisting of 100 observed pulsars. In one simulation,d#igrs are timed with a rms residual
of 10 ns. In the other simulation, all pulsars are timed witima residual of 100 ns. The results
of these simulations are analysed in Section 3.3.4 to etitha constraint on the coalescence
rate of SMBHBs that can be obtained with the SKA. They alsdbknas to investigate the
dependence of the PTA sensitivity to individual GW sourcesh@ rms timing residual and on
the observing time-span.

The PTA sensitivity to a GW-induced sinusoid in the timingideials is inversely propor-
tional to the rms residual for residuals that are consistetft white noise (Lee et al., 2011).
This is because the S/N ratio of the detection of the sinusdidncrease as the noise reduces.

In Figure 3.5, the “minimum detectable amplitude” (definedlee value of:, indicated by the

38This loss in sensitivity could be avoided in cases whereguigdBy-positions are measured using a technique
other than pulsar timing, such as interferometry (Dellelt2008).

39These authors considered a coherent addition of the GWeatisinusoidal signal from each pulsar, meaning
that their measured sensitivity improvessi§;>. Our analysis simply adds the power spectrum of each pulsar,
meaning that the coherence of the GW-induced sinusoidadlsgs lost. Hence, our measurement of the sensitivity

improves only asV).2° for large Ny,
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Sensitivity Curves for 100 Pulsars
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Figure 3.5: The sensitivity curves for three simulationsiwiing residuals obtained using the
SKA. The abscissa gives the observed GW frequency whilertieate gives the strain ampli-

tude of the GW source. Each line indicates the level at whietllatect 95% of the GW sources
in that particular simulated data set. The three data setsdered are: 100 pulsars timed with
100 ns rms residual over 10 yr (solid line); 100 pulsars tinvéd 10 ns rms residual over 10 yr
(dashed line); and 100 pulsars timed with 100 ns rms resmwmitalfive yr (dotted line).
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sensitivity curve at a particular frequency) shown by thehea line is a factor of 10 lower than
that shown by the solid line. This indicates that, as exgkdtes sensitivity is improved by a
factor of 10 when the rms residual is reduced by a factor of 10.

The minimum detectable amplitude is inversely proporﬂcmaNgt-g’ (Scargle, 1982). In
our case, increasingy,s has the same effect on the S/N ratio of a significant sinusottie
residualé’ as increasing,ps This is because the sampling interval is fixed at 14 d, megganin
that Vs Is proportional toly,s Figure 3.5 shows the sensitivity curves for observatidns o
100 pulsars timed with a rms residual of 100 ns over five yrtédbline) and over 10 yr (solid
line). As expected, increasing the time-span of the obsensby a factor of 2 reduces the
minimum detectable amplitude by /2 for GW frequencies in the range x 1073d~! <
f < 6 x 1072d~L. Other GW frequencies are significantly affected by the quuparameter
fit. The figure also shows that doublifig,s provides an even larger improvement in sensitivity
at low frequencies as it decreases the lowest GW frequeratycdn be detected using the

timing residuals. The PTA is more sensitive to lower frequye@WSs, as they induce larger TOA

perturbations for a fixed value a&f, (see Equation 3.6).

3.3.3 Sensitivity of the Jenet et al. (2006) Observations dra Prediction
for the Full Parkes Pulsar Timing Array

The Jenet et al. (2006) observations differ in three ways fifte simulated observations inves-
tigated in Sections 3.3.1 and 3.3.2. First, the observatioa unequally spaced for each pulsar.
In Figure 3.6, we plot the detection thresholds for the Jehat. (2006) observations. They do
not exhibit the same symmetry abofit= 0.036 d~! as the simulated observations, indicating
that, as expected (Press et al., 1992), aliasing effectaisignificant in the Jenet et al. (2006)
observations.

Second, the Jenet et al. (2006) observations have varialeumcertainties. This means
that theTEMPO2 parameter fitting in the Monte Carlo simulations can beiedmout using two
approaches. One approach accounts for the error bar on eachyTminimising the weighted
variance of the residuals. The other approach ignores tAesfimr bars by minimising the un-
weighted variance of the residuals. The two approachedtedifferent estimates of the pulsar

parameters and to different detection thresholds. In Ei§us, we plot the detection thresholds

40This is only true at frequencies that are not significantfgeted by the parameter fit.
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Figure 3.6: Detection thresholds correspondingPfo= 0.001 for the Jenet et al. (2006) ob-
servations. The abscissa gives the frequency while thenateligives the power level. The
detection thresholds obtained when a weighted parametgasgitcarried out (upper trace) do
not show the power absorption features seen in the case ofvegighted parameter fit (lower
trace).

obtained from each approach. When using a weightadr o2 fit, the power reductions in the

detection thresholds described in Table 3.1 are not pre$aig is not surprising, but adversely
affects our sensitivity at these frequencies, as showngargi3.7. When using an unweighted
TEMPO2 fit, the detection thresholds are very low n¢ar 1/1 yr and at low frequencies, as
expected. This is because the Lomb-Scargle periodograsrdieaccount for the error bar on
each ToA when calculating each spectral estimate. We choasse unweighted pulsar param-
eter estimates because our spectral estimate is also urnegigin Figure 3.7 we analyse the
sensitivity of both approaches.

Third, the Jenet et al. (2006) observations differ from timeusated observations as each
pulsar has been observed over a different time-span. Tiastafthe shape of the sensitivity
curve, as can be seen by comparing the solid line in Figureo3he dashed line. The inclusion
of long time-span observations of PSR J185843 (spanning 20.3 yr) in the Jenet et al. (2006)

data set improves the sensitivity to GWs in the frequencgean—*d—! < f <1072d~!' bya
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Sensitivity Curves for Real and Simulated PPTA Data

107 i
<0 12 :
~10 k. J
% “‘ Py 'l
2 3 i Lo
210713} i i " 1
E ~~ :l = '-,—'
i 14 ~ /: i
= - ~
Elo r -~. ’-' 1
n

10"} 1

~161, . .
10 = =
1074 1073 1072

Frequency (cycles/day)

Figure 3.7: Sensitivity curves for real and simulated PPafagets. The abscissa gives the GW
frequency, while the ordinate gives the GW strain. Eachihdéates the level at which 95% of
GW sources with any sky-position and polarisation can bealetl in that set of observations.
The solid line indicates the sensitivity of the Jenet et2006) observations if we weight each
ToA equally when estimating the timing model parametersefach pulsar. The dotted line
indicates the sensitivity when we account for the varying Tmcertainties. The dashed line
shows the sensitivity for a simulation of a target PPTA data consisting of 20 pulsars timed

with a rms of 100 ns over five yr.
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factor of ~ 3. However, the PSR J18510943 observations have little effect on the sensitivity
for f > 1072 d~! because the timing residuals for this pulsar have a largenariation than
the residuals of the other pulsars.

The ToAs for the other six pulsars in the Jenet et al. (200&) sket have been measured over
much shorter time-spans (spannixg.6 yr) and have significantly lower noise levels. Hence,
as the GW frequency increases, the average induced sialisagdal becomes weaker (Equa-
tion 3.6) at the same time as the signal shifts into the deiéetband for more of the pulsars.
These two effects alter the sensitivity of the PTA at eacuesncy in opposite directions. This
accounts for the much slower variation in the sensitivitylo$ data set with frequency, com-
pared with the other data sets we have considered. Theiggpgitirve that uses a weighted
TEMPO2 parameter fit (the dotted line in Figure 3.7) has much lowas#ivity at low frequen-
cies than the curve obtained from an unweighted fit. This ¢abse our calculated detection
thresholds are significantly higher when performing a weadlmEMPO2 parameter fit (Figure
3.6). Figure 3.7 also shows that the sensitivity curve tlsatsia weightedEmMPO2 parameter
fit is multi-valued at frequencies nefir= 4 x 10~*d~!. This is because theEEMPO2 weighted
parameter fit is numerically unstable when very large siidagignals are present in the ToAs
that are not removed by this fit. As a result, the post-fit neglisl can exhibit large noise levels
that obscure the large GW signal in more than 5% of cases.cahises the detection percentage
to drop below 95% for GW amplitudes larger than some threshnkaning that the resulting
sensitivity curve is multi-valued.

The most optimistic goal for the PPTA is the timing of 20 pudsaith a rms timing residual
of 100 ns over fiveyr. The dashed line in Figure 3.7 shows theieity curve obtained for
a simulated data set with these properties. This simulalEtAR]ata set is a factor 615
more sensitive than the Jenet et al. (2006) data set. It isritapt to note that, when detecting
single sources of GWSs, a few very precisely timed pulsarsmane likely to make a detectiéh
than many pulsars with less precise timing (Burt et al., 20Fbr example, the addition of a
further 20 pulsars timed with a rms residual of 500 ns ovenyinte the simulated PPTA data set
makes negligible difference to the sensitivity to indivadlGW sources. However, such a data
set would be very sensitive to the isotropic stochastic GA&yill be described in Chapters 5
and 6.

4IRecall that, while a single pulsar can be used to detect afisignt sinusoidal signal, that signal can only be
attributed to a GW if the expected correlated signal is oleskin other pulsars.
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3.3.4 Constraining the Coalescence Rate of SupermassiveaBk-Hole Bi-
naries

It is proposed by Wen et al. (2011) that, if no GWSs are detertetigiven data set, then it is
possible to place a constraint on the coalescence rate oftl 4B More specifically, we can
constrain the quantityd®R/dlog(M.)dlog(1 + z)], which gives the rate of coalescende,
per logarithmic chirp mass interval,log M., per logarithmic redshift interval, whereis the
redshift. A constraint on the coalescence rate of SMBHBstraims the merger rate of galaxies
and hence can rule out models of galaxy evolution (e.g.e ZaBacker, 2003).

The constraint ofd*R/dlog(M.)dlog(1 + z)] depends directly on the sensitivity matrix
calculated in Section 3.2.3. In Figures 3.8 and 3.9, we sfBWR/d log(M.)dlog(1 + 2)] as
a function oflog(1 + z) for chirp masses of0°M and 10'°M,. The Jenet et al. (2006)
observations do not yet constrain the merging frameworksudised by Jaffe & Backer (2003)
or Sesana et al. (2008) at either of the chirp masses we hasideoed. As shown in Figure
3.8, an extended PPTA project, which times 20 pulsars withsaresidual of 100 ns over 10 yr,
can constrain part of the Jaffe & Backer (2003) parametecespblowever, only a PTA with
a rms timing residual of 10 ns can provide significant comstseon the merger rate predicted
by Sesana et al. (2008, 2009). In Chapter 5, we discuss ttetraoris obtained using upper
bounds on the amplitude of the isotropic stochastic GWB.&given set of white residuals,
these upper bounds provide more significant constraintht@SMBHB coalescence rate than
the sensitivity matrix for individual GW sources. The caasits obtained using upper bounds
on the GWB will significantly constrain galaxy evolution nedsd in the near future, without

requiring timing accuracies near 10 ns on each pulsar.

3.4 Conclusion

We have presented a method for determining the sensitiza&y"T'A to individual non-evolving
GW sources. Such measurements constrain the coalescéacg &MBHBs as a function of
redshift and chirp mass. However, the technique presenttnils Chapter has a few significant

shortcomings:

1. The technique can only be applied to sets of timing residiat are consistent with

white noise. Many MSPs that are timed with sufficiently higbgision over long time-
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Figure 3.8: Upper bounds on the coalescence rate of SMBHIBg tise sensitivity matrices
calculated for different sets of PTA observations in Sec8d3. For calculating the abscissa,
z is the redshift of the SMBHB. The ordinate gives the logamitbf the differential rate of
coalescence per log redshift per log chirp mass. Here, we e constraints provided by
the Jenet et al. (2006) data set (open triangles), 20 pulsaed with 500 ns rms residual over
10yr (open squares), the same timed with 100 ns rms resicwealfve yr (crosses) and the
same timed with 100 ns rms residual over 10yr (open circlébe grey region indicates the
expected coalescence rate with evolution indéx< v < 3 (see Section 1.6.2) assuming the
framework of Jaffe & Backer (2003) and using observatioosifthe Sloan Digital Sky Survey
(Wen et al., 2009). The dashed traces indicate the maximhick(ine) and minimum (thin
line) coalescence rates predicted by Sesana et al. (2008).2No bounds can be plotted for
chirp masses of0° M, because of the low sensitivity of these data sets. [Imagedeged
from figure 4 of Wen et al. (2011)]
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Figure 3.9: All characteristics of this plot are the samerabigure 3.8, except that we now
show the constraints obtained using 20 pulsars timed withsatiming residual of 10 ns over
10yr (stars), 100 pulsars timed with 10 ns rms residual oOer ffilled circles), the same timed
with 100 ns rms residual over 10 yr (filled squares) and thees@med with 100 ns rms timing

residual over five yr (filled triangles). [Image reproduceatt figure 5 of Wen et al. (2011)]
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spans show significant low-frequency noise in their timiegjduals (Verbiest et al., 2009;

Manchester, 2011). This low-frequency noise must be adedtfor.

2. The technique uses the sensitivity matrix to constragnctbalescence rate of SMBHBs.
However, this constraint only requires estimates of thgdstr GW signal that could be
present in the timing residuals, as opposed to the smalMési@nal that could be de-

tected using the residuals. Hence, a more stringent camst@uld be found with the

same observations.

In Chapter 4, we develop a related detection technique ttrkases these issues.
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Chapter 4

The Sensitivity of the Parkes Pulsar
Timing Array to Individual Sources of
Gravitational Waves

Chapter Outline: In this Chapter, we:

e describe a technique that can detect single sources of GWiennavhite pulsar timing
residuals;

e give the sensitivity of current and future GW detection @rpents to single GW sources
spanning frequencies from nHz to kHz;

¢ place a sky-averaged constraint on the coalescence rateasby ¢ < 0.6) SMBHBs.

Many Sections in this Chapter are heavily based on sectrons the refereed journal article:
Yardley D. R. B., Hobbs G. B., Jenet F. A,, et al. 2010, MNRAS, 407, 669

In particular, Section 4.1 below is a summary@fof Yardley et al. (2010) and Sections 4.2, 4.3
and 4.4 below have been reworded frg&12, §4 and§5 of Yardley et al. (2010) respectively.
Section 4.2 below and Appendix A of this thesis contain nafieom the appendix of Yardley
et al. (2010).

In this Chapter, we develop a new method for detecting indiai non-evolving SMBHBs
in the residuals obtained from PTA observations. While dahhique presented in Chapter 3
can detect these sources, it assumes that the timing réslikiag analysed are consistent with
white noise. This assumption is only valid for a relativatyadl number of PTA data sets. Here,
we extend the method of Chapter 3, allowing it to be appliea booader range of MSP timing
observations.

The method described in Section 4.2 below can be applied 8 sebs of timing residuals.
Full details of the implementation are described in ApperdiWe apply this method to timing
residuals from the PPTA published by Verbiest et al. (20089 and described in Section
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2.3.2. This results in a measurement of the sensitivity eRRTA to individual non-evolving
GW sources as a function of frequency. The frequency rangigeafesulting sensitivity curve
complements the frequency range of the LISA and LIGO GWA4seitg curves. A constraint
on the coalescence rate of nearbyJ 2) SMBHBs with chirp mass- 10'° M, is determined

to be less than one coalescence every five years.

4.1 Observations

The observations used in this analysis are a subset of trem®ilbed in Section 2.3.2, and
consist of observations of 18 puls&rsising the Parkes and Arecibo radio telescopes. Many
of these pulsars exhibit a small amount of low-frequencg@an their timing residuals. These
pulsars have been timed with a weighted rms residyaljn the range.17 us < o, < 6.6 us

for a period of~10yr.

4.2 Calculating the Sensitivity Curve and Limit Curve

The detection of a sinusoid in the timing residuals is coogiéd by the fact that the residuals
are irregularly sampled and the noise that affects the watsctonsists of at least two compo-
nents. The noise has a white component that varies from saimghmple. This component is
well-understood and the square of the error bar gives an@iastimate for the white noise on
each residuéf. The noise also has a non-white component for which the sdaranknown.
The non-white noise could be due to calibration errors,ngmoise intrinsic to the pulsar, a
GWB signal or other effects. The spectrum of low-frequencig@ in pulsar timing residuals
is often modelled using a power-law (e.g., Hobbs et al., BQ1@e make the less-stringent
assumption that the non-white noise has a smoothly-vapyawger spectrum. In all cases, we
have estimated the power spectrum from the actual residndli®ave shown that the noise can
be modelled sufficiently well for our purposes using a smiyetiarying function.

We estimate the power spectrum using a Lomb-Scargle pagradothat, for this analysis,

is not normalised by the variance of the residuals. Thisogegram technique would not give

4\We choose to remove the observations of PSRs J18282 and J19392134 from our data set because their
timing residuals are dominated by low-frequency noisesTéw-frequency noise complicates the spectral analysis
for little gain in sensitivity.

43The timing residuals analysed in Chapter 3 contain onlywihige component of the noise.
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accurate spectral estimates for data sets that exhibitealgteloping spectrum. All the data
sets used in this Chapter do not exhibit steep power spautka@this technique is valid. We
briefly describe our approach for producing a sensitivitywethere; full details are provided in

Appendix A.

To make a detection of a significant sinusoid in our timingdeals, we make a simple
model of the noise across all frequencies in the Lomb-Segrgtiodogram of the residuals.
This model is used to define a set of detection thresholdsséltigesholds are set such that
the probability of a false detection at any frequency actbssentire observed periodogram
when no signal is present 8; = 1%. In practice, the detection thresholds are given by the
noise model multiplied by some fixed factor that is deterrdifiem simulation, as described in
Appendix A. We then add the effect of sinusoidal GW signalh®ToAs in the same manner
as described in Section 3.2.3. We calculate the periodogfdhe residuals and make a simple
model of the noise. Using the technique described in AppeAdiwe ensure that the signal
that we aim to detect is not modelled as part of the noise irpgr@dogram. We adjust the
GW strain until we can detect 95% of the GW-induced sinusmidsir timing residuals. This
process gives the sky- and polarisation-averaged sahsds/a function of GW frequency over
the rangef ~ (10yr)~" to f ~ (10d)~".

In Figure 4.1, we show the periodogram (thin trace) of thertgmesiduals for three pulsars
where their ToAs are affected by a low-frequency GW source. aldo show the noise mod-
els for each pulsar (thick line). Details on the calculatifrihese noise models are given in

Appendix A.

There are two aspects to our detection strategy, namelyatee &larm probability (1%)
and the probability of making a detection (95%). UsiRg = 1% means that any detection
made will be a 2.6 detection. Hence, our sensitivity curves give the GW amgétat which
the probability of making a 2.6-detection at a random position on the sky for a randomly
polarised GW is 95%. For a single pulsar, when the GW soursddwurable sky-location
and polarisation, the minimum detectable strain is a faster 10 — 15 smaller than the sky-

averaged case (see Section 4.3.1).

We are interested in answering two questions. The first isé¥hthe largest GW source
at a particular frequency that could be present in the timasgduals?” This will give an upper

bound on the amplitude of non-evolving individual GW souwriteour data set at that frequency.
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Figure 4.1: The periodogram of each of three sets of timisgltals, where we have added
a low-frequency sinusoid to each set of ToAs. The abscissssdhe frequency, the ordinate
gives the power in arbitrary units, where we include cortstdisets in the periodograms of
PSRs J185%0943 and J17180747 to make this plot. The ordinate in each periodogram is
scaled by independent values to make this plot. The thiretimthe periodogram, the thick
dark line is the adopted model for each periodogram.
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This question is answered by comparing simulated GW sodocesr observed timing residu-
als. We simulate a GW source at a given frequency with a rargkyrtocation and polarisation.
We adjust the amplitude of this source until the power of thé &nusoid exceeds the power in
the observed timing residuals at that frequency in 95% otiktions. This approach gives the
most conservative upper limit, since it allows for the pbd#y that all the power we observe
at this frequency results from one GW-induced sinusoids phocess can be repeated to deter-
mine the upper limit as a function of frequency, yieldingialit curve”. We will determine the

limit curve for our 18-pulsar data set in Section 4.3.

The second question is: “If there were a GW source with aqadr frequency somewhere
on the sky, what is the minimum strain amplitude that woulsbjpice a detectable signal at that
frequency in our data set?” This is similar to the questiat thas addressed by the sensitivity
curves in Section 3.3. To answer this question, we add sitedilsinusoidal GW signals to
our ToAs and perform the standard pulsar timing analysis. thga calculate the minimum
amplitude at which we would detect a significant sinusoichatinput GW frequency in our
dataif we had collected that data set at a telescodence, we must account for all the sources
of noise in our pulsar detectdr The answer to this second question yields our sensitivity
for detecting the GW-induced sinusoids, rather than justtiing their amplitude. For large
amplitude sinusoids with periogd Tops, @ signal will often be detectable at a higher frequency
than the input frequency because we can detect the side @dlibe large input signal. In
contrast to the approach of Chapter 3, we have not allowesttiens at different frequencies
to the input GW frequency in this implementation. The savisitcurves for each of our data

sets are calculated in Section 4.3.

Npts
2Tobs

Npts

for a single pulsdP. Note thatgz>

The periodogram frequency range is frqéﬁs to
would be the Nyquist frequency for that pulsar if its timiresiduals were equally-spaced. If
we are processing multiple pulsars then we can perform ahtezigsum of their periodograms
to increase our sensitivity. To perform the sum, we caleutbé periodogram at a list of fre-
quencies that is identical for all pulsars. The frequenaiesequally spaced frof30 yr)~! to
(28d)~1L.

To perform the detection, we first make a simple frequeng@eddent model of the noise in

4The threshold for detection at any frequency across therabd@eriodogram will often be 3 times greater
than the locally-averaged power level.
45The power at a frequency of zero is arbitrary for pulsar tgmesiduals.
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the periodogram for each pulsar (see Figure 4.1) and theghiveach pulsar by the inverse of
the noise model for that pul<ér This simple weighting scheme gives a factora® improve-

ment in sensitivity over a simple, non-weighted additionhe&f periodogram of each pulsar.

4.3 Results and Discussion

We now present the sensitivity of the PPTA to GW-inducedsimdal signals in the ToAs using
the data set described in Section 4.1. We account for alllbserved features in the sensitivity
curves. We also calculate the constraint on the coalesaateef SMBHBs implied by the
non-detection of GWs in the ToAs. Finally, we give a prediotfor the sensitivity of a future
PTA project using the SKA.

4.3.1 The Sensitivity of Some Individual Pulsars

In Figure 4.2, we plot the sky- and polarisation-averagegiseity curves for PSRs J0434715
(thin solid line), J1713-0747 (dashed line) and J185@943 (dot-dashed line) where each pul-
sar has been analysed individually. The open triangles erplbt indicate that the plotted
“detectable” amplitude at that frequency value is a lowearrizb The thin dotted line indicates
the sensitivity of PSR J0437715 to a hypothetical SMBHB located at a RA ¢87™ and
a Dec of+42°45™ and emitting purely ‘plus’ polarised GWs. This line indieatthe much
greater sensitivity obtainable with the timing residudl®8R J0437#4715 when the position
and polarisation of the simulated GW source are favourabite ratio of this thin dotted line
to the thin solid line gives the factor of 10 — 15 improvement in sensitivity for favourable
sky-location and polarisation discussed in Section 4.2oAhown are the expected signals at a
range of frequencies from two hypothetical SMBHB systenth@imean distance of the Virgo
cluster (taken to be 16.5Mpc, from Mei et al., 2007), with @quember masses @6°M, or
10'°M....

The reduction in sensitivity caused by fitting for the pulsgosition is at the same fre-
quency of(1yr)~* for all pulsars. Fits for orbital parameters also reducesisieity to GWs, but
at different frequencies for each pulsar. For example, thaad period of PSR J185/0943 is

12 days (corresponding to a frequencyddf x 10~7 Hz), which is above the average Nyquist

48For spectrally-white timing residuals, this is equivalemteighting by the inverse variance of each set of
residuals, as done in Section 3.2.
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Figure 4.2: Sensitivity curves for PSRs J0423%715 (thin solid line), J17180747 (dashed),
J1857-0943 (dot-dashed) and the 18-pulsar timing array using eteation scheme (thick
solid line). The abscissa gives the GW frequency, the otdigaves the minimum detectable
strain amplitude of an individual non-evolving GW point scel with a random polarisation,
phase and sky-position. The thin dotted line is the seritsitbbtained using PSR J0434715
and assuming favourable sky-location and polarisatiorhefGW source. An open triangle
indicates that the plotted value is a lower bound on the tedbéz amplitude at that frequency.
The straight triple-dot-dashed lines indicate the exmkstgnal from an individual SMBHB
with equal member masses tf’M, or 10'°M,, if it were located at the mean distance of the
Virgo cluster. The X’ symbols are the expected signals at the Earth in the yeat 260 at
PSR J18570943~ 3000 yr ago caused by the proposed SMBHB at the core of the radixgal
3C66B. The ¥’ symbol is the expected signal caused by the proposed SMBHIBeacore of
0J287. The+' symbolis the GW strain and frequency emitted by a typicabreable SMBHB
as plotted in figure 2 of Sesana et al. (2009). Also shown orplbieis the 95%-confidence
limit curve for the 18-pulsar timing array (thick dottedéi in this case the ordinate gives the
maximum amplitude GW source that could be present in our. data
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frequency for this pulsar. We therefore do not see the cporeding loss in sensitivity at this
frequency in the PSR J18510943 sensitivity curve. All pulsars exhibit a reduction ensi-
tivity at low frequencies, which is mainly caused by two effe First, the fit of a quadratic
polynomial to the ToAs to model the pulsar spin-down rem@ase GW signal. Second, the
fitting of arbitrary phase offsets to many of the data set®tmect the timing residuals obtained
with different backend systems removes some GW signal @ea/ln Greater sensitivity is ob-
tained at the lowest frequencies if we allow for detectiom ainusoid aainyfrequency in the
timing residuals, regardless of the input GW frequénc¥his is because the pulsar spin-down
and phase offset fits do not remove a pure sinusoid from tha@uads. This means that not all
of the input GW signal is removed by the pulsar parameter fitvél/er, in this implementation

we have only allowed the GW signal to be detected at the inputfi@quency.

As the GW frequency increases, the induced signal in the De&smes weaker for a given
strain, as described by Equation (3.6). At the highest ®eegies, our sensitivity is limited by
the sampling of the timing residuals. This is particulanydent in the sensitivity curve for the
18-pulsar timing array where there is a turn-up in the safitsiturve at the last few frequency

values, corresponding to a decrease in sensitivity.

The periodogram of irregularly-sampled residuals will ffeced by leakage. There is no
clear way to distinguish between spectral leakage fromflequency GW-induced sinusoids
and the red noise seen in many MSPs. Hence, the sensitivityrofletection technique to
low-frequency sinusoidal GWs (where the GW period is sintitathe data-span) is reduced
compared to analysing equally-spaced data. Some pulsats sample do not exhibit excess
low-frequency noise (e.g., PSR J1881943), so the power spectrum with no GWs added may
be modelled with a constant. However, our model of the powectsum must account for the
confusion between the spectral leakage from a low-frequ@W signal and red noise. In an
equally-spaced time series with weak red noise, spectkalge is less severe and thus there is

no such confusion.

In the sensitivity curve for PSR J0434715 there is a loss of sensitivity at a frequency
of (540dayg~1, or ~21nHz. This is caused by the fitting of several arbitrary phaffsets
between the ToAs collected using different observing badlgy/stems, as described in Section

2.3.2. If overlapping data exist between the different oliag backends, these offsets can be

4"This approach was taken in Chapter 3.
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precisely determined and held fixed in subsequent proggdsiren if no overlapping data exist,

it is sometimes possible to eliminate these arbitrary téfgaethout losing phase connection in
the timing solution. Our analysis takes into account allraf bffsets fitted by Verbiest et al.
(2009). There is also a loss in sensitivity just above(the) ! frequency for this pulsar. This

is caused by the sampling of the observations — a sinusoldsafrequency induces power in
many adjacent frequency channels, depending on the phake GW source. This increases
the apparent noise level in this region of the periodograhiclvincreases the noise model and
thus also the detection threshold sufficiently to prohib#8confidence detection. In the best-
case sensitivity curve for PSR J0434715 (thin dotted line in Figure 4.2), there is a decrease
in sensitivity at a frequency of 150 nHz. This decrease is caused by significant leakage of the
input sinusoid into adjacent frequency channels. ThisiBeityg decrease is less significant in
the sky-averaged case because the variation in the amplituthe GW-induced sinusoid due

to the sky- and polarisation-averaging is a much greateceff

4.3.2 The Sensitivity of the Parkes Pulsar Timing Array and FPobable
Single Sources

The thick solid line in Figure 4.2 shows the sensitivity af tt8 pulsars in our data set assuming
the GW source position and polarisation are unknown. Thisisieity curve is the first mea-
surement of the sensitivity of a full PTA experiment to indival GW sources. The frequency
range analyse0yr)~! — (28 d)~! is chosen to demonstrate the high- and low-frequency sensi-
tivity limits for our pulsar timing data sets. At the lowes¢fuencies, our sensitivity is limited
by the period derivative and jump fits, as well as the fact thatlongest data set is shorter
than 30yr. At the highest frequencies, the sensitivitynstied by the sampling of our timing
residuals; that is(28 d)~! is the nominal Nyquist frequency for the PPTA.

Figure 4.2 also shows the upper limit attainable using oupW8ar data set (thick dotted
line). This limit curve was obtained with 95% confidence gsthe technique described in
Sections 4.2 and Appendix A. For some pulsars, a differesropolynomial model to the
detection case was chosen in order to accurately model thergpectrum with no GWs added.
Lommen & Backer (2001) placed a 99% confidence limit showirag they could rule out signal
amplitudes as small as 150 ns in their residuals at a peribd8 déys, corresponding to SMBHB

orbital periods of 106 days. Using our longer data sets aaddme 99% confidence level, we
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can place a better limit of around 120 ns at this frequency.sigihal periods of 1000 days
(where some of our sets of timing residuals exhibit exceasflequency noise), we obtain a
99% confidence limit of 190 ns. This limit is worse than the lnan & Backer (2001) limit
of 170 ns. However, there is no evidence that their analgkisstinto account the effects of red
noise present in their residuals.

The two ‘x’ symbols in Figure 4.2 indicate the expected strain amgétand frequency of
the proposed SMBHB at the core of the radio galaxy 3C66B (8edal., 2003). In order to de-
termine the expected strain amplitude, we use Equation\8td the redshift and masses given
in the original paperi/; = m; = 4.91 x 10! My, My = my = 4.91 x 10° Mg, z = 0.0215).
The distance to the GW source is assumed té(ddpc, implied by the low-redshift distance
approximationD = cz/H,. The frequencies of the signal at the Earth and at PSR JA@%43
(fearth = 1/0.88yr, fi185700043 = 1/6.24 yr) were obtained by Jenet et al. (2004). The signal
occurs at two frequencies because of the evolution of the ISBIBI the time interval between
the interaction of the GWs with the Earth and the receipt ef@W-affected EM waves from
the pulsar (see Equation 3.3). However, according to Equg8.1), the timescale for evolu-
tion of the SMBHB is much longer than the span of the obsemati so we assume that the
frequency of each signal is constant over the observatidhs. GW signal at the pulsar will,
in general, have a different frequency and amplitude fohgadsar in our array, whereas the
Earth term will have the same frequency for observationdl giudsars. This system was ruled
out with 95% confidence by Jenet et al. (2004). Our resulta/ghat, even with a blind search
of the Verbiest et al. (2008, 2009) observations, where vasvkmeither the sky-position nor the
frequency of the GWs, we would detect the GW-induced ogmta at the Earth caused by this
source. The expected signal is well below the plotted seitgiturve for PSR J185%0943
even though Jenet et al. (2004) only used the publicly-albbal ToAs for PSR J18570943.
However, their technique is analogous to our limit techeiguhereas the sensitivity curve plot-
ted for PSR J185¥%0943 in Figure 4.2 assumes we are aimingétectsuch sources of GWs.
Furthermore, our sensitivity curve is sky-averaged whethay used the known position and
frequency of the proposed GW source in their analysis (byohé had a very favourable sky-
location with an angle of 81°%hetween the Earth-pulsar vector and the Earth-3C66B Jée&tor

Furthermore, if the frequency of the GW signal is knosvpriori, the false alarm probability

48Jenet et al. (2004) also underestimated the distance tortp@ged GW source in 3C66B by around 8% by
assuming that its redshift was= 0.02.
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is considerably decreased, meaning that the detectioshbietis around a factor of two lower,
increasing the probability of detection. Jenet et al. (3@0glo assumed that they were analysing
spectrally white timing residuals, an assumption whichieéases sensitivity, particularly at low
frequencies.

The *«’ symbol in Figure 4.2 indicates the expected GW strain aeddency for the can-
didate SMBHB in the blazar 0J287. A12 yr-periodic signal has been identified in its optical
outbursts (Sillanpaa et al., 1996), but other parametktise system are not well-constrained.
We parametrise the SMBHB as follows: member magses 10®* M, and1.8 x 10** M, in-
trinsic orbital period 9 yr (observed GW periégr because of redshifting), eccentricity z&o
redshift 0.306, distance3 Gpc. The distance was again obtained udihg- cz/H,, which is
an acceptable approximation given the imprecision in theroparameter measurements and
the fairly low redshift of this system (see footnote 1 of B=a#i Lineweaver, 2004). The GW
signals emitted by this system induce timing residuals ofiad 6 ns that are below current
limits.

A study was presented by Sesana et al. (2008) of the genemattithe stochastic GWB
from the cosmic population of SMBHBs. This work showed the stochastic background
of GWs is likely to be detected using a PTA in the near futumne.Sesana et al. (2009) the
individual resolvable SMBHBs were considered. They predi¢hat at least one SMBHB will
induce ToA perturbations around-550 ns, which is below our current sensitivity. We choose
(from the upper left panel of their figure 2) a representatdsolvable single source from their
simulations. This source has an emitted GW frequency &f 10~ Hz and a characteristic
induced timing residual of 25 ns. The signal from this sousdadicated by the+’ symbol in
Figure 4.2. This is a typical resolvable SMBHB, thus it islkthat several sources will emit
GWs with a larger amplitude than this. We emphasise that weotlget have long data-spans
with sufficiently low rms residual to detect such sources.

SMBHBs may form in galaxy clusters. The nearest galaxy elusi Earth is the Virgo
cluster. In Figure 4.3 we examine the possibilities for putgning to detect GWs generated by
SMBHBSs in the Virgo cluster. The mean sky-position of thigster is at a RA of 180™ and
a Dec of +12 (Mei et al., 2007); to produce the curve in Figure 4.3, allidaed GW signals

come from this direction. The plotted sensitivity curveigades that we have a better than 95%

Pvaltonen et al. (2009) estimate the eccentricity to be 0u vie do not consider eccentric SMBHBs in this
thesis.
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Figure 4.3: Sensitivity of the PPTA using the 18-pulsar Wesbet al. (2008, 2009) data set
for detecting signals from SMBHBs located at the sky-posiind mean distance of the Virgo
cluster. The abscissa gives the GW frequency. The ordingés ghe minimum detectable
strain amplitude of GWs emanating from a non-evolving imdinal source in the direction of
the mean sky-position of the Virgo cluster with a random psétion and phase. The open
triangles indicate that the plotted value is a lower boundhendetectable amplitude at those
frequencies. The dot-dashed lines indicate the expectglsi from three different types of
SMBHB if they were located in the Virgo cluster, with equalmiger masses0°M, 101°M
and10'*M, as labelled.
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probability of detecting sinusoidal signals in our timirgsiduals caused by SMBHBs with
member massesl; = M, = 10 M, in the Virgo cluster. These SMBHBs could emit GWs
with any polarisation, but our detectable frequency ramgstich sources ix 107° Hz < f <

4 x 10" Hz. We could marginally detect SMBHBs with/; = M, = 10° M, if the emitted
GWs have favourable polarisation.

The PPTA sensitivity is complementary in GW frequency toltheO, VIRGO and LISA
sensitivities. In Figure 4.4 we give the detection senigjtiof some current and future GW de-
tection experiment§. Also shown on the plot are some likely sources in each of éteatiable
bands. The combination of the PTA and LISA sensitivity csreémost covers the full GW
frequency range from- nHz through to~ mHz. This GW frequency coverage will enable the

study of the evolution of GW-emitting systems.

4.3.3 Constraining the Coalescence Rate of SupermassiveaBk-Hole Bi-
naries

As described in Section 3.3.4, the non-detection of GWs f&BBHBSs in pulsar timing obser-
vations enables an upper bound to be placed on the coalesweroof SMBHBs (Wen et al.,
2011). However, the upper bounds in Section 3.3.4 were ledémliusing a sensitivity matrix
that gives the probability of detection of a GW source as ation of f andh, for a given data
set. Here, we calculate upper bounds on the SMBHB coalesaate using a “limit matrix”
that gives the probability that a GW source is ruled out bydhservations as a function of
f andh,. For the same data set, the use of the limit matrix providespger bound on the
SMBHB coalescence rate that is more constraining than therdpund provided by the sensi-
tivity matrix. We use the limit technique described in Secs 4.2 and Appendix A to calculate
the limit matrix element at eachandh,.

We calculate the limit matrix on a grid of 51 GW frequency \edand 50 GW strain values.
The 51 frequency values consist of 50 logarithmically-ggftequencies betwedB0 yr)‘1
and(28d) "', and alsof = 1/(1yr). The 50 strain values were logarithmically-spaced between
1076 and10~1°. 1000 Monte Carlo iterations were used at each valyeafdh, to determine

the fraction of such GW sources that are ruled out by the ddatdsr the Verbiest et al. (2008,

50To obtain the LISA sensitivity curve, we have assumed thedsted parameters for the LISA design and that it
aims to detect sources at a signal-to-noise ratio of three.LTGO sensitivity curves are obtained from the stated
design goals of the project.
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Figure 4.4: Sensitivity of some current and future GW obatamies to individual GW sources
as a function of frequency. The abscissa gives the GW frexyuéime ordinate gives the mini-
mum detectable strain amplitude of a sinusoidal GW points®with a random polarisation,
phase and sky-position. The open triangles indicate tlegplibtted sensitivity at that frequency
is a lower bound. The plot also shows potentially detectablerces in the three frequency
bands. The straight lines indicate the expected signafs fveo different types of SMBHB if
they were located in the Virgo cluster, with equal memberseas)’M., and10°M, as la-
belled. The X’ symbol is the expected signal at the Earth caused by theogerhpSMBHB at
the core of the radio galaxy 3C66B. The symbol is the expected signal caused by the candi-
date SMBHB at the core of 0J287. The’'symbol is the GW strain and frequency emitted by
a typical resolvable SMBHB as plotted in figure 2 of Sesand. €2809). “Unresolved Galac-
tic binaries” include white-dwarf and neutron-star bieari “Coalescing massive black-hole
binaries” correspond to the final inspiral of black-holednsystems. The “Current” LIGO
sensitivity shows the capabilities of existing data setsjev’Advanced” LIGO expects to im-
prove GW sensitivity by two orders of magnitude. “SN [supmar core collapse” and “NS-NS
[neutron star] coalescence” are typical signals that LIG@eets to detect.
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Figure 4.5: Upper bound on the coalescence rate of SMBHBsfascion of redshift. The
open triangles give the upper limit on the SMBHB merger ratetiie Verbiest et al. (2008,
2009) data set and the open squares give the limit for thelaietuSKA data sets. The shaded
region indicates the expected coalescence rate obtaioedJaffe & Backer (2003) as well as
data from the Sloan Digital Sky Survey (Wen et al., 2009) fotBHB systems of chirp mass
as labelled in each panel. The dashed line indicates thage@&oalescence rate based on the
analysis by Sesana et al. (2008).

2009) observations, the 95% confidence contour of the limitrimis consistent with the thick

dotted line in Figure 4.2.

The resulting constraint on the SMBHB coalescence rateoiwsin Figure 4.5 as a function
of log(1 + z). The plot shows that the coalescence rate of SMBHBs witf 2 with chirp
mass~ 10'° M, is less than one merger every five yr. Our observations do elotgnstrain
the merging frameworks discussed by Jaffe & Backer (20033ewana et al. (2008) at the
range of chirp masses we have considered. However, some bfgh-mass and high-redshift
predictions may soon be ruled out or confirmed using pulsaing. Furthermore, the limit on
the amplitude of the isotropic stochastic GWB obtainakbdefthe Verbiest et al. (2008, 2009)
observations may provide a more constraining upper bouniti@$SMBHB coalescence rate

(see Chapter 5).
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4.3.4 A Predicted Sensitivity Curve for the Square Kilomete Array

Figure 4.4 also gives a predicted sensitivity curve for tk& STo produce this figure we used
simulated observations for the 100 pulsars described itid®e2.6. We have assumed we can
time each pulsar with an accuracy of 20 ns over five yr, olngimine observation per pulsar
every 14d. We have also assumed that their power spectraevdtatistically white. It is un-
likely that pulsar timing residuals will exhibit a white pewspectrum at this timing precision
and, hence, the plotted sensitivity is a lower bound on whachievable with the SKA. In
particular, the sensitivity at low frequencies is expedtetle worse than that shown here, be-
cause we expect higher noise levels caused by the GWB,sitpulsar timing noise and other

unmodelled effects.

The simulated SKA data are equally-spaced, which causeketet of spectral leakage
to be much lower than that observed in irregularly-samplath dets. Hence, the confusion
between red noise and low-frequency signal is no longersareis these simulations because
a sinusoidal GW signal will induce a very narrow peak in eaglsgr’s periodogram, even at

low frequencies. We have therefore modelled each pulsaepspectrum with a constant.

There are three prominent losses in sensitivity - at fregesmrsmaller thal(lTobs)_l and at
periods of one year and six months. The partial loss in geitgiat a period of six months
(~ 6 x 1078 Hz) is caused by fitting for the pulsar parallax. The totaslossensitivity at GW
periods of oneyr could be mitigated using independent nreasents of the position of the
pulsar, for example using very-high-precision interfeebry; such precision may be available
in the SKA era (Smits et al., 2011). The SKA sensitivity cudvéers from that shown in Figure
3.5 because the noise level in the residuals is differemntvanhave only allowed detection of

the GW-induced sinusoid at the input GW frequency.

The SKA sensitivity curve shown in Figure 4.4 is calculatedaning we do not know the
location or frequency of a potential GW source. Using theseddditional pieces of informa-
tion it may be possible to confirm or deny the binarity of thessige dark object at the core of
0J287. It may also be possible to detect many of the res@@&RIBHBSs predicted by Sesana
et al. (2009). Using the SKA and LISA, it may be possible toeslss the full evolution of SMB-
HBs from emitting GWs in the pulsar timing band (during thelyephases of coalescence) to

emitting GWs in the LISA band (during coalescence) (e.dkiiet al., 2008).
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4.4 Conclusion

We have presented the strain sensitivity of the PPTA to naivang point sources of GWs as
a function of frequency. The sources most likely to produdetactable sinusoid in the pulsar
timing frequency range are SMBHB systems in the early phakesalescence at the cores of
merged galaxies. The sensitivity curve is analogous to t&€, VIRGO and LISA sensitivity
curves and shows the unique GW frequency range accessitg@usar timing. These results
can be used to place an upper bound on the number of coaléscarg systems of a given chirp
mass as a function of redshift. Current observations do ebtule out any recently proposed
models of galaxy evolution.

However, the isotropic stochastic GWB is expected to padarger amplitude signal in
the ToAs than most individual sources (Sesana et al., 2008 amplitude of the GWB signal
remains large after the pulsar parameter fit, then it may lectible in the timing residuals
from a PTA. Furthermore, non-detection of the expected G\WgBad provides a constraint on
the coalescence rate of SMBHBs (Wen et al., 2011). Therefothe next two Chapters, we

examine the GWB signal using simulated and real obsenatba PTA.
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Chapter 5

Limiting the Amplitude of the
Gravitational-Wave Background

Chapter Outline: In this Chapter, we:

e describe the method for simulating a GWB as implemented upro2.

¢ briefly describe the technique for placing an upper limitlbea GWB amplitude developed
by Jenet et al. (2006).

e apply this technique to the same white data sets used in €hapt

e calculate the constraints on the SMBHB coalescence rategubie technique published
by Wen et al. (2011).

¢ briefly describe which models of galaxy evolution are ruled lny the limits obtained
with different simulated data sets.

As described in the text, a more detailed version of Sectibmas published as

Hobbs G., Jenet F, Lee K. J., et al. 2009, MNRAS, 394, 1945

In Section 5.2, | created the simulated data sets and medshedimit on the amplitude of the
GWB for each data set. The constraints on the coalesceneeofdsMBHBs (Section 5.2.1)
were calculated by Zhonglue Wen and published as

Wen Z. L., Jenet F. A,, Yardley D., Hobbs G. B., Manchester R. N., 2011, ApJ, 730, 29

In Chapter 4, we showed that it is likely that the GWs emittgdb individual non-evolving
SMBHB will induce ToA perturbations that are below curreensitivity levels. A stronger
signal may be induced in pulsar ToAs by an isotropic stoahdstckground of GWs. Such
a background is formed from the incoherent sum of many iddizi SMBHBs with different
frequencies, amplitudes and phases (see Section 1.5).

In this Chapter, we calculate upper limits on the GWB amgditwsing the technique pre-
sented by Jenet et al. (2006). This technique requires ationolof the effect of a GWB on

ToAs. We apply this technique to real and simulated PTA olagems that are consistent with
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white noisé&!. The results indicate that it is likely that a variety of mtsdef galaxy evolution
may be ruled out using PTA observations in the near future.

A new technique for detection of the GWB due to SMBHBs will lesdribed in Chapter
6. While the direct detection of GWs will have significant sequences for astrophysics and
cosmology, the sensitivity of current PTA data sets is ifisieht for making such a detectieh
However, upper limits on the GWB amplitude can be obtaingd amy set of PTA observations.
These upper limits constrain the coalescence rate of SMB&$Bs function of redshift (Wen
et al., 2011) and models of galaxy evolution (Jaffe & Backif03; Wyithe & Loeb, 2003;
Sesana et al., 2008).

5.1 Method

5.1.1 The Expected Signal Induced by a Gravitational-Wave Bckground
in Timing Residuals

The signal induced by a GWB in pulsar ToAs is described iniSed.6.1. For this work, we

assume that a GWB due to SMBHBs has characteristic stragtrspe of the form

he(f) = A(f/ fry) 2 . (5.1)

This is consistent with most models in Section 1.5. The Sesaral. (2008) model predicts
a more complicated form for the strain spectrum of the GWB€ggiin Equation 1.13 of this
thesis). This model shows significant deviation from a sanmbwer law forf > 108 Hz.
However, our analysis probes GWB frequencies. 10-% Hz (see Figure 1.6), where the dif-
ference between Equation (1.13) and Equation (5.1) ismifsgnt.

A GWB of the form given in Equation (5.1) will induce pertutlmans in the ToAs of each
pulsar with the following power spectrum (Hobbs et al., 2009

9 —13/3
Py(f) = 1’;2 (ffyr) : (5.2)

In order to use the technique of Jenet et al. (2006) deschib®ection 5.1.3, we must be able to

simulate a GWB that reproduces this expected signal. Thisng usingreMpPo2. We briefly

5These are the same observations that were analysed in €Baptdetect individual non-evolving SMBHBs.
52As described in Section 1.6, a detection of a GWB signal igetgr within the next decade.

103



describe the GWB simulations in the next section; full detaiere published by Hobbs et al.
(2009).

5.1.2 Simulating a Background of Gravitational Waves With TEMPO 2

TEMPO2 simulates a GWB using many individual monochromatic GWs.dach GW source,
the phase@,, the right ascensiony),, and the sine of the declination are each chosen from

uniform probability distributions:

Prob(®,) = 1/2m, (5.3)
Prob(¢,) = 1/27, (5.4)
Prob(sind,) = 1/2 (5.5)

respectively, wheré, is the declination of the GW source, as in Section 2.5. The @jtfency

f is chosen from a uniform distribution ing( f)>3:

< <
Prob(f) = { 71o#(3) isl=an (5.6)

0 otherwise
where f; and f,, are the lowest and highest frequencies for the simulated,@&¥pectively. In
this thesis, we useff = 0.05/Topsand f;, = 1d 1.
The imaginary parts ofi, and A, are set to zero for every GW because the GWB will be
unpolarised. The real parts are each normally distribuiddzero mean and standard deviation

given by:

oa(h) =\ By, ). 67

whereh.(f) is given in Equation (5.1) andV is the number of GW sources simulated. In
general, N ~ 1000.

The resulting set oV GWs forms an isotropic, unpolarised GWB with a gaussian dot#
distribution with mean characteristic strdip( f), as given in Equation (5.1). It is essential for
the work both in this Chapter, and Chapter 6, that we can sitew realistic GWB signal. In

order to provide confidence in the accuracy of the GWB sinmiat we reproduce work that

53This choice is motivated by the large spread of simulated @4fencies over many orders of magnitude. We
suspect that the exact form of the distribution has littfeafon our sensitivity to the GWB signal.
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Figure 5.1: Timing residuals for PSR J1932134 obtained from simulated ToAs that are af-
fected by 100 ns of white noise and a GWB signal with= 1074, The abscissa gives the
MJD, the ordinate gives the residual after estimating tHeagsis period and period derivative.
The uncertainty in each simulated ToA (error bars) is 10(Jimsage reproduced from Hobbs
et al. (2009)]

was first shown by Hobbs et al. (2009).

First, Hobbs et al. (2009) simulated ToAs for PSR J103934 that have been sampled once
every two weeks over 3000d. The ToAs consist of ideal ToAat(ih, the ToAs predicted by
the timing model; see Section 2.4.1) that are then pertublyelDO ns of white gaussian noise
and a GWB signal. After carrying outEMPO2 fit to estimate the pulsar’s period and period
derivative, the resulting post-fit timing residuals arewhan Figure 5.1.

Second, Hobbs et al. (2009) calculated the average powetrspeof 1000 realisations of a
set of 512 GWB-induced ToA perturbations. The 512 simuldtedls occur at weekly intervals
and consist of ideal ToAs that are then perturbed by a simdl&WB withA = 10-1°. The
predictions of the timing model are then subtracted fromsiheulated ToAs, without carrying
out aTEMPO? fit. In this case, the pre-fit residuals are identical to tbstit residuals. The
average power spectrum of the residuals is plotted in FigLte Also shown is the theoretical
level of the GWB power spectrum assuming= 10~ in Equation (5.2). At high frequencies
in the plot, the average spectrum of the simulated residsialst consistent with the theoretical
spectrum. This is because of rounding errors in tE®PO2 processing that, in this case,

induce noise with a standard deviation of 0.2 ns. Giventhatro2 was designed to maintain
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Power Spectral Density R(f) (y2)

Frequency (y_1)

Figure 5.2: The power spectrum of GWB-induced ToA pertudvest The abscissa gives the
frequency, the ordinate gives the power spectral densitg Spectrum of 512 weekly-spaced
ToA perturbations averaged over 1000 GWB simulationsddadice) reproduces the theoretical
spectrum (solid diagonal line) at all but the highest freties. [Image reproduced from Hobbs
et al. (2009)]

1 ns precision, and the smallest observed residuals arentlyrigreater than 20 ns, this noise
can be neglected. Thus we conclude that the GWB simulatigimenn TEMPO2 induces ToA

perturbations caused by a GWB that reproduce the thedrptieger spectrum.

5.1.3 Calculating an Upper Bound on the Amplitude of the Gravtational-
Wave Background

We now use theeEmP0O2 GWB simulation engine to calculate an upper bound on the GWB
amplitude using timing residuals that are consistent wiltitevnoise. We use the technique
published by Jenet et al. (2006). These authors aim to eaécah upper bound on the GWB by
finding an upper bound on the level of red noise present intfiag residuals. Red noise is one
of the characteristic signatures of GWB-induced resid(sae Figure 5.1). Jenet et al. define a
statistic,Y, that can detect red noise in timing residuals. We brieflcdles the calculation of
T here; full details are given by Jenet et al. (2006) and Hobbs €2009).

T is the sum of the power in the first seven channels of the weihaverage “polynomial

spectrum” for the data set. For each pulsar, ittle channel of the polynomial spectrum is
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defined by the result of a fit of an orthonormal polynomial odler! to the residuals. The
average is calculated over all pulsars in the data set aneigdwed by the square of the weighted
rms residual. For residuals that are dominated by a GWB kajrithe form of Equation (5.2),
the sum of the first seven channels of the polynomial spectmmtains 95% of the power in
the GWB signal (Jenet et al., 2006). In practice, the remagibPo of the GWB power in higher
channels will be negligible compared to other noise souteke residuals. If these higher
channels were to be included in the sum, then the detectitistst would be less sensitive to a
GWB.

The limit on the GWB amplitude for a given white data set isait¢d using two Monte
Carlo simulations. The process is very similar to that use@hapter 3 for individual GW
sources. The first simulation calculates a particular valuthe statistic,Y,, such that any
measuredl’ that exceedd, indicates that significant red noise is present in the ddtaWe

use the following procedure:

e We determine a set of ideal ToAs predicted by the timing moéflehch pulsar in the data

set.
e We randomly rearrange the input residuals and then add thé¢hne ideal ToAs.

e We perform therEMP02 parameter fit to obtain a new set of post-fit timing residtizds

are statistically equivalent to the input residuals.
e We calculatéY for this new set of residuals.

e We repeat the previous five step®' times and find the 10th highest value Bf which
we set asl',. The probability that a statistically-equivalent datawetld yield a value

of T larger tharY'y when no red noise is present is 0.1%.

The second Monte Carlo procedure obtains the limit on the G\WBlitude as follows:

e We add GWB-induced perturbations and a shuffled set of thggnaii residuals to the
ideal ToAs. The GWB has amplitudé = A;.; in Equation (5.2).

e We perform theTEMPO2 parameter fit, which absorbs some of the GWB signal in the

post-fit residuals.
e \We calculateY for this new set of residuals.
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Table 5.1: The upper bound ohobtained from each set of observations.
Data set Awp
(Npsr-rms residualfops)
20 PSRs-500 ns-10yr 1.1 x 1071
20 PSRs-100 ns-5yr 9.9 x 10716
20 PSRs-100ns-10yr 2.2 x 10716
20 PSRs-10ns-10yr 2.0 x 10717
100 PSRs-100 ns-5yr 5.7 x 10716
100 PSRs-100ns-10yr 1.3 x 10716
100 PSRs-10ns-10yr 8.8 x 10718
Jenet et al. (2006) observationg.1 x 10~

e We repeat the previous three stéps times and measure the percentag& ofalues that

exceedY.

¢ If the percentage is more than 95%, then we repeat the piefoom steps with a smaller

value of A, . If less than 95%, repeat the previous four steps with a tafge, .

e When a value of4,. is found such that 95% of the measured value¥ afxceedY,

thenA,, = A is the 95%-confidence upper limit on the GWB amplitude.

This procedure calculates statistically-rigorous uppaurils on the amplitude of the GWB
(Jenet et al., 2006). However, if it is applied to data seas tontain some red noise, then the
resulting GWB limit is lower than the value that the data sstially implies (Hobbs et al.,
2009). We now apply this method to each of the white-noisa dats analysed in Chapter 3 to

determine the upper bound ahfrom each set of observations.

5.2 Results and Discussion

In the first column of Table 5.1, we describe the data sets.u3ée second column gives
the corresponding upper bound,,. The upper bound we obtain for the Jenet et al. (2006)
observations is equal to the upper bound published by Jéradt €£006). Jenet et al. also
analysed a simulated white-noise data set consisting oféeaes of observations of 20 pulsars
with a rms residual of 100 ns, and obtainég, = 6.5 x 107!, This is significantly less than
the upper bound ofl,,, = 9.9 x 107'% shown in Table 5.1 for a fortnightly-sampled data set. It

turns out that the simulated observations presented by deak (2006) were sampled weekly
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(Hobbs & Jenet, private communication). We obtaingg = 6.6 x 107'¢ for a simulated
data set consisting of weekly-sampled observations of 2Zapiwith a rms residual of 100 ns
over five years. Hence, we conclude that our results are stensiwith the work of Jenet et al.
(2006).

5.2.1 Constraining the Coalescence Rate of SupermassiveaBk-Hole Bi-
naries

Wen et al. (2011) derive a constraint on the coalescenceofe®®BHBs for a given upper
bound on the GWB amplitude. This constraint is calculated$guming that there are many
SMBHBs emitting GWs in each frequency channel of the redgdudowever, if the residuals
have been timed accurately or over a long period of time, theigonstraint on the coalescence
rate is sufficiently low that this assumption is violated atine redshifts. This means that the
constraint for a given chirp mass is only valid over certainges of redshift for which the
induced timing residual is low for each SMBHB (Wen et al., 2D1

In Figures 5.3 and 5.4, we plot the upper bound on the SMBHBesoance rate as a func-
tion of redshift for our data sets. Valid constraints can bamed at all redshifts for these data
sets using the methods presented in Chapter 3 or Chapteralydeethese methods allow for an
arbitrarily small number of GW sources in each frequency Ibiowever, these methods also
give a higher upper bound on the coalescence rate compatbd toethod presented in this
Chapter, so the method of this Chapter should be used wheih@vevides a valid constraint.

In Figure 5.4, we show that no valid constraints can be obthwmith this method fod/. =
10°M,, with either of the simulated data sets that have a rms timésglual of 10 ns. However,
these data sets provide significant constraints on the metgeeof SMBHBSs with smaller chirp
masses. We do not present such constraints here becausedisém of current data sets is not

at the required 10 ns level for more than a few pulsars.

5.2.2 Predictions of Galaxy Evolution Models

Wyithe & Loeb (2003) predict that the amplitude of the GWB Icbbe as high ast = 10—,
This prediction has recently been ruled out by van Haasteteal. (2011) using a Bayesian
analysis technique. Our results indicate that this premiatould also be ruled out by applying
the Jenet et al. (2006) technique to the “20PSRs-500 ns>Haya set.
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Figure 5.3: Upper bounds on the coalescence rate of SMBHIBg tise values of4,,, calcu-
lated for different sets of PTA observations given in Tablke $or calculating the abscissais
the redshift of the SMBHB. The ordinate gives the logaritinthe differential rate of coales-
cence per log redshift per log chirp mass. The solid horeldwdrs indicate that the constraint
is valid in that redshift interval, while the dotted horizahbars indicate that the constraint is
invalid. The plot includes the constraints provided by teeet et al. (2006) observations (open
triangles), 20 pulsars timed with 500 ns rms residual ovemr16pen squares), the same timed
with 100 ns rms residual over five yr (crosses) and the sanegdtimith 100 ns rms residual over
10yr (open circles). The grey region indicates the expectalescence rate with evolution
index—1 < v < 3 (see Section 1.6.2) assuming the framework of Jaffe & Ba(2@03) and
using observations from the Sloan Digital Sky Survey (Weal ¢2009). The dashed traces in-
dicate the maximum (thick line) and minimum (thin line) cesdence rates predicted by Sesana
et al. (2008, 2009). [Image reproduced from Figure 2 of Wead.§2011).]
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Figure 5.4: Lines and regions on this plot are the same asgur&i3.8, except that we now
show the constraints obtained using 20 pulsars timed withsatiming residual of 10 ns over
10yr (stars), 100 pulsars timed with a rms residual of 10 res @@ yr (filled circles), the same
timed with a rms residual of 100 ns over 10yr (filled squares) the same timed with a rms
residual of 100 ns over five yr (filled triangles). [Image guced from Figure 3 of Wen et al.
(2011).]
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Jaffe & Backer (2003) and Enoki et al. (2004) predict that BWB amplitude is around
A = 1071°. If the timing residuals are white, then this prediction lcbie ruled out using the
most optimistic prediction for the full PPTA observatiomgyich is the “20PSRs-100 ns-5yr”
data set. An improved technique for calculating an uppendan the GWB amplitude could
rule out this prediction with the “20PSRs-500 ns-10 yr” dseta

Sesana et al. (2008) predict that the characteristic stfahe GWB is in the rang&0—1¢ <
he < 3 x 107" at f = fi,,. While any of the simulated data sets shown in Table 5.1 could
constrain part of this parameter space, the whole range(¢f= f1,,) can only be ruled out
by the simulated SKA timing observations that yield a rmsdes of 10 ns on> 20 pulsars.
However, a timing program that observed a PTA with at leagp@Bars at a timing precision
of ~100 ns for more than 10 years could significantly constragrpttedicted range.

If a significant upper bound on the GWB amplitude is obtairs¥eral characteristics of
SMBHB formation and evolution may be constrained (see Sesaal., 2008, and references
therein). Aside from the constraints on the coalesceneadedcribed in Section 5.2.1, a smaller
GWB amplitude could mean that the proportion of SMBHBSs tliatped to coalescence may be
less than 100%. The BH mass function could also be over-astorcurrently, which would lead
to inflated predictions of the GWB amplitude. Alternativehe gravitational recoil experienced
by each SMBH during merger could be larger than currentlyioted, meaning that fewer
SMBHBs would form. These parameters are difficult to meassieg direct observations of
SMBHBs.

5.3 Conclusion

We have applied the technique of Jenet et al. (2006) to batrared simulated observations to
determine upper bounds on the GWB amplitude. We have alstiyodescribed the astrophys-
ical consequences of such limits. However, the techniguneoody be applied to sets of timing
residuals that are consistent with white noise, which iy tim case for a relatively small num-
ber of data sets. Most current sets of pulsar timing resgdstadw evidence of red noise. Also,
the Jenet et al. (2006) technique cannot easily be extengedtide a direct detection of a GW
signal. In Chapter 6, we develop a technique that can det@dB signal and can be applied

to almost any set of pulsar timing residuals.
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Chapter 6

On Detecting the Gravitational-Wave
Background Using a Pulsar Timing Array

Chapter Outline: In this Chapter, we:

e correct minor errors in the Verbiest et al. (2008, 2009) da#&t and also adjust the ToA
uncertainties.

e develop a frequency-domain correlation technique to deéoc a GWB signature in the
PPTA residuals.

e apply this technique to the corrected Verbiest et al. dataad find no detectable GWB
signal.

e discuss characteristics of the PPTA residuals and the GWBasithat affect the GWB
analysis.

e examine the effect of instabilities in a realisation of &strial Time and errors in the
solar system ephemeris on the GWB detectability.

Sections 6.1, 6.2, 6.3, 6.4 and 6.5 are adapted from seatiahe following journal article:
Yardley D. R. B., Coles W. A., Hobbs G. B., et al. 2011, MNRAS, 414, 1777

Figure 6.5 and its associated text are from the followingfeoence proceedings:

Yardley D. R. B., Coles W. A., Hobbs G. B., Manchester R. N., 2011, in Burgay M.,
D’Amico N., Esposito P, Pellizzoni A., Possenti A., eds, Radio Pulsars: An Astrophysical
Key to Unlock the Secrets of the Universel. 1357 of AIP Conference Series. American
Institute of Physics, Melville, New York, p. 77

In this Chapter, we attempt to detect a GWB signal caused bBIHBS in an updated ver-
sion of the PPTA observations presented by Verbiest et @§22009) (introduced in Section
2.3.2). While an upper bound on the GWB amplitude can rulamadels of galaxy evolution
(see Section 5.2.2) and cosmic strings (see Section 1&6ddtection of the GWB would lead
to increased understanding of physics and cosmology. lerdadconfirm that any signal ob-
served in a data set is caused by a GWB, it is essential totdetemmbiguously) the expected

correlation in the timing residuals of pairs of pulsars, lasn in Figure 1.8
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Several techniques have already been proposed in thetditerso detect the GWB (see
Section 1.6.1). However, most methods have not taken irdouat all the details of analysing
pulsar timing data, or are restricted to particular obstérna.

The GWB detection technique we present in this Chapter ishas the method of Jenet

et al. (2005). It improves on their technique in a number ofsva

e we study the pairwise correlation described by Hellings &mbe (1983) in the form of

pairwise cross-power spectra;

e Wwe obtain independent estimates of the GWB from each fre;yueomponent in each

Cross-power spectrum;

e we use an optimally-weighted linear combination of the sfpswer estimates as the

detection statistic;
e we account for the effect of different overlapping time+tsphetween the pulsar pairs;

e we calibrate the cross-power spectra and their estimatedsensing simulations that

completely account for the fitting of the pulsar timing madel

In this Chapter, we discuss a number of issues that are conionbath the Jenet et al.
(2006) limit technique and any limit technique based on meag the GWB-induced correla-
tion between pulsars. Such issues include the estimatipawér spectra when the sampling is
irregular and the ToA uncertainties are variable, and tfexef of fitting the timing model.

In Section 6.1 we describe the observations and the andhgatited to the timing residuals
we use in this Chapter. Section 6.2 describes the thedrbickground and our method for
making a detection of the isotropic stochastic GWB. Sedii@describes the results obtained,
Section 6.4 describes their implications and the outstanidsues for GWB detection via pulsar

timing, and Section 6.5 summarises our conclusions.

6.1 Observations

High-precision timing observations of 20 MSPs owet0 yr were presented by Verbiest et al.
(2008, 2009). The timing residuals for all pulsars obtaifnech these observations are shown in

Figure 2.5 and Figure 2.6 and described in Section 2.3.2.adewyto form the data set we use in
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Table 6.1: Basic information for our corrected version & Yerbiest et al. data set.

PSRJ Period DM P, Weighted RMS Span No. of
(ms) (cm3pc) (d) Residualgs) (years) Observations

J0437-4715 5.757 2.65 5.74 0.20 9.9 2847
J0613-0200 3.062 38.8 1.20 1.52* 8.2 190
JO0711-6830 5.491 18.4 — 3.24* 14.2 227
J1022-1001 16.45 10.3 7.81 1.63* 5.1 260
J1024-0719 5.162 6.49 - 4.17* 12.1 269
J1045-4509 7.474 58.2 4.08 6.80* 14.1 375*
J1600-3053 3.598 52.2 14.3 1.11* 6.8 474*
J1603-7202 14.84 38.1 6.31 1.98* 12.4 212
J1643-1224 4.622 62.4 147 1.94* 14.0 241
J1713+0747 4.570 16.0 67.8 0.20 14.0 392
J1730-2304 8.123 9.61 - 2.52* 14.0 180
J1732-5049 5.313 56.8 5.26 3.23* 6.8 129
J1744-1134 4.075 3.14 — 0.62 13.2 342
J1824-2452 3.054 120 - 1.63* 2.8 89
J1857-0943 5.362 13.3 12.3 1.14* 22.2 376
J1909-3744 2.947 10.4 1.53 0.17 5.2 893
J1939+2134 1.558 71.0 — 15°0 23.3 588
J2124-3358 4.931 4.62 — 4.01* 13.8 415*
J2129-5721 3.726 31.9 6.63 2.19 125 177*
J2145-0750 16.05 9.00 6.84 1.88* 13.8 376*

aThere is a gap of-11lyears between the end of the observations presented Ipj &aal. (1994) and the
beginning of observations with the Parkes telescope. Inaoalysis we use the Arecibo observations of PSR
J185%-0943 only to assist in the estimation of the pulsar pararaetrd then discard the Arecibo residuals in
further processing.

bWe have altered the value of the phase offsets betweenetiffebserving systems for these timing residuals
compared with the analysis of Verbiest et al. (2009), whashdrs our measured rms.

“This time series features several large gaps and inclugdsabpi et al. (1994) data.

*These values differ slightly from those presented by \iesbet al. (2009) because we have removed duplicated
observations in five pulsars, and corrected a minor proegssiror involving the uncertainties on observations
made with different observing systems.
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this Chapter, we have made minor corrections to the origieddiest et al. observations. While
we have not repeated the ToA estimation process alreadyilobed@nd performed by Verbiest
et al. (2008, 2009), we have removed erroneous duplicatdd ffom some pulsars in the data
set. Also, in forming the timing residuals, we have treatetdbservations of every pulsar in the
same manner when measuring the arbitrary phase offsetedetaifferent backend systems.
This caused the PSR J1989134 timing residuals to exhibit a lower rms than in the ovadi
Verbiest et al. data set because the value of these offsatged. A summary of the data set
used in this Chapter is given in Table 6.1.

In our data set, the data-spans vary widely, ranging fromy2a8s for PSR J18242452
to 23.3 years for PSR J1932134. The weighted rms residual also varies over two ordiers o
magnitude, from 170 ns for PSR J1968744 to 15.s for PSR J19392134. The residuals are
unequally spaced and the sample times are different betpuglears. As described in Section
2.2.3, for some pulsars the average magnitude of the ToA barochanges discontinuously at
a particular point in the time series because of upgraddseimibserving hardware. For most
pulsars, the upgrade that caused the most significant charthe ToA uncertainty was the
transition from the FPTM backend system to CPSR2 in the y@@2 2For pulsars whose ToA
uncertainties significantly improved after this upgradeyeaghted fit to the residuals would
be mostly influenced by the most recent observations, thiischeg the GWB sensitivity of
such data sets. To ameliorate this effect, we attempt taceethe variation in the magnitude of
the ToA uncertainties so that, in subsequent weighted astsrusing the timing residuals, the
weights are spread more evenly across the data set.

In Table 6.2, we provide a list of the pulsars whose ToA uraeties exhibit a “step-change”
in average magnitude. For these pulsars, we have calculaednweighted variance of the
residuals both before and after the upgrade that causedtdpschange. These variances are
added in quadrature with the original error bars in eachigouf the time series before com-
mencing any further processing. For all other pulsarsethexs no significant change in data
quality at the epoch of the hardware change. We thus caécthatunweighted variance of the
whole time series and add it in quadrature with the origimadrebars before any further pro-

cessing. This simple process increases the uncertaintly d04s>*. However, the uncertainty

S4This process of augmenting the error bar on each residudlis@because we do not have a good error model
for the PPTA timing residuals. Improving the white noise raldd an important goal of PPTA research at present.
The basic problem is that we know that there are other whiteenprocesses that affect the timing residuals in
addition to radiometer noise, such as pulse jitter (CordeéSh@nnon, 2010; Oslowski et al., 2011). However,
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Table 6.2: Pulsars with non-stationary timing residualer fthese pulsars, we estimate the
unweighted rms of the residuals before and after an imptindware change at the telescope.
PSRJ Type of Epoch RMS before RMS after
change (MJD) changei$) changes)

J1600-3053 backend 52654.0 9.61 1.31
J1713+0747 backend 52462.5 1.24 0.48
J1732-5049 backend 52967.5 7.57 4.03
J1744-1134 backend 52462.6 1.54 1.29
J2124-3358 backend 52984.5 9.74 4.64
J2129-5721 receiver 51410.0 5.47 3.48
J2145-0750 backend 52975.5 4.14 3.17

on the most precise ToAs will increase by more than the cpomding increase for less precise
ToAs, meaning that there will be less variation in the weighéach residual across the time

series.

6.2 Method

The GWB-induced residuals are correlated between diffgpaisar pairs as shown in Fig-
ure 1.8. Although limits on the amplitude of the GWB can beaai#d from the residuals of
a single pulsar (e.g., Kaspi et al., 1994), the GWB can onlgdétected with confidence by
observing this pairwise correlation. We now describe ocinéque for detecting a GWB signal

in pulsar timing residuals.

6.2.1 Detecting the Gravitational-Wave Background Signal

The expected GWB signal in pulsar timing residuals was desdrin Section 5.1.1. For this
analysis, we assume that the GWB due to SMBHBs is describedjbgtions (5.1) and (5.2).
In this case, the cross-power spectrum between the indum&gbdrturbations in pulsarsand
jis

Xij(f) = Po(£)C(035) (6.1)

where X;;(f) is the value of the cross-power spectrum at frequeficy’,(f) is the power
spectrum of the GWB-induced ToA perturbations given in Equg(5.2) and, (¢;;) is given in
Equation (1.15).

we don’t yet know what processes are involved or how much toeygribute to the timing residuals. An interim
solution is now available in the form of tiex DATA plugin toTEMPO2.
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In order to detect the GWB signal, we estimaig (f) for each pair of pulsars. As the
spectrum of the GWB is very steep, only the lowest frequenare of interest. Also, because
we want to detect the correlated GWB signal between pulaarsyill focus on the overlapping
portion of each pair of pulsars. The observations of each gfgbulsars overlap over some
time-spanovenap FOr Npo = 20 there areNV,,;,s = 190 pairs. For each pair we estimate the
cross-power spectrum at harmonicsfof 1/Tovenap If the sampling were uniform and the ToA
uncertainties were equal, these estimates would be utatade In practice we find that they
are not uncorrelated and this reduces the sensitivity ofdetection algorithm. It is probable
that the independence can be restored using the Cholesityamstimation procedure recently

discussed by Coles et al. (2011). However, this is beyonddbpe of this thesis.

For some pairsioverap CaN be much smaller than the length of one or both time series.
For our time series]oyerap ranges from just 0.8 yr for PSRs J0434715 and J18242452,
to 14.1yr for PSRs JO7116830 and J19392134. The use of only the overlapping residuals
causes a bias in the cross-power spectral estimates, the oawhich is currently not known.
We correct this bias by removing a quadratic function from élrerlapping section of the two
time series using a weighted least-squares (WLSQ) fit, asrsho Figure 6.6. This fit is in
addition to the standard timing model fit that estimates thisgr parameters. We estimate the

Cross-power spectrum using:

Xii(f) = Fi(H)F5(F)/ Toverap (6.2)

whereF; denotes the DFT of the timing residuals of pulsand* denotes complex conjugation.
We use the following standard definition of the one-sided & Tactor of two larger than the

two-sided DFT given in Equation 2.2):

Npts—1

2 .
Z ’I“ne_kan/Npts, (63)
n=0

f(fk):Nt

wherei = y/—1 in this particular equation;, is then-th residual and: is an integer between
1 and(N,s — 1)/2, rounded down. Calculating the DFT is not trivial becaus¢hefuneven
sampling and variable error bars. We calculatédf;) for every pulsar using a WLSQ fit of a
sine term plus a cosine term at eah= k/T,ver1.p- This gives identical results to a weighted

Lomb-Scargle estimate of the spectrum (Scargle, 1982; idedter & Kurster, 2009). The
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variance of each cross-power spectral estimate is

0%, () = (B(HNPi(f))/2 (6.4)

where(...) indicates an expectation value afid f) is the spectral estimate of the residuals of
pulsar: at frequencyf. In practice, we calculate these expectation values uspay\er-law fit
to the lowest frequencies in the periodogram of each puldas power-law fit gives a spectral

model for low frequencies in this pulsar.

We account for the effects of fitting the timing model to thesetvations using two Monte
Carlo simulations. The first simulation estimates the ¢iffedransfer function for each pulsar
(see Section 2.4.3). The transfer function for each pusssiniilar to that shown in Figure 2.10
for PSR J06130200. We then correct the measured cross-power spectrueabdr pulsar
pair at each frequency by dividing by the geometric mean efttansfer functions of the two
pulsars at that frequency. This correction is common batveee analysis and that of Verbiest
et al. (2009), but this is the only pulsar parameter fitting@ction performed by Verbiest et al.
(2009).

However, this process of correcting the cross-spectrungaampo2 transfer functions can
only correct the effects of the timing model fit as it acts ontevhoise in the residuals. This is
because, although fitting the timing model is a linear op@nait is not a filter. In particular, this
means the effect of the timing model fit will be different whtse residuals are contaminated
by red noise, compared to the case where the residuals asestam with white noise. When
a set of residuals with time-spahy,s is affected by red noise, fitting the full timing model
to the residuals reduceB(f = 1/Tus) by significantly more than the white noise transfer
function. This is easily confirmed by simulation. A secondreotion is therefore necessary
to measure the effect of the full timing model fit on the nonte/lGWB contribution to the
residuals. We simulate 10000 realisations of the residuals and add a simulated Gigrtals
with A = 3 x 10" anda = —2/3 to all pulsars using the methods described in Sections 2.4.3
and 5.1.2. This value of was chosen because it gives the largest GWB signal thall ismstll
compared with the noise, hence reducing the number of redjgimulations. We further reduce
the number of simulations by fixing every pulsar to be at tieesposition and distance, giving
the maximum correlated GWB signal between pulsars. We parthe full pulsar parameter

fit usingTEMPO2, estimate the cross-power spectrum in each realisatidapply the transfer
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function correction described above. We divide the avecagected cross-power spectrum of
each pulsar pair by the theoretical level of the cross-p@pectrum given in Equation (6.1).

This process defines a set of “calibration factors;( f.). When forming subsequent estimates
of the cross-power spectrum using Equation (6.2), we cikbeach estimate at the lowest
three frequencies of the cross-power spectrum by dividiegtoss-power-spectral estimate for

pulsarsi and; at frequencyfy, by v;;( fx)-

After performing both of these corrections, we estimate For each frequency channel,

f%, of the cross-power spectrum (measured in'yrwe have (see equations 1.14 and 6.1)
[A%¢ (0;5)], = 127° f7**Real[ Xy(f)] (6.5)

whereA;; indicates the measurement.4t obtained from pulsarsandj and RealX;(fx)] is
the real pafP of the cross-power spectrum. The varianceéléjfg (6;;) is then proportional to

the variance ofX;;.

To compare directly with the technique of Jenet et al. (200&) perform a weighted sum
of the A7,{ (6;;) estimates over cross-spectral frequency to obtain a sisgi@ate ofA?,¢ (6;;)

for each pulsar pair. This gives

ey 27 T KR (5 66
" “ (Toverlap)g_za Zk ]{;40—6/0'3(“ (fk) .

where both summations range from= 1 t0 Ng,e.i;, and whereN,..;; is the number of

cross-spectral frequencies for pulsaend;. This final estimate oﬂfjg (6;;) is similar to the
unnormalised covariance between the residuals of pulsansl ;. We also use the observed
scatter in estimates of?,{ (¢;;) obtained from simulated observations to estimate the uncer
tainty 6 A7,¢ (6;;) for each pulsar pair.

Having fully calibrated our technique using simulationg, @stimate the squared amplitude
of the GWB, A2, by forming an average of thﬂfjc (6;;) estimates weighted by the inverse
variance of each estimate. In practice this average is dgmetforming a WLSQ fit to find
the amplitudeAQ (and its corresponding uncertainty) for which the quanﬁ?y{ best fits the
observed values oifj( (6;;). For ease of notation, we index over all possible pulsaspsing

m, wherem is an index running from 1 tdV,...s and we set,, = ( (¢;;). In this case, the

55The imaginary part of the cross-power spectrum containsmelated terms and is discussed in Section 6.4.
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expression ford? is

Zm C%/Ui%lCm Em 1/0‘124%1 '

and its unweighted variance is

> 1 B 1
D D C-yL-5 PO D Vi P

m

(6.8)

g

This initial estimate of the error assumes that each obthig( (6;;) is well-estimated. If
this is not true, then we need to augment the errord®rby an extra term that describes the
amount of scatter in the residuals. This corresponds toumtitw for a non-unity reduceg?

of the WLSAQ fit that determined?. Thus our final estimate for the variance4¥ is

~ 2
2 1 S (126 - A% o,
o5, =

A2 (Npairs — 1) >om C%/U,zqg”gm

~\ 2
(A A e,
= 5 , (6.9)

(Npairs - 1) Z 1/UA"L

which is just the weighted estimate of the variancedsdf If A? is significantly larger than
o 42, then a detection of the GWB has been made. This algorithnbéas implemented as a

TEMPO2 plugin, which is included in Appendix B.

6.3 Results

From our data set we estimate the squared GWB amplitudefﬂ be —4.5 x 1073, with an
uncertaintyo ;, = 9.1 x 107%°. Our result is consistent with the null hypothesis, thatetie
no GWB present. Although the estimate is negative and tbexefould lead to an unphysical
GWSB, it is not improbable because the standard deviatiorfastar of 2 larger than the mag-
nitude of the mealf. We simulated many realisations of the observations usiagrethod of
Section 2.4.3, including the uncertainty given by the Tooebars and a random process con-
sistent with the low-frequency spectrum of the residuatslouGWB signal. These simulations

showed that our estimate is consistent with the null hyptheith 76% confidence. This result

56This would not be an issue for a Bayesian approach to GWB tiebewherein the prior can restrict the value
of A2 to being positive.
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Figure 6.1: The histogram shows the distribution@fforAsimulations of our residuals with
no GWB present. The thin dotted line shows the valuelbbbtained from the observations.

The estimates to the right of the dotted line include 76% efdimulation results. All physical
GWBs haveA? > 0.

is shown as a histogram in Figure 6.1. At first, it appearstthathistogram could be used to
provide a 95% confidence upper bound on the GWB amplitude.edewyas discussed further
below, any limit thus obtained would not take account off‘selise” (Jenet et al., 2005) due to

the GWB-induced perturbations at the pulsar.

In Figure 6.2, we plot the 15 estimatesAx}j( (6;;) with the smallest uncertainties. It is
clear from this Figure that the current noise levels aredatigand.5 x 1073° and that our result
is consistent with the null hypothesis. The dot-dashedefornA? = 10~2® seems to imply that
such a large GWB signal is ruled out by the observations. @ beservations probably do rule
out such a GWB signal (though this has not been investigabed)f A2 were actuallyl0—2®
the noise levels on eachfjg (6;;), which provide the upper bound, would be much higher. As
the noise levels come from the power spectrum of the resdofakach pulsar, obtaining an
upper bound using the noise levels is equivalent to obtgiamupper bound directly from the
individual power spectra and ignoring the cross corretetidGuch a bounding technique is not

pursued in this Chapter.
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Figure 6.2: The 15 most precise estimates;l@t’ (6;;) obtained from our data set (points with

error bars), the best-fit value dP¢ = —4.5 x 1073° x ¢ (dashed curve) and the signal expected
from a strong GWB with4? = 10~2% (dot-dashed curve).

6.4 Discussion

The results of applying this algorithm to the corrected wer<f the Verbiest et al. (2008,
2009) data are disappointing in the sense that the senhgitvconsiderably poorer than that
calculated in the Appendix provided by Verbiest et al. (2009e believe the estimated errors
to be correct because they are calibrated by simulation,esask the questionWhy are the
cross-power spectra of the GWB lower than expectéalthvestigate this we have run a series
of simulation8’ with GWB signals of differing amplitudes injected into thieservations. The
results are shown in Figure 6.3. The mean values of the dbrveare plotted as solid lines
connecting error bars (that indicate the uncertainty imtliean) for two cases: (1) the algorithm
including correction with the;; calibration factors (thick solid line); and (2) the algarit with

7:; = 1 (thin solid line). These results show that our method retar@GWB amplitude estimate

A2 such that, on averagé? , = A2 . Figure 6.4 shows that this GWB signal is at the correct

5"These simulations use a spread of pulsar distances andesiggresiduals with the same sampling as our
observations, using the methods of Section 2.4.3 and 5The@simulated residuals include white noise consistent
with the observed error bars, red noise consistent withghetsal model mentioned in Equation (6.4) and a signal
from a GWB witha = —2/3 and with a range of amplitudes betwegh = 6.4 x 10733 and 4% = 4 x 10728,
We did not perform post-Keplerian pulsar parameter fits.
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Figure 6.3: Averageﬁi2 as a function of input GWBA? for our residuals. The ordinate gives
the average output? from our detection algorithm. The triple-dot-dashed lindicates points
where the inputd? is equal to the outputi2. We have considered 2 cases: performing the full
detection procedure (thick lines) and the uncalibratedati&n procedure that uses(f) =1
(thin lines). In both cases we have averaged over 1400 aialis for each inputi*, and
estimated the average outpii (solid lines), where the error bars give the error in the mefan
A2. The dashed lines give the square root of the avera@%oi‘n each case, and are in good
agreement with the sample standard deviations over theitaihplrange of interest (dotted
lines).

level on average in every pulsar pair. The difference betvibe thick solid line and the thin
solid line in Figure 6.3 indicates that the GWB power is restlby a factor ok~12 because
of the pulsar parameter fitting, even after adjusting thessmower spectra using the effective

transfer function.

We can estimate the amount of GWB signal lost in estimatiomifi€érent timing pa-
rameters by calculating the weighted average calibratetof in the lowest frequency chan-
nel of each pulsar pair. While this will be at a different fueqcy for each pair, it nev-

ertheless provides a straightforward figure of merit for panmg the effect of fitting dif-

124



10428

5x1072°

R B
/
)—0—4

iﬁ %

//
550 ; ‘\\¥‘74 ; ; | ; ‘/‘/%\ ;
= 0 ¥ L B
< } _H,}%/?

&

‘O

~— —
X

L(‘)—

8

‘o | . . . . | . . . . |
TO 50 100 150

Angular Separation 0;; (deg)

Figure 6.4: The expected covariance in simulated residhalsinclude a GWB component
with squared amplitudel> = 10-2%. The smooth dashed curve corresponds to the theoretical
covariance for an inputi?> = 10728, The points correspond to the mean of the estimates of
Afj(‘ (6;;) (Equation 6.6) from 200 simulated sets of timing residuatstifie 20 PPTA pulsars.
The error bars give the uncertainties in these mean essm&t& clarity we only plot the 20
pairs with the smallest rms scatter in their estimateﬁfgf (6;;) over the 200 simulations.
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Table 6.3: The effect of fitting different combinations ahtng model parameters on the GWB
signal in the lowest frequency channel. Values in the 4throol are the inverse of values in the
2nd column. The symbols are: (pulse frequency)y (pulse frequency derivative); “JUMP”
(arbitrary phase offsets between different observingesgstwere removed from all pulsars);
“ALL" (all timing model parameters were fit).
Timing Model Weighted mean of Uncertainty in  Sensitivity
Parameters 7,;(f = 1/Tovwerap) Weighted Mean Loss Factor

v, U 0.1716 0.0003 5.83
v, v, JUMP 0.0796 0.0002 12.6
ALL 0.0790 0.0002 12.7

ferent timing model parameters. For the fukkmpPo2 fit acting on our residuals, we find
Yii (f = 1/Toverap) = 0.0790 £ 0.0002, which represents an average los96f790~! = 12.7

in GWB signal atf = 1/T,enap This explains the large decrease in sensitivity of our imeth
compared to that presented in the Appendix of Verbiest €2809), which did not fully ac-
count for the effect of pulsar parameter estimation on theBR/lgnal. In Table 6.3, we give
the weighted average calibration factorfat= 1/Tqenap When fitting for different parameters
in the timing model. The estimation of the pulsar positiod garallax have little effect on
7i; (f = 1/Tovenap) SINC€Thyeriapis a few times greater than 1 yr for most of our pulsar paird, an
so are not shown in Table 6.3. This table indicates that onaltaost determine the complete
effect of fitting on the GWB sensitivity by only including fiter the spin frequency, its deriva-
tive and the arbitrary phase offsets between different misg systems. Additionally, while
the spin frequency derivative fit only significantly affetke power in the lowest frequency
channel, the arbitrary phase offsets affect the power inaWvest few channels and hence can
significantly affect our estimate of?.

The dashed lines in Figure 6.3 show that for GWB amplitudesr@at A? = 5 x 1073, the
average uncertainty aA? is double the average uncertainty when there is no input GTWi.
extra contribution to the uncertainty comes from the eftédhe GWs passing near the pulsar,
which we refer to as the self-noise of the GWB. For larger @alaf A2, the uncertainty oni2
is dominated by the GWB self-noise as discussed by Jenet(@08I5).

For comparison with previous limits, we attempted to pla®&% confidence upper bound
as follows. Using the same simulations that produced Figu8e we attempted to find the
amplitude of a simulated GWB that gave a measurememt?ofarger than—4.5 x 1073 —

the value obtained from the actual observations — with gritya 0.95. The results, shown in
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Figure 6.5: Percentage af? estimates from simulated observations above the obserlad v

of A2 = —4.5 x 1073°, as a function of input simulated®. The dotted vertical line shows

the limit of A2 < 1.2 x 10728 (Jenet et al., 2006). The percentageddfestimates above the

observed value ofi? = —4.5 x 1073° (thin solid line) does not reach 95% (thick horizontal
line) within the plotted range of simulatetf values.

Figure 6.5, show that the percentage of estimated®fbove—4.5 x 1073° does not reach
95% for any simulatedi® < 4 x 1072%. We traced this to the issue that the GWB sensitivity
of the different time series varies widely between the déife pulsars analysed by Verbiest et
al. (see Section 6.4.4). The maximum simulated GWB ampigltbwn in Figure 6.5 is much
larger than the Jenet et al. (2006) upper boudtl € 1.2 x 10~2%). Thus we cannot obtain
a sufficiently low upper bound with 95% confidence to warramtiHfer investigation with our

current time series and weighting scheme.

Furthermore, any limit obtained in this way would be consatiéy worse than one obtained
through other methods, such as direct power estimatiomusecof the huge variation in noise
levels amongst our puls&fs A power spectral analysis of the Verbiest et al. (2008, 2009
similar to that presented by Jenet et al. (2006) is expectguidvide a much lower bound on

the GWB amplitude than cross-correlation analysis.

We confirm the accuracy of the measured uncertainty on edthags of A7,¢ (6;;) using

58We cannot apply the Jenet et al. (2006) limit method to thésewations because it requires that the timing
residuals of each pulsar be white. The method presentedrbid@asteren et al. (2009) could be applied to these
observations, but this would require a large amount of cdatymn time and any limit obtained would be difficult
to confirm via Monte Carlo simulation.
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the reduced? of the WLSQ fit that determined2. The reduced? of this fit is

9 ~ 2
) 1 ([Aka] - AQCk)
Xr = )
(Npairs - 1) & Uii(k

(6.10)

which has a value of 1.3 for our residuals, indicating thatihcertainty estimatez;‘z are con-
sistent with the rms variation of the estimatés We obtain an independent estimate of the ac-
curacy of the measured errors by making use of the informatmtained in the imaginary part
of the cross-power spectrum, which we denote Iffigg(f)]. We calculate ImagA?,¢ (6;;)]

by evaluating Equation (6.5) with Imag,;(f)] in place of RealX;;(f)]. We then process
Imag [Afjg (Gij)} in exactly the same way as the real part is processed. Simgsaton coef-
ficients are real, we expect that Imb@jg (Hij)] will contain no correlated signal. This means

that we can calculate the analogue of the reducedsing Imag| A% ¢ (6;;)]:

1 T (Imag[47¢))’
2 k
Xr,im — ) . (6.11)
(Npairs - 1) Lk O-Aifk

Similar to the reduceg?, if the errors onAZ?jg (6;;) are well-estimated then this quantity should
be near unity. For our residuals, we find;, = 0.87, indicating that the errors are well-

estimated.

Although bothy; andx;;,, show that the uncertainties,. are reliable on average, these
uncertainties come from power spectral estimates so tleygadom variables. We estimated
the sensitivity ofA? to variations inr a2 by multiplying each 12 by a random factor, distributed
as the square root of the product of twé random variables with two degrees of freedom.
This is the expected distribution for eaot;z. We found thato ;, increased by a factor of
1.6, indicating that the use of incorrei‘/ﬁ?jg (6;;) estimates degrades the sensitivity of the

measurement by only a factor of 1.6.

However, theA?;( (6;;) are not Gaussian; rather they come from the sum of two pairwis
products of independent Gaussian variables and thus have-sided exponential distribution
that is reflected in Figure 6.1. This means that the maximketitiood estimator forl? is not a
WLSQ estimator but a weighted least absolute deviation (L.f}e.g., Cox, 2006). We tested
both weighted and unweighted LAD fits and found that the tedor WLSQ and unweighted
LAD fits were very similar, while the weighted LAD fit introdad a small bias in the mean.

These results are shown in Table 6.4. We suspect that theobtass because any LAD fit

128



Table 6.4: The results from estimatintf with different estimators averaged ovér simula-
tions of realistic residuals including a GWB witt? = 1073,

Estimator Meamd2 Errorin Mean rms of42
(x10730) A2 (x10739) (x1073)
WLSQ [our method] 0.99 0.038 12
Unweighted LAD 1.0 0.038 12
Weighted LAD 0.84 0.041 13

Table 6.5: The results from our observations using diffenegthods of spectral analysis of the
timing residuals.

Processing A2 T i
Performed €1073%)  (x107%0)

Smoothing & Interpolation 3.0 10

Smoothing only —7.8 10

No smoothing [our method] —4.5 9.1

includes a ‘dead-zone’ feature, where a range of paramstienaes give the same minimum
absolute deviation. This dead zone is negligible when thaber of estimates is large, but
can be significant otherwise. Since odit estimates are dominated by a small number pf
measurements and the results of the different estimatesmailar, we chose the more standard
WLSQ fit in caIcuIatingAQ. Although the WLSQ estimator is not maximum likelihood,st i
apparently more robust in our particular case.

Estimation ofA? is also largely independent of changes to the method of ispectalysis.
We experimented with reducing the white noise in the redgdioya smoothing each time series
over a 60-d period before commencing the spectral anaWé&salso tested interpolation using
a constrained cubic spline of each smoothed time seriesaotid grid common to all pul-
sars before the spectral analysis. The results of theseretiff approaches are given in Table
6.5. Since there was no statistically significant diffeeehetween the different approaches, for

simplicity we elected not to smooth or interpolate the reald.

6.4.1 Treatment of a Large Amplitude Gravitational-Wave Background

For their detection statistic, Jenet et al. (2005) caleddhe normalised cross correlation be-
tween the timing residuals of each pulsar pair. They opgadhithe S/N ratio using a filter

designed to whiten the residuals before correlation. Femalation of the 20 PPTA pulsars,
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this approach increased the maximum achievable detecgaifisance for a GWB from 3 to
130. However, their filter cannot be applied to real pulsar tignabservations without modi-
fication. We investigated the effect of such a filter by perfimg simulations of our residuals
where each simulation included a signal from a GWB with> 3 x 107°. In the frequency
domain, the filter takes the form of a weighting factor, so wémised this weighting factor
to match the large input GWB amplitude. We found that thishradtdid not improve the S/N
ratio, and we traced this under-performance to the problespectral leakage from the low-
est frequencies to the higher frequencies. We found thdirdtdew cross-spectral estimates,
which make the largest contribution to our detection diatigere all more than 90% correlated
with the lowest spectral estimate (i.e., at frequelicy 1/Tovenap), Meaning that re-weighting
cannot change the overall S/N ratio. The spectral leakagarttcularly significant because of
the irregular sampling and variable ToA uncertainties Esthobservations. We expect that an
improved spectral analysis technique (e.g., Coles et@l1Pwill eliminate the spectral leakage
and enable us to take advantage of more degrees of fré&admen the GWB signal is larger

than the noise.

6.4.2 Fitting Timing Models over Different Data-Spans

The time series we consider in this Chapter have widely ngryime-spans. The effect of
such variation has not been considered in most PTA analgsdate. As part of the pulsar
parameter estimation, we fit for the pulse period and itsveévie over the full duration of
each time series. Originally, we then computed the crosgepspectra from the overlapping
portion of residuals of each pulsar pair with no further gssing. However, upon simulating
this procedure, we found that the lowest frequencies in thesepower spectra were biased
wheneverly,s > Toverap This bias took the form of a significantly non-zero imaginpart in
the cross-power spectrum. Also, we found that much of theetaied signal at low frequencies
was removed, as shown in Figure 6.6. We were unable to eltmii@se effects unless we
performed a WLSQ fit of a quadratic function for each timeesover the overlapping time
range. This restores the correlation in the GWB signal betvekfferent pulsars (right panels of

Figure 6.6). This additional WLSQ fit will introduce a new biaecause of removing some of

59In contrast to Verbiest et al. (2009), who state that quacifidting removes one degree of freedom from the
power spectrum of each pulsar’s residuals, we have showmtredratic fitting does not affect the number of
degrees of freedom in the lowest few frequency channelsadf pawer spectrum.
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Figure 6.6: The effect of fitting a timing model over diffetefata-spans. The simulated time
series in the upper three panels are 5 years long, those Inviee three panels are 15 years
long (the longer time series in the first 2 panels have beercated because deviation in the
y-direction has the same magnitude in each panel). The battgithpanel only includes the
overlapping simulated observations. The vertical dotileels| indicate the overlapping timing
residuals for these time series. We added the same largal $@gboth time series and the
time series are identical in the overlapping region (lefiglg). After fitting the timing model
(middle panels), this signal is no longer correlated betwbe two time series. The correlation
is restored by performing a WLSQ fit of a quadratic functioritie overlapping region of the
two time series (right panels).
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Table 6.6: The results from using updated realisations o&iid the solar system ephemeris.
The last column gives the change in the valueldfvith respect to processing the observations
with TT(TAI) and DE405, the realisations used for our data se

Realisation Solar Change
of Terrestrial System A? T 42 in A2
Time Ephemeris (x107%%) (x1073%) (x107%)
TT(TAI) DE405 —4.5 9.1 0.0
TT(TAI) DE421 ~2.3 9.4 2.2
TT(BIPM2010) DE405 —3.7 8.7 0.8

the GWB signal af = 1/Tyenap but this new bias is easily corrected with the calibratastdrs
v (fx). However, there is an additional loss of 10% of the GWB signalur observations
because of this extra WLSQ fit.

6.4.3 Correlated Signals in the Timing Residuals

The GWB analysis is complicated by the unknown effects otpttorrelated signals in the
timing residuals. Instabilities in TT(TAI) and errors iretsolar system ephemeris both produce
signals that are correlated between different pulsars. n&tability in TT(TAI) will affect all
pulsars in the same way, inducing a correlated signal thatespendent of the angular sepa-
ration of the pulsars on the sky. This would lead to a posiiffeet in the correlation curve in
Figure 1.8. An inaccuracy in the solar system ephemerigyyltally induce residuals that are
positively correlated for small pairwise angular separai Such a signal could be correlated
with the GWB signal shown in Figure 1.8. We estimated theceftd these uncertainties by
using an updated realisation of TT and the most recent spdée® ephemeris.

Instabilities in realisations of TT produce a positive @osrrelation independent of angular
separation. Any estimate of the clock error will thus be elatted with the estimate of the GWB
amplitude. Had we made a significant detection of the GWB, wuould have to be accounted
for. To estimate the importance of possible clock instébgd| we processed our observations
using the version of TT released by Bureau InternationaRieds et Mesures (BIPM) in 2010
(e.g., Petit, 2003). This post-corrected timescale hasaled statistically significant inaccu-
racies in TT(TAI). The results are shown in Table 6.6. While thange of clock reference
only changes our estimated GWB level by nine per cent of tlterainty, the absolute change

(0.8 x 10~3Y) is at a significant level for some predictions of the GWB (Seetion 5.2.2). This
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implies that such instabilities in realisations of TT mustdzcounted for when analysing future
data sets.

The results from using the newest solar system ephemeri@ D&blkner et al., 2009) are
given in Table 6.6. While there have been some improvemarités ephemeris version com-
pared to DE405, most of the changes are absorbed by the jpalsaneter fit. The estimated
GWSB level has changed by 24% of the uncertainty. If we assubE#D is correct, then the use
of DE405 is similar to introducing a spurious GWB signal with= 1.5 x 107!, a signal that
Is undetectable in most of our time series. However, futlrgeovations will need to account

for the effects of inaccuracies in the solar system ephameri

6.4.4 Contribution of Different Pulsars to the Estimate of A2

It is difficult to determine the exact contributions to thegleing of each pulsar pair when using
error bars derived from Monte Carlo simulations. The domireffect is the size 0T oyeriap
For a GWB caused by SMBHBs, the weighting factor increasgscagmately aslyd ., A
higher noise level in the residuals of each pulsar in thewilidecrease the weight of that pair
approximately linearly. The angle subtended at the obsdryehe pair of pulsarg;; can be
important ifd;; is near the zeroes of the function plotted in Figure 1.8.

To determine which pulsars contribute the most to our esérofithe GWB, we perform
the WLSAQ fit described by equations (6.7) and (6.8) to only dBhe possible 1904%( (6:5)
estimates. By varying which estimate 4f,¢ (;;) is removed, we can find the pulsar pairs that
have the greatest influence over the measuremetit of these residuals. This is performed by
finding AA? for each pair of pulsars, which is the measuredfrom all pulsar pairs minus the
value of A2 whennot including the given pulsar pair. Those pairs with the latgestribution

to this measure are given in Table 6.7, and a histogram oftbelate vaIu#Afi? for all pulsar

pairs is provided in Figure 6.7.

This analysis shows that the measurementidfs determined by only a few pulsar pairs.
This severely reduces the number of degrees of freedom wiectihg the GWB, and thus
decreases the maximum attainable detection confidencelé¢set et al., 2005) because it re-
duces our ability to average out the self-noise in the redgloaused by the GWB signal at
each pulsar. Observing more strong pulsars is essentiattedsing the number of degrees of

freedom in order to detect the GWB with reasonable confidehleis is further endorsement of
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Table 6.7: The nine pulsar pairs whose absence from the ehnayges the measurement4¥
from our residuals by more tha)—. The first column contains the names of the pulsars in
the pair, the second column lists values/#fi2, and the third column gives the change as a
percentage of the value a2 derived when using all our data.

Removed Pulsar Pair AA? (x107%°) Percentage change

J1713-0747,J31744-1134 18.0 -400%
J2124-3358, J2145-0750 2.32 -52%
J1730-2304, J1744-1134 2.10 -47%
JO0711-6830, J2145-0750 1.26 -28%
J0437-4715, J1909-3744 -1.07 24%
J0437-4715, J2129-5721 -1.36 30%
J0437-4715, J2145-0750 -1.41 31%
J1713+-0747, 32145-0750 -3.97 88%
J0437-4715, J17130747 -7.15 159%
(@]
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Figure 6.7: The effect oni2 of the removal of different pulsar pairs, as measureqiﬁbxyi%
Almost all pulsar pairs have no significant effect on the gadtiA? obtained from our residuals.
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the International Pulsar Timing Array concept (Sectior) 21id agrees with the conclusions of
Jenet et al. (2005), but is contrary to a suggested strategletection of individual GW sources
(Burt et al., 2011). This is a fundamental difference betwie single GW source detection
problem and the GWB detection problem.

6.5 Conclusion

In implementing a GWB detection algorithm along the linegimally proposed by Jenet et al.
(2005), we have confronted a number of issues that must besskt when using real obser-
vations. We find that in practice the S/N ratio can be redugeglfiactor of~12 compared with
the ideal situation discussed by Verbiest et al. (2009) imeeaf the fitting of a timing model
to form the residuals. In particular, almost all of the sigioas is caused by the fitting of a
guadratic term and arbitrary phase offsets between diffesbserving systems. We also find
that it will be important to estimate and correct both clocioes and ephemeris errors when
attempting to detect the GWB at a level less than= 2 x 107'°. As pointed out by Jenet
et al. (2005), prewhitening will be required to obtain détatsignificance larger thady. We
find that this cannot be done without solving the problem &fcsfal leakage due to irregular
sampling and variable ToA uncertainties.

Fortunately, there are encouraging indications that mdrtlgese problems can be solved.
Recent work (Hobbs et al., 2011; Champion et al., 2010) shioatclock errors and ephemeris
errors can be estimated and removed. These errors are aldhavwould disrupt the GWB
signal in pulsar timing observations in the near future, emald even impact the analysis of a
modified version of the Verbiest et al. (2008, 2009) obséatthat did not include arbitrary
phase offsets between observing systems. The clock andnepiseccommunities will continue
to improve their data sets as systems with more sensitieitpime available. It appears possible
to improve the process of fitting a timing model and also toroep the spectral leakage using
the algorithm discussed by Coles et al. (2011). It has prpassible to calibrate most of the
phase discontinuities between different observing systenthe PPTA observations and this
alone can improve the S/N ratio of the GWB signal by a factdnaf.

We have not discussed DM variations, but it is likely that sashthe low frequency noise
in our residuals is due to such interstellar propagatioectst Certainly as the various PTA data

sets improve it will be essential to estimate and remove eeguency-dependent effects.
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Our analysis shows that, although the Verbiest et al. (22089) data set contains obser-
vations of 20 pulsars spanning many years, only a few of th&apsiin this data set contribute
significantly to detecting the GWB, thereby reducing ouredgbn confidence. It is uncertain
whether this will be the case for the most recent observatitm the PPTA. Observations of

a larger sample of pulsars with precise TOA measurementéi@lp to overcome this problem.
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Chapter 7

Conclusion and Future Prospects

Chapter Outline: In this Chapter, we:

e describe the field of GW research using pulsar timing as it wa07 when this thesis
commenced.

e summarise the results of Chapters 3 — 6.

¢ outline future work and a path to a possible detection of G\Wis pulsar timing.

This thesis has addressed the problem of how to study GWg osiservations of MSPs.
We have focussed on current results using observationstfref@RPTA project. A detection has
not yet been made, but we have constrained the amplitudegliesGW sources. In Section
7.1, we highlight the status of GW detection experimenté \pitlsars before and during this

thesis work. In Section 7.2, we discuss the possible futtitiei® exciting project.

7.1 The Past

At the start of 2007, it was already clear that pulsar obgema could be used to make a direct
detection of GWs (e.g., Sazhin, 1978; Detweiler, 1979) stFattempts to create a PTA had
been described by Foster & Backer (1990), and Hellings & Do{ir®83) had shown that an
unambiguous detection of a GWB could be made by measurimglated timing residuals with
a specific angular dependence. Jenet et al. (2005) had shatva PTA project would need to
observe>20 pulsars ovep5 years to be sensitive to expected GW sources. Howevet, dene
al. (2004) had already used pulsar observations to rule pubt@osed SMBHB system in the
radio galaxy 3C66B with a high degree of confidence.

In 2005, the main data collection for the PPTA project sthrt& small subset of the data
were studied to provide a limit on the amplitude of the GWBhgieet al., 2006). This work led

to the most constraining limit on the GWB amplitude untillg&011 and was used to rule out
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some models of cosmic superstrings. However, this methawhaesd that the timing residuals
were statistically white and therefore limited the apgima of the algorithm to only a few data
sets. Jenet et al. (2005) had proposed a method to detect g @Whis method could only
be applied to timing residuals that had the same regular lsagrfpr all pulsars. The treatment
of the effects of pulsar parameter fitting on the algorithms&WB detection had scarcely
been considered (particularly for data sets in which eadbapwvas observed for a different
time-span).

Over the course of this thesis, we have described technifpatsan be applied to almost
any set of observations from a PTA. Through the work of Cha@eand 4, it is now possible
to measure the sensitivity of almost any set of PTA obsesaatto an individual GW-induced
sinusoid. This means that a realistic sensitivity curveictis analogous to the LIGO sensitiv-
ity curve, can now be calculated for GW analysis with a PTArkChapter 5, we reported that
the non-detection of a GWB signal in the near future wouldsjg® significant constraints on
currently-accepted models of SMBH formation and evolutiblowever, if a GWB signal can
be detected, it is possible to use the technique of Chapteidétect a GWB signal in almost
any PTA data set in a straightforward and unambiguous way.d&tection using this technique
takes account of the effects of pulsar parameter estimatiarmregularly-sampled observations
over different time-spans with unequal error bars. Thisknaaso shows that the GWB detec-
tion statistic currently relies on only a handful of pulsargshe PPTA, whereas a successful
detection of the GWB requires the contribution of many pudsa&his is contrary to the optimal
observing strategy for detecting single sources of GWshhatbeen outlined in other recent
work (Burt et al., 2011).

7.2 The Future

We currently have not detected any GW signal using the PP B&mations. It is clear that the
detection technique should be improved, the current ddsansed to become more sensitive
and that observations of even more pulsars are requiredfollbe/ing steps are being carried
out to achieve this:

First, the IPTA project (Section 2.1) will allow data froml #he major PTA projects to
be shared. This project is essential for a high-confidentectien of a GW signal in PTA

observations. Under the IPTA, observations of many moregslwill be available. This
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will significantly increase the probability of a detectiohaosingle GW source and especially
the probability of a GWB detection. Aside from the statigtibenefits of a larger number of
pulsars, it could also prove vital for convincing a wider plog audience that any GW signal

that is detected is in fact caused by GWs.

Second, Chapter 6 showed that instabilities in TT(TAI) mé&gaure the GWB signal.
While such an instability can be distinguished from the GVitghal using their different cor-
related signatures, the noise level in the residuals redelay the post-corrected realisation
TT(BIPM2010) is at the level of most predictions for the GWBral due to SMBHBs. Algo-
rithms have been implemented to detect and remove thislgigohbs et al., 2011), and these

algorithms should now be combined with a GWB detection aligor.

Third, Chapter 6 also showed that errors in the solar syspdraraeris may induce a stronger
signal in the timing residuals than the GWB signal. While acdfal analysis technique has been
applied to measure the mass of known planets in the solamy&hampion et al., 2010), the
effect of such errors on the likelihood of GWB detection withisars has not been considered
in detail. In particular, it is possible that the correlaggghal induced in timing residuals by an
error in the solar system ephemeris will be related to theetatied signal that is caused by a
GWB.

Fourth, while we have not discussed the importance of DMatiams in obscuring a GWB
signal, it is generally accepted that the DM variations witluce significant low-frequency
noise in the timing residuals of many pulsars. It is possibleorrect for such variations by

comparing observations obtained at widely-separatedaibgefrequencies.

Fifth, if no GW signal is detected in the IPTA data, it is veikely that almost all current
predictions for the amplitude of the GWB signal caused by $8B will be ruled out in the
next few years. This would have important consequencesuivest models of galaxy forma-
tion and evolution. However, which of the parameters thatwsed in modelling the GWB
signal (i.e., the black-hole merger rate, the merging eificy, the black-hole mass function;
see Section 5.2.2) are ruled out (or constrained) usingengipper bound on the GWB is not

yet clear.

Finally, while it is uncertain whether pulsar timing or vgmecise interferometry will make
the first direct detection of GWs, any GW signal that is det@awill herald the era of GW

astronomy. This opens up an entirely new method of obsernapiroviding simultaneous EM
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and GW information for some sources while also illuminatingviously unobservable regions

of the Universe.
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Appendix A

Our Technique for Detection of a
Gravitational-Wave-Induced Sinusoid in
Actual Pulsar Timing Observations

This Appendix contains supplementary material releva@hapter 4.

In the following sections, we give full details of the implentation of the algorithms de-
scribed in Section 4.2. In particular, we describe some efpifoblems that arose during the
analysis. Solutions to these problems are described b&lbve their implementation as a

TEMPO2 plugin is given in Appendix B.

A.1 Our Technique for Producing a Sensitivity Curve

Our method for creating curves showing the sensitivity aftoning residuals to GW-induced
sinusoidal signals from individual SMBHBSs takes into aatiomion-white noise. To produce a
sensitivity curve for a given set of pulsars and their tintagjduals, we use a three-step process

as follows:

1. We choose logarithmically-spaced GW frequencies be‘woéb?and%t; (single pulsar)
or between30yr)~! and (28 d)~! (multiple pulsars). The frequency sampling we used
for multiple pulsars requires oversampling each periodogby a factor30 yr/ Ty for

that pulsar.

2. At each frequency, we:
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(a) add the effect of a sinusoidal GW point source with angfiegquency2r f;, am-
plitude h, and random sky-position and polarisation to the ToAs, asrde=d by
Equation (3.6).

(b) process the data usimgmMpP0O2 to obtain post-fit timing residuals.

(c) run a detection algorithm (described below) on the fibsesiduals that reports

either a detection or a non-detection.

(d) repeat steps 2a — 2c a large number of times (wel Os@&erations) and record the

detection percentage.

(e) If we have detecte®5 + 1) % of the signals then we have satisfied our detection
criterion and we record; andh,, which places a point on the pulsar timing sen-
sitivity curve. If the detection criterion is not satisfieatjjusth, higher if too few

detections have been made and lower if too many, then retistep 2a.
3. Select the next frequency in the grid and repeat.

Our detector functions as follows:

1. For each pulsar in the input data set, we calculate a nomalized Lomb-Scargle peri-

odogram of the residuals with the frequency range descabege.

2. We smooth the periodogram by taking the logarithm of thegyovalues and using a box-
car median filter. By default, the number of points in the fileell times the oversam-
pling factor for that pulsar. This accounts for the coretbspectral estimates induced by

the oversampling of the periodogram and by the irregulacisgeof the timing residuals.

3. We use a least-squares fit to the median-smoothed logegpiam to obtain a low-order
polynomial (i.e., of order less than six) that provides agemimodel of the power spec-
trum (see Section A.4). The median-smoothing and modeiditire performed only on
those points in the periodogram with frequeney Ty,s) . This three-step spectral mod-
elling process ensures that the simulated GW source is oltded in the model as part
of the noise in the spectrum. This is particularly importrthe low- and high-frequency
edges of the periodogram. When analysing the data colldécied multiple pulsars we
combine their periodograms using a weighted sum. The weggd for each pulsar is the

inverse of the simple frequency-dependent model of the pspectrum for that pulsar.
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4. We multiply the noise model obtained above by a factor@f — 3 (determined from
simulations; see Section A.3) to define a set of detectiogstiolds for any given false
alarm probability (we us®’; = 1%). These detection thresholds are set such that there is
a 1% probability of any observed power across the whole gegtam being greater than

the threshold when there is no signal present.

5. If the measured power in the channel containing the inWitfquency is greater than
the detection threshold in that channel, then we have madgemtibn of a significant

sinusoid.

In place of step 1 of the GW detection algorithm described/apbommen & Backer (2001)
used a floating-mean periodogram. Such a periodogram aftamtbe sinusoid fitted by the
Lomb-Scargle algorithm to have non-zero mean. This can Ipeitant when the observations
are sparsely sampled. We have not used a floating-mean pgraod because we expect the
improvement to be relatively small for our well-sampledetstions. Furthermore, the detec-
tion algorithm we present in this Appendix is a simple impértation that we acknowledge is
not optimal.

Some of the simulated sinusoidal GW point sources produge Isignals in the timing
residuals, depending on their amplitude, polarisationlaadtion on the sky. If a set of timing
residuals showed evidence of a strong signal, a typicayaisalvould use a model of the pulsar
with the fewest possible parameters (i.e. a period, patarisative and any arbitrary phase off-
sets) to obtain residuals. This allows the observationg texamined more closely to determine
the source of signal. To simulate this process, in step 2beate calculate the full parameter
fit as normal and measure the reduggdhor the fit. If the reduced? is larger than 20, then
we instead only fit for the pulsar period and spin-down, amdafbitrary phase jumps between
different backend systems.

The weighted fit for the pulsar parameters sometimes inesetig®e power calculated at
certain frequencies by the periodogram. This is becaus@enwdogram technique does not
account for the uncertainty in each ToA estimate. For exangltra power may be induced at
a period of six months because the weighted pulsar parafitejeres an updated value of the
parallax that increases the unweighted power at this frequd his is not surprising, but it can
lead to false detections. This was accounted for in the nfindedf the power spectrum - con-

servative models were used in general. An optimal treatmentd require a more-complicated
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weighted power spectral estimate. A weighted spectrahesé would also increase the leakage

in the periodogram because of the highly variable ToA uadeties.

A.2 Our Technique for Producing an Upper Limit or a Limit
Matrix

As described in Section 4.2, we have developed a techniqueliiog out GWs with a particular
strain amplitude as a function of frequency. The importasuanption in producing an upper
bound is that, at any frequency in our periodogram, the paaesed by GWs cannot be more
than the observed power. If it were, we would have observejlach power level at that
frequency. This means that we assume that all the power aea fiequency is caused by an
individual non-evolving source of GWs. We then calculate @\W strain that gives a power
greater than this level in 95% of simulations. This valuehaf GW strain becomes the upper
bound.

To produce this upper bound, we first calculate the pericatogof the observed timing
residuals of each pulsar. We make a simple polynomial mddéleonoise in this periodogram
and use the inverse of this noise model as the weight in @logla weighted and summed
periodogram. This weighted and summed periodogram is timé threshold” in this case. The
limit threshold roughly represents the weighted averageenevel in the residuals.

We then simulate the ToAs induced by a non-evolving SMBHBg & quation (3.6). These
induced ToAs are consistent with a noiseless sinusoid. \[#&ydpe TEMPO2 parameter fit
directly to these ToAs to calculate the residuals inducedhisy SMBHB in each pulsar. We
calculate the weighted and summed periodogram of the inteseduals using the same noise
model for each pulsar that is used for the actual obsenatde compare this weighted sum of
noiseless sinusoids to the limit threshold. We then scastifain amplitude so that the induced
signal produces more power than the limit threshold in 95%imiulations. We can thus rule
out the existence of any stronger GW sources at this frequ@vith random sky position and
polarisation) with 95% confidence.

Unlike in the detection case, we cannot use the redyée inform us of the quality of
the pulsar parameter fit. This is because we are fitting ppk@meters to a noiseless sinusoid,
so the reduced? is meaningless for these parameter fits. However, the ampliof each

simulated GW signal when producing a limit is considerabfaler than that required to make
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a detection because the limit threshold is lower than theatien threshold. An upper bound
on the amplitude of a sinusoid present in timing residualsalvays be lower than the lowest

detectable amplitude, because detection must accourtdardise in the detector.

A.3 The False Alarm Probability

We have used simulations to calculate the detection thieégboa false alarm probability of
1% across the whole weighted and summed periodogram of a data set. The statistics of
each channel in the periodogram approximately folloyalistribution with 2V, degrees of
freedom, but many other effects change the statistics ¢f elaannel, as described below.
After adding a large GW signal to our ToAs that induces a sitis frequency channé|
the statistics of channelfollow a non-central?-distribution, i.e., a Ricean distribution. This
does not affect the false-alarm probablility determirmatioit would affect analytic determina-

tions of pulsar timing sensitivity. Other effects include:

e the irregular sampling of the time series (which can causestaded estimates of the

power in different channels);

¢ the oversampling of the periodogram when analysing melfipilsars (which means that
the peaks in the periodogram will be more fully resolved amastthe peak value is

higher); and

¢ the median filtering (which lowers the height of each pealhageriodogram as well as

raising the troughs).

Our method for calculating the detection threshold is samib the method described in
Section 3.2.2. We calculatg ;, which is the detection threshold in an individual frequenc
channel that gives a 1% false alarm probability, by assurttiag the power follows a?-
distribution with 2V, degrees of freedom. For this analydis, is a factor of 2 lower than the
level implied by ay?-distribution with 2V, degrees of freedom because the mean of such a
distribution is 2V,.,, whereas the mean of the weighted and summed periodograiy,iswWe
then choose’ > 1 (generally in the rangé.3 < 5’ < 2.5) and calculatd = 3'1; ;. T} forms
a first estimate of the detection threshold correspondiraygarticular false alarm probability

across all frequencies in the periodogram.
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We then simulate- 10? realisations of white noise with a rms residual of 100 ns dred t
same sampling as the original time series. We do not perforave o2 parameter fit, nor add
any SMBHB signals to the data. We calculate a weighted andrsdperiodogram for each
realisation and compare it . We find the number of simulated data sets yielding a detectio
at any frequency. If this number is more than 1% of the totatber of simulated data sets, then
we increases’ and repeat the process. The factors adjusted until we find the correct factor
B' = B such that the detection rate above the correct detectiestibtd?; = 57 ; equals the
false alarm probability. Note that the process of calcotati described here is equivalent to

manually calculatings in Section 3.2.2.

A.4 Modelling the Power Spectrum

Some typical spectral models used in our analysis are showigure 4.1. The three pulsars
shown in this figure are the same three whose individual seitygis displayed in Figure 4.2.
In general, the models chosen are conservative in the pressmred noise to minimise the
number of spurious detections at low frequencies.

The spectral models in Figure 4.1 exhibit some typical fiestfrom our analysis. In partic-
ular, the models account for the confusion between red moie timing residuals and signal
leakage caused by irregular sampling. Many of the PPTA pai(&acluding PSRs J04374715
and J1713-0747) exhibit high power levels at the lowest frequenciebis Tequires the in-
clusion of more terms in the chosen polynomial model; fomegie, PSRs J17130747 and
J0437-4715 are both modelled with quartic polynomials. On the okt@and, the timing resid-
uals of PSR J185/0943 exhibit a flat periodogram at all frequencies beforeatth@ition of
simulated GW signals. However, if the actual residuals heghlaffected by a low-frequency
GW source, we would be unable to distinguish between leakagethe GW signal and low-
frequency noise. As shown in Figure 4.1, it is conceivab#é these timing residuals are af-
fected by low-frequency noise in the channels adjacent @ostgnal. Hence, we model its
periodogram with a cubic polynomial to take account of thet that we cannot distinguish
between a low-frequency GW source affecting the ToAs anahogsk affecting the ToAs.

When limiting the amplitude of the individual non-evolvi&WV sources that could be af-
fecting our observations, we do not add sinusoids to the anedgiming residuals. Hence,

a different model for the power spectrum may be used fromettst®wn here, because the
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features in the periodogram are different.
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Appendix B

Computer Programs Implemented

This Appendix contains the source code for three ofri@P02 plugins that | developed during
my PhD. This code is included in my thesis in case the origsnakrce code is lost or deleted,
and as a reference for some details described in the thebite ¥We code has been thoroughly

tested for functionality, it has been only slightly editedaid readability.

All three codes are freely available online at:
http://ww. at nf. csiro. au/ resear ch/ pul sar/tenpo2/i ndex. php?n=Mai n.
Pl ugi ns

B.1 TheXFER_FUNC4 PLUG.C plugin

This plugin is described in Section 2.4.3 of this thesisall been slightly edited for its appear-
ance from the original source code.

/*****************************************************************************/

I/« a plugin to determine the transfer function of tempo2 as ittsacon a particular data set.
You need to rerun this code everytime you change which partemse are being fit for OR
have a new data set if you want to correct for the effects of petn. This code also uses
smoothed and interpolated white noise as the "prefit” spaoh and performs the same
smoothing and interpolation on the posfit residuals to calculate the postfit spectrum.
This does not affect the transfer function at low frequenciéwhich is what we care about
, given the weighting function used in the GWB detection dsdatc) and appears to have
negligible effect on the transfer function at high frequeas.

*/

#include <stdio.h>

#include <string .h>

#include <stdlib.h>

#include <math .b>

#include "tempo2.h”

#include "TKspectrum.h”

#include "T2toolkit.h”

#include "TKfit.h”

#include "GWsim.h”

using namespace std;
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void makeldealSats (pulsakpsr,int npsr,char parFile [MAX.PSRVAL][MAX _FILELEN], char timFile][
MAX _PSRVAL][MAX _FILELEN]) ;

void TK_weightLS2(double xx,double xy,double xsig ,int n,double *xoutX ,double xoutY ,int xoutN,
double xoutY_re, double xoutY_.im, int useWeight);

void interpolateSplineSmoothdouble xinX, double xinY, int inN, double separation ,double x*
interpX , double xinterpY , int xnlnterp);

void unique (double xin, int nin, double xout, int *xnOut);

double TKfindWeightedRMSd(double xx,double xwt,int n);

double TKWeightedmeand (double xx,double xwt,int n);

double TKfindWeightedVarianced (double xx,double xwt,int n);

void interpolateSplineSmoothFixedPhaséduble xinX, double xinY, int inN, double separation ,
double xinterpX , double xinterpY , int xninterp, double fixedStart);

/+ The main function called from the TEMPO2 package is ’'grapalinterface’ x/

I/« Therefore this function is required in all plugins */
extern "C” int graphicallnterfaceint argc ,char xargv[], pulsar xpsr,int xnpsr)
{
printf("\n\n!!! NB your tim file must be sorted because this program us€Kspectrum!!!

Which sorts your data!!\n\n\n\n");
char parFile [MAX_.PSRVAL][MAX _FILELENT;
char timFile [MAX_PSRVAL][MAX _FILELEN];
int i,k,j,p,it,nit;
nit = 1000; // default value
int specType = 2;//default is Lomb Periodogram
double hifac = 3.0; //default is to go to 3 times higher frequency than the avezag this
should hopefully cover all possible overlapping data spans
int smooth = 0; //default is no smoothing by a 6day width exponential smoother.
int interp = 1; //default is to do the interpolation.
int useWeight = 0;//default is to just do a LSQ fit for the spectral estimates thvi
specType = 4.
double phase = 13.0; //the phase offset in the "fixedPhase variable® defines where in
the fortnight we take each sample after interpolation.
double globalParameter ;
xnpsr = 0; /x For a graphical interface that only shows results for one pal x/
printf ("Graphical Interface: xferfunc\n”);
printf (”Author: DY\n");
printf(”"Version: 1I\n");
/* Obtain all parameters from the command line/
for (i=2;i<argc;i++)
{
if (strcmp(argv[i],=f")==0)
{
strcpy (parFilefknpsr],argv[i+1]);
strcpy (timFile[xnpsr],argv[i+2]);
(*npsr)++;
printf ("sxnpsr =%d " xnpsr);
}
else if (strcmp(argv[i],=nit”)==0)
sscanf (argv[++i], "%d”, &nit);
else if (strcmp(argv[i],~phase”)==0)
sscanf (argv[++i], "%lf”, &phase);
else if (strcmp(argv[i],~—specType”)==0) //2 => Lomb Scarlge , 4 > Weighted Lomb
Scargle , 1== DFT
sscanf (argv[++i], "%d”, &specType);
else if (strcmp(argv[i],=smooth”)==0) //Do a 60-day smooth and reinterpolate the
data onto a daily grid.
smooth = 1;
else if (strcmp(argv[i],=nolnterp”)==0) //Don’t do the interpolation onto the regular
grid

159



interp = 0;
else if (strcmp(argv[i],>~useWeight”)==0) //=0 to do an unweighted LSQ fit of sin and
cos to determine spectrum, = 1 to do a weighted LSQ fit.
useWeight = 1;
else if (strcmp(argv[i],=h")==0]||strcmp(argv[i],~—help”)==0)

{

printf ("\n TEMPO2 xferfunc plugin: determines the transfer function of tempo2 at i
acts on a particular data set. That is, what effect does ténpave on the
power spectrum of any input data set automatically , e.g. thi@ in the power
spectrum at 1l/lyear, the dip at the lowest few frequencieusea by quadratic
fitting , etc., and what are the error bars on the spectral imsttes?3n”);

printf(” ===3n");

printf ("\nUSAGE: \n\t tempo2—gr xfer_func —f parl.par timl.tim—f par2.par tim2.tim
...(as many as desired) [option%i}”);

printf ("\n Command line options\in”);

printf ("—h or —help:\t display help and exit{n”);

printf ("—nit:\'t number of iterations to do in determining the transfer fdaimom\n");

printf ("—specType\t determines which kind of periodogram to de—> 1 gives DFT, 2
gives Lomb Scargle, 4 gives Weighted Lomb Scarghé);

printf ("—smooth\t turns on smoothing and interpolating the input data seat");

printf ("—useWeight\t uses weights to calculate the LSQ fit of sins and cosines to
determine the power spectrum”);

printf ("—nolnterp \t turns off the interpolation step when used with-sSmooth’ \n")

exit(0);

}
}
printf("\n");

if (specType == 1)

{
printf ("DFT selected , you MUST have regular sampling to ugée!!!!\n");
}
else if (specType != 1 & specType != 2 & specType != 4)
{
printf ("Unknown spectral analysis type”);
exit(1);
}
readParfile (psr,parFile ,timFilex,npsr); /x Load the parameters */
readTimfile (psr,timFile s npsr); /* Load the arrival times */
preProcess (psr,npsr,argc,argv);
for (i=0;i<2;i++) /« Do two iterations for pre- and postfit residualsx/
{
formBatsAll (psr xnpsr); I/« Form the barycentric arrival timessx/
formResiduals (psrxnpsr,1); I/« Form the residuals */
if (i==0) doFit(psr #npsr,0); [/« Do the fitting */
}

/llong seed = TKsetSeed();

long seed = —1540; printf("\n\n\n\nHARD CODING SEED \ t\t\ t\tWARNING!!! \ t\t\n\n\n\n");
long double xxsat0, toffset;

double xxcheckResY;

double xxresY, sxxresX, sxxresE;

FILE «fout, xfoutPre , xfoutPost;

int badFitFlagWeighted = 0; //a counter which measures how often the weighted postfitsrm
is greater than the weighted prefit rms.

int badFitFlagNotWeighted = 0; //a counter which measures how often the unweighted postfit
rms is greater than the unweighted prefit rms.

160



int badFitFlag = 0;//a flag to tell us if there was a bad fit.
double prefitRMS , postfitRMS , postfitVAR , postfitWeightedVAR; //the unweighted pre and
post—fit rmses and the unweighted postfit variance.

char fname[100];

double tspanpknpsr], fnyq[xnpsr]; //fnyg is the "average” Nyquist frequency, as used in the
TKperiod program, which is the Nyquist frequency one obtainf the points are evenly
spaced over time.

double maxTspan;

double minTspan;

long double minsat[xnpsr], maxsatfnpsr], avgTspan=0.0;

double xxxwhite; //a 3D array that contains all the white noise realisations’ll use.

/I Allocte Memory
sat0 = (long double sxx)malloc (MAXPSR:«sizeof(long double x));
checkResY = (louble xx)malloc (MAXPSR:sizeof(double x*));
resY = (double xx)malloc (MAXPSR:sizeof(double x));
resX = (double xx)malloc (MAXPSR:sizeof(double x));
resE = (double xx)malloc (MAXPSR:sizeof(double x));
white = (double xxx)malloc (MAXPSR:sizeof(double xx));
for (i=0;i<MAX_PSR;i++)
{
checkResY[i] = (double x)malloc (MAXOBSNtsizeof(double));
resY[i] = (double x)malloc (MAXOBSN«sizeof(double));
resX[i] = (double x)malloc (MAXOBSN«sizeof(double));
rese[i] = (double x)malloc (MAXOBSN«sizeof(double));
satO[i] = (long double x)malloc (MAXOBSNtsizeof(long double));
white[i] = (double xx)malloc (nitxsizeof(double *));
for (j=0;j<nit;j++)
white[i][j] = (double x)malloc (MAXOBSN«tsizeof(double));
}

/I START PLUGIN

// following is essentially for splitting up the 1857 data tse though it could be generally
applicable.

double maxallowablegap = 2000.0; //in units of days. THIS IS AN ARBITRARY CHOICE, simply so
that we know 1857 gets split up.

long double maxgapfknpsr];

int locmaxgapknpsr]; //the location of the biggest gap in the time series.

// Calculate timespans

toffset = psr[0].param[paraopepoch].val[0];

for (p=0;p<knpsr;p++)

{

minsat[p]=maxsat[p]=psr[p].obsn[0]. sat;
maxgap[p] = 0.0L;
for (j=0;j<psr[p].nobs;j++)

{
if (psr[p].obsn[j].sat< minsat[p]) minsat[p] = psr[p].obsn[j]. sat;
if (psr[p].obsn[j].sat> maxsat[p]) maxsat[p] = psr[p].obsn[j]. sat;
if (psr[p].obsn[j+1].sat— psr[p].obsn[j].sat> maxgap[p] & j < psr[p].nobs-1)
{
maxgap[p] = psr[p].obsn[j+1].sat psr[p].obsn[j]. sat;
locmaxgap([p] = j; /lso the biggest gap appears between theth and j+l1-th
observations.
}
}

tspan[p] = (double) (maxsat[p]— minsat[p]);
fnyq[p] = psr[p].nobs / 2.0 / (tspan[p]x 86400.0); //and now fnyq is the average
Nyquist frequency for this pulsar in see€l
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avgTspan += (ong double) tspan|[p];
printf ("maxgap[p] = %Ld\n",maxgap[p]);

avgTspan = avgTspan /lé¢ng double) xnpsr;

maxTspan = TKfindMaxd(tspan ¥ npsr);

minTspan = TKfindMind(tspan #npsr);

printf("max time span present in data is %|g”,maxTspan);
printf ("min time span present in data is %l@”,minTspan);
printf(”"average time span present in data is %byn”,avgTspan);

// Store residuals
int nresfxnpsr];
for (p=0;p<xnpsr;p++)
{
nres[p] = psr[p].nobs;
for (i=0;i<psr[p].nobs;i++)

{
if (psr[p].obsn[i].deleted!=0)
{
printf ("Must remove deleted points from the .tim file for p%es\n”,psr[p].name)
exit(1);
}
resY[p][i] = (double)psr[p].obsn[i].residual; // for 1857, this is MORE obsns than
we need, but will have to do truncating later on in the code.
resX[p][i] = (double)(psr[p].obsn[i].sat— toffset + 1000.0L);
resE[p][i] = (double)(psr[p].obsn[i].toaErxl.0e—6);
}
}
printf(”"\n");

makeldealSats (psk,npsr, parFile ,timFile); // Determine the idealised site arrival times

// Store ideal sats in satO[][], TESTED that ideal sats regllare ideal (rms of resid’s is

0)
for (p=0;p<*npsr;p++)
{
for (i=0;i<psr[p].nobs;i++)
satO[p][i] = psr[p].obsn[i].sat; /I note these are the ideal site arrival times
}

/I power spectral estimation parameters and allocate megmor

int MAX_SPEC = 2000 (int)hifac;

double xspecXPre x specXPostsspecY, xavgPreSpecY ,xavgPostSpecYxspecY.re, xspecY.im;

double xxallPrefitSpectra;//to store each iteration, thus enabling calculation of a
statistical error bar

double xxallPostfitSpectra;//same as above.

specXPre = @ouble x)malloc (MAX.SPEG:sizeof(double));

specXPost = @ouble x)malloc (MAX.SPEG:sizeof(double));

specY = (double x)malloc (MAX.SPEG:sizeof(double));

specY.re = (double x)malloc (MAXSPEG:sizeof(double));

specY.im = (double x)malloc (MAX_SPEG:sizeof(double));

avgPreSpecY = double x)malloc (MAX_SPEG:sizeof(double));

avgPostSpecY = double x)malloc (MAXSPEG:sizeof(double));

allPrefitSpectra = ¢(ouble xx)malloc (MAX.SPEG sizeof(doublex));

allPostfitSpectra = fdouble xx)malloc (MAXSPEG sizeof(doublex));

for (i=0;i<MAX_SPEC;i++)

{
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allPrefitSpectra[i] = @double x)malloc(nitxsizeof(double));
allPostfitSpectra[i] = @ouble x)malloc(nitxsizeof(double));
}

int nSpecPre ,nSpecPost; //if we are doing smoothing, then the preand post-fit, smoothing
, interpolation number of spectral estimates will be diffemrt.

double checkVar;

double errPrefitSpectra [MAXSPEC];

double errPostfitSpectra [MAXSPEC];

double errPrefitSpectraLower [MAXSPEC];

double errPostfitSpectraLower [MAXSPEC];

FILE xallPre , xallPost , xxfer_funcs;

//SMOOTHING parameters and allocate memory.

double avgTau;

int nres.unig[xnpsr],nresinterp[«xnpsr];

double suml, currentday ,weight,countl ,meanl, separation;
double xxresY_interp xxresE.interp xxresX_interp;

double xxresY2 xxresE2 xxresX2;

double xxresX_uniq ,xxresE2uniq x*resY2.uniq;

if (smooth == 1)
{

resX.interp = (double xx)malloc (MAXPSR:«sizeof(double x));

resX2 = (double xx)malloc (MAXPSR:sizeof(double x));

resX_uniq = (double *xx)malloc (MAXPSR:sizeof(double *));

resY_interp = (double xx)malloc (MAXPSR:«sizeof(double x));

resE.interp = (double xx)malloc (MAXPSR:«sizeof(double x));

resY2 = (double xx)malloc (MAXPSR:sizeof(double x*));

resY2.uniqg = (double xx)malloc (MAXPSR:«sizeof(double x));

rese2 = (double xx)malloc (MAX.PSR:sizeof(double x));

resE2uniqg = (double xx)malloc (MAXPSR:sizeof(double x));

for (p=0;p<xnpsr;p++)

{

resX_interp[p] (double *)malloc (MAX.OBSNtsizeof(double));
resY_interp[p] (double *)malloc (MAX.OBSNtsizeof(double));
resEinterp[p] = (double x)malloc (MAXOBSNtsizeof(double));
resX2[p] = (double *)malloc (MAXOBSNtsizeof(double));
resX_uniq[p] = (double x)malloc (MAXOBSN«tsizeof(double));
resY2[p] = (double x)malloc (MAXOBSNtsizeof(double));
resY2_unig[p] = (double x)malloc (MAX.OBSN«sizeof(double));
resE2[p] = (double *x)malloc (MAX.OBSN«sizeof(double));
rese2uniq[p] = (double x)malloc (MAXOBSN«sizeof(double));

double maxVariance [MAXPSR], maxWeightedVariance [MARSR]; //the maximum variance of the
white noise simulated for pulsar p;

double var; [//for computational speed

double wtvar; //weighted variance

double wts[MAX_OBSN]; //the weights used in calculating the wtvar

double fixedPhase =-15000.0— (double)toffset + phase;//fixes the phase of the grid of
points for interpolation. The 0.0 is a variable that can clgem the results by shifting
which points are in the cross spectrum and which ones aren’t

printf ("fixedPhase = %g, resX[0][0] = %g, xres[1][0] = %@",fixedPhase , resX[0][0],resX
(11000 ;

//BEGIN iteration to find average pre and post-fit spectrum.
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for (p=0;p<*npsr;p++)
{
badFitFlagWeighted = 0;
badFitFlagNotWeighted = 0;
sprintf(fname ,” AllIPrefitSpectra.dapsr%s”,psr[p]. name);
sprintf(fname ,” AllPostfitSpectra.dapsr%s”,psr[p].name);
if (useWeight == 1)
{
for (i=0;i<psr[p].nobs;i++)
wts[i] = 1.0 / resgE[p][i] / resE[p][i];

pr intf (" \n ==== ==== === ::::::::::\:n ”) ;
printf ("Reading data for psr %s:”,psr[p].name);
for (it=0;it<nit;it++)

{
if ((it+1)%(nit/10) == 0)
{
printf(”it: %d/%d Simulating white noise in array white[gJt][i]\r”,it+1,
nit);
fflush (stdout);
}
/I Fill up "white” array with white noise realisations.
for (i=0;i<psr[p].nobs;i++)
{
white[p][it][i] = TKgaussDev(&seed)x* (double)(psr[p].obsn[i].toaErxl1l.0e—6);
I/l creates white noise consistent with error bars on each mptoi Note that |
CAN'T USE resE here because, if I'm doing an unweighted fitesE gets
reset to 1.0 (!!!!l) May not be true with my new TWeightLS2 code.
/I = TKgaussDev(&seed)*1.0e—7; // creates 100ns of white noise.
}
if (useWeight == 0) var = TKvarianca (white[p][it], psr[p]. nobs);
else if (useWeight == 1) wtvar = TKfindWeightedVariancd (white[p][it],wts, psr[p].
nobs);
if (it == 0)
{
if (useWeight == 0) maxVariance[p] = var;
else if (useWeight == 1) maxWeightedVariance [p] = wtvar;
}
else
{
if (useWeight == 0 & var> maxVariance[p]) maxVariance [p] = var;
else if (useWeight == 1 & wtvar> maxWeightedVariance [p]) maxWeightedVariance [
pl] = wtvar;
}
}
if (useWeight == 0) printf (XnuseWeight = %d and maxVariance[p] variance =\%g,
useWeight , maxVariance[p]);
else if (useWeight == 1) printf (XnuseWeight = %d and maxWeightedVariance [p]

variance = %yn”,useWeight, maxWeightedVariance[p]);

/I'begin transfer function calculation.
for (it=0;it<nit;it++)
{
if ((it+1)%(nit/10) == 0)
{
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printf(”it: %d/%d setting residuals equal to white noise darprocessingr”, it
+1,nit);
fflush (stdout);
}

if (badFitFlag == 1) //if we had a bad fit last time, then

{
/!l Create some BRAND NEW white data

for (i=0;i<psr[p].nobs;i++)
{
resY[p][i] = TKgaussDev(&seed)*x (double)(psr[p].obsn[i].toaErx1.0e—6);
psr[p].obsn[i].sat = satO[p][i]+({ong double)(resY[p][i]))/86400.0L;

}
badFitFlag = O;
}
else if (badFitFlag == 0) //if the last fit was fine, use the next iteration of
stored white data
{
for (i=0;i<psr[p].nobs;i++)
{
resY[p][i] = white[p][it][i];
psr[p].obsn[i].sat = satO[p][i]+({ong double)(resY[p][i]))/86400.0L;
}
}

psr{p].nJumps = O;

for (i=0;i<MAX_PARAMS; i ++) //to avoid memory errors due to array size
overflow (e.g. Kin and Sinl are linked parameters, so evergeriation we will
have a new link)

{
psr[p].param[i].nLinkTo = 0; //to avoid memory errors due to array size
overflow
psr[p].param[i].nLinkFrom = 0; //to avoid memory errors due to array size
overflow
}
readParfile (psr+p, parFile+p,timFile+p,1); /x Load the parameters for pulsar p
only Note that we are NOT rereading the tim-file x/
vectorPulsar(psr+p,1); /x 1. Form a vector pointing at the pulsar/
calculatebclt(psr+p,1);
formBats (psr+p,1); /x Form Barycentric arrival timesx/
formResiduals (psr+p,1,0); //these are PREFIT residuals
/ITRUNCATE prefit data set if it has a gap in it larger than MAXOWABLEGAP!!! if

maxgap for this pulsar is bigger than maxallowable gap, thehoose the latest
portion of this pulsar and discard the first few observation
if (maxgap[p] <= maxallowablegap)
{
locmaxgap[p] =-1;
}
if (it == 0) printf("locmaxgap[p] = %dn”,locmaxgap([p]);
if (it == 0) printf("nres[p] = %d, psr[p].nobs = %", nres[p],psr[p].nobs);
for (i=0;i<psr[p].nobs— locmaxgap[p]— 1;i++) //from the other side of the
biggest gap onwards, start recording observations.
{
resX[p][i] = (double)(psr[p].obsn[i + locmaxgap[p] + 1].sat toffset + 1000.0L)
/I Recall toffset = psr[0].param[parampepoch].val[0],
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checkResY[p][i] = (double)psr[p].obsn[i + locmaxgap[p] + 1].residual;// These
are the PREFIT residuals

reseE[p][i] = (double)psr[p].obsn[i + locmaxgap[p] + 1].toaEwle—6; //so err is
in seconds now

if (maxgap[p] <= maxallowablegap)
nres[p] = psr[p].nobs;
else
{
nres[p] = psr[p].nobs— locmaxgap[p]— 1;
tspan[p] = resX[pl[psr[p].nobs— 1] — resX[p][locmaxgap[p] + 1];
}
if (it == 0) printf("nres[p] = %d, psr[p].nobs = %d, tspan[p] =¢n”,nres[p],psr[p
].nobs, tspan[p]);

if (it == 0)

{
if (useWeight == 0) printf (X nvariance is %g and smooth = %",
TKvariance.d (checkResY[p],nres[p]) ,smooth);
else if (useWeight == 1) printf (\nWGTED variance is %g and smooth = %al
, TKfindWeightedVarianced (checkResY[p],wts,nres[p]) ,smooth);
}

//Now smooth and interpolate the white naempo2-fit data, calculate the power
spectrum after smoothing and interpolation and set this dse t"PREFIT" power

spectrum .
if (smooth == 1) //do smoothing and then the interpolation
{
avgTau = 60.0;//this is the smoothing width
if (strcmp(psr[p].name,”1939+2134")==0) avgTau = 30.0; //to
remove the bump near the end of the time series.
if (it == 0) printf ("FIXING!!! avgTau = %lg\n”",avgTau);

for (i=0; i<nres[p]; i++) [//i is observation number in postinterpolated time

series.
{
sum1=0.0;
resY_interp[p][i]=0; resE.interp[p][i]=0;
currentday = resX[p][i]; /I smooth onto the same time points as the input

time series.
resX_interp[p][i] = currentday ;

//IDO the smoothing. filterid controls whether to use gaussior exponential
smoother— 1 = Gaussian, 2 = expnl.
for (k=0;k<nres[p];k++)
{
weight = exp¢fabs(resX[p][k] — currentday)/avgTau) / pow(resE[p][k],2);

suml+=weight;
resY_interp[p][i]J+=weightxcheckResY [p][K];
resE.interp[p][i]+=pow(weightcresE[p][k],2);
}
resY2[p][i] = resY_.interp[p][i] / suml;
rese2[p][i] = sqrt(resEinterp[p][i] / pow(suml,2) );
resX2[p][i] = currentday ;

countl = O0; /I Remove means UNWEIGHTED ! Tt
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meanl = 0.0;
for (i=0;i<nres[p];i++)

{
if (resY2[p][i] '= 0)

{
meanl+=resY2[p][i];
countl ++;

}

}

meanl/=double) (countl);
for (i=0;i<nres[p];i++)
if (resY2[p][i] '= 0) resY2[p][i]-=meanl;

if (TKmeand(resY2[p],(int)countl)> 1.0e-10) {printf ("ERROR!! mean of resY2

[%d] = %g != 0, countl = %4n”,p, TKmeand(resY2[p],(int)countl), countl);
exit(1);}

if (interp == 1)

{
/Inow interpolate smoothed data onto a regular grid using a&nctrained
cubic spline— day separations given by "separation”.
separation = 14.0; //2 weekly time series
if (it == 0) printf("separation = %lgn”,separation);
//INOW run unique () code on resX2 and resY2 to get a list of weigSATs and
(SAT-sorted) residuals;
unique (resX2[p],nres[p],resXunig[p],.&nres.uniq[p]);
unique (resY2[p],nres[p],resYainig[p].&nres.uniq[p]);
unigue (resge2[p],nres[p],resgE@nig[p].&nres.uniq[p]); //MAKE SURE ERRORS
AREN’'T ALL EQUAL AT THIS POINT!!
/INow run the spline interpolation.
interpolateSplineSmoothFixedPhase (resXiq[p], resY2uniq[p], nresuniq[p],
separation , resXinterp[p], resY.interp[p], &nres.interp[p],fixedPhase)
//Now run the spline interpolation ON THE ERROR BARS usingeitrh variance.
need calculate variance of the erctBniq[p] array
for (i=0;i<nresuniq[p];i++)
rese2uniq[p][i] = resE2uniq[p][i] = resE2uniqg[p][i];
interpolateSplineSmoothFixedPhase (resXiq[p], resE2uniq[p], nresuniq[p],
separation , resXinterp[p], resEinterp[p], &nres.interp[p],fixedPhase)
/I reset value of uniq error.
for (i=0;i<nresuniq[p];i++)
rese2uniq[p][i] = sqrt(resE2uniq[pl[il]);
/I'make the interpolated resknterp the standard deviation (error), not the
variance .
for (i=0;i<nres.interp[p];i++)
resE.interp[p][i] = sqrt(resEinterp[pl[i]);
}
else //not performing interpolation
{

for (i=0;i<nres[p];i++)
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resX_interp[p][i] = resX2[p][i];
resY_interp[p][i] resY2[pl[il;
resE.interp[p][i] rese2[pl[il;

}
nres.interp[p] = nres[p];
}
}
if (smooth == 1)
{
if (specType!=4)

TKspectrum (resXinterp[p],resY.interp[p],resEinterp[p],nresinterp[p
1,0,0,0,0,0,specType ,1,1,1,specXPre , specY,&nSpecBr®, specYre,
specY.im, useWeight);

else
TKspectrum (resXinterp[p],resY.interp[p],resEinterp[p],nresinterp[p
1,0,0,0,0,0,6,1,hifac ,1,specXPre ,specY,&nSpecPre,0 specY.re,
specY.im, useWeight);
}
else if (smooth == 0) //no smoothing done
{
if (specType!=4)

TKspectrum (resX[p],checkResY[p],resE[p],nres[p],0,,0,0,specType ,1,1,1,
specXPre ,specY,&nSpecPre ,0,0, spec&, specYim,useWeight);

else

{

TKspectrum (resX[p],checkResY[p],resE[p],nres[p],0,0,0,0,6,1, hifac ,1,
specXPre ,specY,&nSpecPre ,0,0, spec&, specYim, useWeight);

}

}
for (i=0;i<nSpecPre;i++)
{

if (it == 0) avgPreSpecY[i] = O;
avgPreSpecY [i] += specY][il];
allPrefitSpectra[i][it] = specY][i];
}
//END OF SMOOTHING AND INTERPOLATING PREFIT DATA NOW Do fiitg

doFit(psr+p,1,0); /«+ Do the fitting */

vectorPulsar(psr+p,1); /x 1. Form a vector pointing at the pulsar/
calculatebclt(psr+p,1); /x 3. Calculate bclt x/

formBats (psr+p,1); /* Form Barycentric arrival times x/
formResiduals (psr+p,1,0); /x Form the residuals */

if (maxgap[p]> maxallowablegap) // so if there is a large gap in the data and we
will have to truncate the data set
{
for (i=0;i<psr[p].nobs;i++)
checkResY[p][i] = (double)psr[p].obsn[i].residual;

if (useWeight == 0) postfitVAR = TKvarianca (checkResY[p], psr[p].nobs);
//this is the unweighted postfit variance!!!!lll
else if (useWeight == 1) postfitWeightedVAR = TKfindWeightedVamce.d (

checkResY[p],wts, psr[p].nobs); //this weighted postfit variance!

/ITRUNCATE postfit data set if it has a gap in it larger than XM LOWABLEGAP!!!
choose the latest portion of this pulsar and discard the firéew observations.
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for (i=0;i<psr[p].nobs— locmaxgap[p]— 1;i++) //from the other side of the
biggest gap onwards, start recording observations.

resX[p][i] = (double)(psr[p].obsn[i + locmaxgap[p] + 1].sat toffset + 1000.0L)
/I Recall toffset = psr[0].param[parampepoch].val[0],
checkResY[p][i] = (double)psr[p].obsn[i + locmaxgap[p] + 1].residual;// These
are the PREFIT residuals
rese[p][i] = (double)psr[p].obsn[i + locmaxgap[p] + 1].toaEwle—6; //so err is
in seconds now

if (maxgap[p] <= maxallowablegap)
nres[p] = psr[p].nobs;
else

{
nres[p] = psr[p].nobs— locmaxgap[p]— 1;
tspan[p] = resX[pl[psr[p].nobs- 1] — resX[p][locmaxgap[p] + 1];

}
if (it == 0) printf("nres[p] = %d, psr[p].nobs = %d, tspan[p] =¢n”,nres[p],psr[p

].nobs, tspan[p]);

if (maxgap[p] <= maxallowablegap) //because we haven't calculated the postfit
variance yet if it's a normal data set.

{
if (useWeight == 0) postfitVAR = TKvarianca (checkResY[p],nres[p]); [/
this is the unweighted postfit variance!!!!ll!
else if (useWeight == 1) postfitWeightedVAR = TKfindWeightedVamce.d (checkResY [
pl,wts,nres[p]); //this weighted postfit variance!
}

if (useWeight == 0 & maxVariance[pk postfitVAR) /li.e. if the fit has pushed
the variance to be greater than the largest variance we hawgput, then
{
++badFitFlagNotWeighted;//record a bad fit;
printf (”\nBAD UNWEIGHTED VARIANCE FIT RECORDED, maxVariance[p] = %g postfitVAR
=%g, it = %d\n",maxVariance[p], postfitVAR ,it);
—it; //reset the iteration number;
badFitFlag = 1;//this was a bad fit.
continue; //return to start of iteration loop with iteration value reg.
}
else if (useWeight == 1 & maxWeightedVariance [p postfitWeightedVAR) //i.e. if
the fit has pushed the variance to be greater than the largese¢ighted variance

we have input, then

{
++badFitFlagWeighted ;//record a bad fit;

printf (”"\nBAD WEIGHTED VARIANCE FIT RECORDED, maxWeightedVariande] = %g,
postfitWeightedVAR = %g, it = %in”, maxWeightedVariance [p],
postfitWeightedVAR ,it);

—it; //reset the iteration number;

badFitFlag = 1;//this was a bad fit.
continue; //return to start of iteration loop with iteration value reg.

//BEGIN SMOOTHING AND INTERP on postfit data

if (smooth == 1) //do smoothing and then the interpolation
{
avgTau = 60.0;//this is the smoothing width
if (strcmp(psr[p].name,”1939+2134")==0) avgTau = 30.0; //to

remove the bump near the end of the time series.
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if (it == 0) printf ("FIXING!!! avgTau = %lg\n”,avgTau);

for

}

(1=0; i<nres[p]; i++) [//i is observation number in postinterpolated time
series.

sum1=0.0;
resY_interp[p][i]=0; resE.interp[p][i]=0;
currentday = resX[p][i]; /I smooth onto the same time points as the input

time series.
resX_interp[p][i] = currentday ;

//IDO the smoothing. filterid controls whether to use gaussior exponential
smoother— 1 = Gaussian, 2 = expnl.
for (k=0;k<nres[p];k++)

{
weight = exp¢fabs(resX[p][k] — currentday)/avgTau) / pow(resE[p][k],2);

suml+=weight;
resY_interp[p][i]J+=weightxcheckResY [p][Kk];
resE.interp[p][i]+=pow(weightiresE[p][k],2);
}
resY2[p][i] = resY_.interp[p][i] / suml;
resE2[p][i] = sqrt(resEinterp[p][i] / pow(suml,2) );
resX2[p][i] = currentday ;

/I Remove means
countl = O;
meanl = 0.0;

for

{

}

(i=0;i<nres[p];i++)

if (resY2[p][i] !'= 0)
{
meanl+=resY2[p][i];
countl ++;

}

meanl/=double) (countl);

for

{
}

(i=0;i<nres[p];i++)

if (resY2[p][i] !'= 0) resY2[p][i]-=meanl;

if (TKmeand(resY2[p],(int)countl)> 1.0e—10) {printf ("ERROR!! mean of resY2

if
{

[%d] = %g != 0, countl = %4n”,p, TKmeand(resY2[p],(int)countl), countl);
exit(1);}

(interp == 1)

/Inow interpolate smoothed data onto a regular grid using @anstrained
cubic spline— day separations given by "separation”.

separation = 7.0; //2 weekly time series

if (it == 0) printf(”"separation = %lgn”,separation);

//INOW run unique () code on resX2 and resY2 to get a list of weigSATs and
(SAT-sorted) residuals;

unigue (resX2[p],nres[p],resdunig[p],&nres.uniq[p]);

unique (resY2[p],nres[p],resYainig[p].&nres.uniq[p]);

unique (resgE2[p],nres[p],resE@nig[p].&nres.uniq[p]); //MAKE SURE ERRORS
AREN’'T ALL EQUAL AT THIS POINT!!

/INow run the spline interpolation.
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interpolateSplineSmoothFixedPhase (resXiq[p], resY2uniq[p], nresuniq[p],

separation , resXinterp[p], resY.interp[p], &nres.interp[p],fixedPhase)

//Now run the spline interpolation ON THE ERROR BARS usingeitrh variance.
/I'need calculate variance of the ert2niq[p] array
for (i=0;i<nresuniq[p];i++)

rese2uniq[p][i] = resE2uniq[p][i] = resE2uniqg[p][i];

interpolateSplineSmoothFixedPhase (resXiq[p], resE2uniq[p], nresuniq[p],

separation , resXinterp[p], resEinterp[p], &nres.interp[p],fixedPhase)

/I reset value of uniq error.
for (i=0;i<nresuniq[p];i++)
rese2uniq[p][i] = sqrt(resE2uniq[p][il]);

/I'make the interpolated resknterp the standard deviation (error), not the

variance.
for (i=0;i<nres.interp[p];i++)
resE.interp[p][i] = sqrt(resEinterp[pl[i]);

}

else //not performing interpolation
{
for (i=0;i<nres[p];i++)

{
resX_interp[p][i] = resX2[p]l[i];
resY_interp[p][i] = resY2[p]l[i];
resE.interp[p][i] = resgE2[p][i];

}

nres.interp[p] = nres[p];

//'if no smoothing , then proceed straight to calculating ptéig spectrum below.
if (smooth == 1)
{
if (specType!=4)
TKspectrum (resXinterp[p],resY.interp[p],resEinterp[p],nresinterp[p
1,0,0,0,0,0,specType ,1,1,1,specXPost,specY,&nSpsatP0,0, specYre,
specY.im, useWeight);

else
TKspectrum (resXinterp[p],resY.interp[p],resEinterp[p],nresinterp[p
1,0,0,0,0,0,6,1,hifac ,1,specXPost,specY,&nSpecPd@s0,, specYre,
specY.im, useWeight);
}
else if (smooth == 0) //no smoothing done
{
if (specType!=4)
TKspectrum (resX[p],checkResY[p],resE[p],nres[p],0,0,0,0,specType ,1,1,1,
specXPost,specY,&nSpecPost ,0,0, sperg’, specYim, useWeight);
else
TKspectrum (resX[p],checkResY[p],resE[p],nres[p],0,0,0,0,6,1, hifac ,1,
specXPost ,specY,&nSpecPost ,0,0, sperd, specYim, useWeight);
}

for (i=0;i<nSpecPost;i++)

{
if (it == 0) avgPostSpecY[i] = 0;

171



avgPostSpecY[i] += specY[i];
allPostfitSpectra[i][it] = specY[i];

if (it == nit — 1)
{
//OUTPUT AVERAGE PREFIT SPECTRA

printf ("For pulsar %s, badFitFlagNotWeighted = %d, badFliagWeighted = %d, nit
= %d\n”,psr[p].name, badFitFlagNotWeighted , badFitFlagWkigd , nit);
if (specType == 1)
sprintf (fname ,"%sAvg_Prefit_.DFT_%d” ,psr[p].name, nit);
else if (specType == 2)
sprintf (fname , "%sAvg_Prefit_.Lomb_%d” , psr[p].name, nit);

else if (specType == 4)
{
if (resg[p][0] == 1.0e-7 & resE[p][1l] == 1.0e-7)
sprintf (fname ,"%sAvg_Prefitt UnWLS.%d" ,psr[p].name, nit);
else if (resg[p][0] == 1.0 & resE[p][1l] == 1.0)
sprintf(fname ,"%sAvg_Prefitt UnWLS.%d” ,psr[p].name, nit);
else

sprintf (fname ,"%sAvg_Prefit WLS_ %d”,psr[p].name, nit);
}

printf ("\nwriting to file %s: FREQPREFIT MEAN-PREFIT UPPERPREFIT LOWER
PREFIT\n" ,fname);

for (i=0;i<nSpecPre;i++)
{

printf(”Sorting Prefit channel: %d/%@gdr”,i+1,nSpecPre);
fflush (stdout);

avgPreSpecY [i] /= nit;
TKsortit(allPrefitSpectra[i], allPrefitSpectral[i], dPrefitSpectrali], nit);

errPrefitSpectra[i] = allPrefitSpectral[i][int)round (0.975% nit)];

[l upper
error bar

errPrefitSpectraLower [i] = allPrefitSpectral[i]fifot)round(0.025% nit)]; //
lower error bar

}
//OUTPUT ALL AVERAGE POSTFIT SPECTRA

if (specType == 1)
sprintf (fname ,"%sAvg_Postfit DFT_%d” , psr[p].name, nit);
else if (specType == 2)

sprintf(fname , "%sAvg_Postfit.Lomb_%d”,psr[p].name, nit);
else if (specType == 4)

{
if (resg[p][0] == 1.0e-7 & resE[p][1l] == 1.0e-7)
sprintf (fname ,"%sAvg_Postfit UnWLS_%d”, psr[p].name, nit);
else if (resg[p][0] == 1.0 & resE[p][1l] == 1.0)
sprintf (fname ,"%sAvg_Postfit UnWLS %d”, psr[p].name, nit);
else
sprintf (fname ,"%sAvg_Postfit WLS_ %d” ,psr[p].name, nit);
}

printf ("\nwriting to file %s: FREQPOSTFIT MEAN-POSTFIT UPPERPOSTFIT LOWER
POSTFIT\n” ,fname) ;

for (i=0;i<nSpecPost;i++)

{
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return O;

printf(”"Sorting Postfit channel: %d/%dr”,i+1,nSpecPost);

fflush (stdout);

avgPostSpecY [i] /= nit;

TKsortit(allPostfitSpectra[i], allPostfitSpectra[ilallPostfitSpectral[i], nit)

errPostfitSpectra[i] = allPostfitSpectrali]fifit)round(0.975%nit)]; //

upper error bar
errPostfitSpectraLower[i] = allPostfitSpectra[i]j6t)round(0.02% nit)]; //
lower

//OUTPUT TRANSFER FUNCTION need to only calculate for whatever is the minimum
of nSpecPre and nSpecPost

sprintf (fname ,” Transferfunction.SmoothInPlace . datpsr%s”,psr[p].name);

printf ("\nwriting to file %s: FREQ AVGPRE AVGPOST POST / PRRE",fname
)

xfer_funcs = fopen(fname,"w");

for (i=0;i<nSpecPost;i++)

{
if (i >= nSpecPre) break; //ensures we get the minimum of nSpecPre or
nSpecPost
fprintf (xfer_funcs ,"%.45g9 %.159 %.159 %.15@",specXPost[i] / 86400.0,
avgPreSpecY [i], avgPostSpecY[i], avgPostSpecY[i] / avg®pecY[i]);
}

fclose (xferfuncs);
printf ("DONE WRITING TO FILE\n"); printf (" \nCOMPLETE\n") ;

/I This code does a (can be weighted) least squares fit of 'hAwwt) + Bcos(wt)” to a data set.

This

least squares fit is used to determine the amplitude bf treal and imaginary parts

of the DFT.

I+ xxx*xxxxThe definition of the Discrete Fourier Transform used in shicode issssskskksknkss*

*

*

*

X_k =2 % (1/numPts) x X_k(wikipedia) *
where we have the following definitions and justification: *
"2" = > the spectrum below is oreided because all the-ve frequencies are *
folded into the positive ones (so the DC term must be mult. By 2 *

"1/nPts” = > makes the numbers match up just one of the arbitrary definitions of DFT %
"X _k(wikipedia)” ==> The definition of Xk given at the top of the wikipedia *
article at "http://en.wikipedia.org/wiki/DiscreteFourier_transform s

The definition given in this articles is: *
X_k(wikipedia) = sum{n=0}"{numPtg x.n % exp{—2«pixixk«n/numPtg *

e sk ok sk sk ok ok ok ok ok ok ok sk ok sk sk sk sk sk sk sk sk sk sk sk sk ok sk ok o sk sk ok sk sk ok sk ok sk sk sk sk ok sk sk ok sk s sk sk ok sk sk ok sk sk sk sk sk sk ok sk sk ok sk s sk sk ok ok sk ok sk sk ok sk ok sk sk ok ok sk ok ok [

//DANIEL’S ALGORITHM!! Calculate weighted least squarestfof sinusoids to the data,
equivalent to a weighted LomiScargle periodogram. Note that the returned amplitudes of
sines and cosines correspond to the imaginary and real panak the dft, NOT the amplitude
of the bestfit sine or cosine that fits in the data.

void TK_weightLS2(double xx,double xy,double *sig2 ,int n,double xoutX,double xoutY ,int =xoutN,
double xoutY_re, double xoutY_.im, int useWeight)

int i,j,nfreq = (int)floor ((double)n / 2.0) — 1;
long double s1,s2,s3,s4,5s5;

long double omega=0.0L;

long double si,ci;

long double omega0;

double sig[n];

double mean;
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double wt[n]; //an array of weights for calculating the weighted mean.
*OUtN = nfreq;

if (useWeight == 0) //No weighting

{
for (i=0;i<n;i++)
sig[i] = 1.0;
}
else if (useWeight == 1) //then use weighting
{
for (i=0;i<n;i++)
{
sig[i] = sig2[i];
wt[i] = 1.0 / (sig[i] = sig[i]); //preparing for taking weighted mean soon;
}
}
else
{
printf ("Unknown value of ’'useWeight’ in TKweightLS2\n");
exit(1);
}

/lzero mean input data— if it is a weighted fit, then the weighted mean must be zero.
if (useWeight == 0)
mean = TKmeand(y,n);

else if (useWeight == 1)
mean = TKWeightedmean (y,wt,n);
for (i=0;i<n;i++) y[i] —= mean;

/I Assuming the input x values are in days, then tspan is in stay
double tspan = TKranged(x,n);
omega0 = 2.0kM_Pl/tspan; //this matches the freq sampling of T#ft.

for (j=0;j<nfreq;j++)

{

omega = omega®d(long double) (j+1);

sl = s2 = s3 = s4 = s5 = 0.0L;
for (i=0;i<n;i++)
{
si = sinl(omegax[i]);
ci = cosl(omegax[i]);

//19th Nov 2009— DY has checked that these are the correct expressions for a
weighted leastsquares

sl += y[ilxsi/sig[i]/sig[i];

s2 += sixsil/sig[i]/sig[il];

s3 += sixci/sig[i]/sig[i];

s4 += y[ilxcilsig[i]/sig[i];

s5 += cixci/sig[i]/sig[i];

}
outY_re[j] = (s4*s2 — s1xs3) / (s5«s2 — s3xs3); //the amplitude of the best fitting
cos wave.
outY_.im[j] = (s4%xs3 — s1xs5) / (s3xs3 — s2«s5); //amp of best fitting sine wave
outY_re[j] = outY_re[j] * (double)n / 2.0; //the real Fourier component

outY_im[j] = outY_im[j] * (double)n / 2.0; //imag Fourier component
outX[j] = omega/2.0/MPI;
outY[j] = outY_re[j]xoutY_re[j]+outY_im[j]*xoutY_.im[j];
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/1 The following line assumes we want PSD output!
outY[j] = (outY[j]/pow(365.25«86400.0,2) x2x(tspan/365.25)/double)n/(double)n;

}

/lunique: a function that returns the list of unique value® ian array. NB!!! It assumes the
array has been sorted. the output array will always be smalléhan or equal to the input
array .

void unique (double xin, int nin, double xout, int *nOut)

{

int i;
*nOut=0;
for (i=0;i<nin—1;i++)
{
if (in[i] == in[i+1])
{

continue;

else
{
out[*nOut] = in[i];
++(xnOut) ;
}
}
out[*nOut] = in[nIn-1];
++(xnOut) ;
return ;

/I Adapted from Stefan / George’'s plugin. interpolation (spe): this function interpolates a
data set using constrained spline

void interpolateSplineSmoothdouble xinX, double xinY, int inN, double separation ,double x
interpX , double xinterpY , int =xnlinterp)

// array needed by TKcmonot
double yd[MAX_OBSN][4];

//auxilary i’
int i;
TKcmonot (inN, inX, inY, yd);
xninterp = 0;
do
{
interpX[*ninterp] = inX[0] + separationx (xnlnterp);
(xninterp) ++;
} while (interpX[+ninterp — 1] < inX[inN — 1]);

(xninterp }——;
TKspline_.interpolate (inN, inX, inY, yd, interpX , interpY ,xninterp);

} /linterpolateSplineSmooth

/l'interpolation (spline): this function interpolates a t& set using constrained spline onto
a fixed phase grid of points within the obseration baseline

void interpolateSplineSmoothFixedPhaséduble xinX, double xinY, int inN, double separation ,
double xinterpX , double xinterpY , int xnlnterp , double fixedStart)

/larray needed by TKcmonot
double yd[MAX_OBSN][4];
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/lauxilary i’

int i;

TKcmonot (inN, inX, inY, yd);
xninterp = 0;

i=0;
do
{
if (fixedStart + separationx i > inX[0])
{
interpX[«ninterp] = fixedStart + separation i; //only put down a point if we're
within the observation baseline for this pulsar (we don’'t mtato EXTRAPOLATE,
just INTERPOLATE) .
(xninterp)++;
i++;
}
else
i++;

} while (interpX[+nlnterp — 1] < inX[inN — 1]);

(xninterp }——;
TKspline_interpolate (inN, inX, inY, yd, interpX , interpY ,xninterp);

} /linterpolateSplineSmoothFixedPhase

/I TKfindWeightedVariance is a function to find the weigtte/ariance of an input series. x is
the array of values, wt is the array of weights, n is length oérges.
double TKfindWeightedVarianced (double xx,double swt,int n)

{
int i;
double mean,var=0.0,sumwt=0.0;
mean = TKWeightedmean (x,wt,n);
for (i=0;i<n;i++)
{
var += pow(x[i]-mean,2}wt[i];
sumwt += wt[i];
}
var/=sumwt;
varx=(double)n / (double)(n-1);
return var;
}

/I TKfindWeightedRMS is a function to find the weighted RMSam input series. x is the array
of values, wt is the array of weights, n is length of series.
double TKfindWeightedRMSd (double xx,double xwt,int n)

{
int i;
double mean,sdev=0.0,sumwt=0.0;
mean = TKWeightedmean (x,wt,n);
for (i=0;i<n;i++)
{
sdev += pow(x[i}-mean,2xwt[i];
sumwt += wt[i];
}
sdev/=sumwt;
sdevk=(double)n / (double) (n-1);
sdev = sqrt(sdev);
return sdev;
}
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/I makeldealSats: a function which replaces the sats in pgJr.[obsn[x].sat with ideal site

arrival times (i.e., the sats that give 0 residuals).
void makeldealSats (pulsakpsr,int npsr,char parFile [MAX.PSRVAL][MAX _FILELEN], char timFile][

MAX _PSRVAL][MAX _FILELEN])
int j,p,i;

for (j=0;j<5;j++)

{
for (p=0;p<npsr;p++)
{
psr[p].nJumps = 0;
for (i=0;i<MAX_PARAMS; i ++)
{
psr[p].param[i].nLinkTo = 0;
psr[p].param[i].nLinkFrom = O0;
}
}
readParfile (psr, parFile ,timFile ,npsr)/+« Load the parameters */
formBatsAll (psr,npsr); I/« Form the barycentric arrival timesx/
formResiduals (psr,npsr,0); /x Form the residuals */
for (p=0;p<npsr;p++)
{
for (i=0;i<psr[p].nobs;i++)
psr[p].obsn[i].sat—= (long double)psr[p].obsn[i].residual/86400.0L;
}
}
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B.2 ThePSD.SIMULATOR _PLUG.C plugin

This plugin is described in Section 2.4.3 of this thesisali been slightly edited for its appear-
ance from the original source code.

/**************************************************************** */

[ *

* This plugin takes in a powerlaw model ¢R°B for each freq F) for the low freq part of the
PSD, then extrapolates that model assuming you’'ve used aoshexr of the form exp{|t/tau
|) which has a known (and hard coded) transfer function, anderthsimulates regularly
spaced time series which are consistent with that PSD. Thare options to use just the
power law model an not the smoother as well, or to use the Geompectral model when he
was testing something. avgTau = 0.0 if no smoothing applied.

* am now editing it so it can take in George’'s spectral densitydal.

*/

#include <stdio.h>

#include <string .h>

#include <stdlib .h>

#include <math.h>

#include "tempo2.h”

#include "GWsim.h”

#include "T2toolkit.h”

#include "TKspectrum.h”

#include "TKfit.h”

using namespace std;

void makeldealSats (pulsakpsr,int npsr,char parFile [MAX.PSRVAL][MAX _FILELEN], char timFile[
MAX _PSRVAL][MAX _FILELEN]) ;

double TKfindWeightedVarianced (double xx,double xwt,int n);

double TKWeightedmeand (double xx,double xwt,int n);

#define MAX_FLAG 10

#define MAX_FREQ 10000

/+ The main function called from the TEMPO2 package is ’'grapalinterface’ x/

I/« Therefore this function is required in all plugins */
extern "C” int graphicallnterfaceint argc ,char xargv[], pulsar xpsr,int xnpsr)
{

short int dir;

int i,p,n,j,k,pp;

double globalParameter ;

/llong seed =-125;

long seed = TKsetSeed();

char fname[100];

int noRed = 0; I/l =1 => don’'t simulate red noise; =0 = do simulate red noise.

int yesClock = 0; // =0 => don’'t simulate clock red noise (common red noise to all
pulsars); =1 => do simulate red noise component which is the same for all puss.

//IGWB parameters

int ngw=1000;

double dist[MAX_PSR], alpha =-0.6666666666, gwamp = 1.0-<€l5;

int distNum = 0;

char parFile [MAXPSR][MAX_FILELEN], timFile [MAX_PSR][MAX_FILELEN];

double modelspecy [MAX PSR][2]; //stores the analytic powerdaw model spectrum for each
pulsar in the form (mean, exponent).

double clockspecy[2]; //the model of the clock spectrum.

int nspec [MAXPSR];

double tspan [MAXPSR];
double maxTspan;
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char line[1000];
FILE =fin, xfout;

int nread;

char dummy[100]; /l for ensuring the scanning in of spectral models goes in thight order
(the models match the pulsars they are supposed to match)

int nSpec;

double mean,mean2;

char specModelFile [MAXFILELEN];

sprintf (specModelFile ,”SpectralModel&inal2_psr”); //this is the prefix that goes before
all the Spectral model files used.

xnpsr = 0;

/* Obtain all parameters from the command line/

for (i=2;i<argc;i++)

{
if (strcmp(argv[i],=f")==0)
{
strcpy (parFilefknpsr],argv[i+1]);
strcpy (timFile[xnpsr],argv[i+2]);
(xnpsr)++;
}
else if (strcmp(argv[i],~specModelFile”)==0)//changes prefix of input file containing
the mean and the spectral exponent for each pulsar.
sscanf (argv[i+1],"%s”,&specModelFile);
else if (strcmp(argv[i],>=ngw”)==0)
sscanf (argv[++i], "d”, &gw) ;
else if (strcmp(argv[i],>gwamp”)==0)
sscanf (argv[++i], "%lf”, &wamp);
else if (strcmp(argv[i],=alpha”)==0)
sscanf (argv[++i], "%lf”, &alpha);
else if (strcmp(argv[i],=seed”)==0)
sscanf (argv([++i], "%d”, &seed);
else if (strcmp(argv[i],=noRed”)==0)
noRed = 1;
else if (strcmp(argv[i],=yesClock”)==0)
yesClock = 1;
else if (strcmp(argv[i],=dist”)==0)
{
sscanf (argv[++i], "%lf”, &dist[distNum]);
dist[distNumx=3.086e19;
distNum ++;
}
}

double xspecX, xspecY, xoutY_re, xoutY_im;

double xxfreq.in, sxpsd.in, %X, *xy, *xxt, kxxavgSpecX, xxavgSpecY; //t is the array of x
values obtained from the inverse DFT for each p; the PSD of timput data |I'm
simulating; AND x is real part of DFT, y is imag part of DFT

long double xxsatO;

double xxsatO.d;

specX = (double x)malloc (MAXFREQ:sizeof(double));

specY = (double x)malloc (MAXFREQtsizeof(double));

outY_re = (double x)malloc (MAXFREQrsizeof(double));

outY_.im = (double x)malloc (MAXFREQ:sizeof(double));

sat0 = (long double *x)malloc (MAXPSR:sizeof(long double x*));
freg_.in = (double xx)malloc ((x npsr)xsizeof(double x));

psd.in = (double xx)malloc ((*x npsr)xsizeof(double x));

x = (double xx)malloc ((x npsr)xsizeof(double x));
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y (double xx)malloc ((x npsr)xsizeof(double x));

t (double xx)malloc ((x npsr)xsizeof(double x));

sat0.d = (double xx)malloc (MAX_PSR:sizeof(double x));

avgSpecX = @ouble xx)malloc ((x npsr)xsizeof(double *));

avgSpecY = @ouble xx)malloc ((x npsr)«xsizeof(double x));

for (p=0;p<xnpsr;p++)

{

freg-.in[p] = (double x)malloc (MAXFREQ:sizeof(double));
psd.in[p] = (double x)malloc (MAXFREQxsizeof(double));
x[p] = (double x)malloc (MAXFREQxsizeof(double));
yip] (double x)malloc (MAXFREQxsizeof(double));
t[p] (double x)malloc (MAXFREQxsizeof(double));
avgSpecX[p] = @double x)malloc (MAXFREQ:sizeof(double));
avgSpecY [p] = double x)malloc (MAXFREQ:sizeof(double));
satO[p] = (long double x)malloc (MAXOBSNtsizeof(long double));
satO.d[p] = (double x)malloc (MAXOBSN«sizeof(double));

}

//Now read par and tims and form residuals. We need this fomdspan of data and for
position of pulsars in GWB

readParfile (psr, parFile ,timFilex,npsr); /x Load the parameters ®/

readTimfile (psr,timFile s npsr); /* Load the arrival times */

preProcess (psr,npsr,argc,argv);

/I printf ("Number of pulsars =%d and psr[0].nobs =%d and nd&ck = %d and noPlot = %dn", *
npsr, psr[0].nobs, noClock, noPlot);

formBatsAll (psr xnpsr); I/« Form the barycentric arrival timesx/
formResiduals (psrxnpsr,0); I/« Form the residuals these are PREFIT residuals
*/

long double meanVal;
long double kp[MAX_PSR][3];
long double gwRes[MAXPSR][MAXOBSN];

gwsSrc xgw;
if ((gw = (gwSrc x)malloc (sizeof(gwSrc)xngw) )==NULL)
{
printf ("Unable to allocate memory for %d GW sources”,ngw) ;
exit(1);
}
for (p=0;p<*npsr;p++)
{
setupPulsarGWsim(psr[p]. param[paranraj].val[0],psr[p]. param[paramdecj].val[0],kp[p]);
if (distNum == 0) dist[p] = (0.91+p/10.093.08568¢e19;
}

/INOW read in Clock model if it was selected.
if (yesClock == 1)
{
sprintf(fname ,”SpectralModelClock”);
printf ("Scanning %3n”,fname);
if ( (fin = fopen(fname,”r”)) == NULL)
{
printf ("Unable to open/find file %§n”,fname);
exit(1);
}

while (!feof(fin))

{
if (fgets(line ,1000, fin)!=NULL)

{
nread = sscanf(line ,"%s %lg %lg” ,dummy,&clockspec[l],&clockspec.y[0]);

180



if (strcmp(”clock”,dummy)!=0)
{
printf ("ERROR IN MODEL SCANNING! ’'clock’ does not equal %s:”,dummy);
fprintf(stderr ,"ERROR scanning %" ,fname) ;
exit(1);

}
}

fclose(fin);

}

//INOW READ IN MODELS for each pulsar power spectrum to be alite simulate the PSD
for (p=0;p<xnpsr;p++)
{
sprintf (fname, specModelFile);
strcat (fname, psr[p].name);
printf(”Scanning %3n”,fname);
if ( (fin = fopen(fname,”r”)) == NULL)

{
printf ("Unable to open/find file %§n”,fname);
exit(1);
}
while (!feof(fin))
{
if (fgets(line ,1000, fin)!=NULL)
{
nread = sscanf(line ,"s %lg %lg” ,dummy,&modelspgdp][l],& modelspecy[p][0]);
if (strcmp(psr[p].name,dummy)!=0)
{
printf ("ERROR IN MODEL SCANNING! %s does not equal %8”,psr[p].name,dummy);
fprintf(stderr ,"ERROR scanning %" ,fname) ;
exit(1);
}
}
}
fclose (fin);

}

/Inow we have all the spectral models (maybe including theocdk spectrum). Note these will
be multiplied by the transfer function of the expnl smoother give the spectrum across
all fregs.

// Calculate timespan of each data set, needed for frequenaue calculation

/! the following section of code finds the first and last obgations for each pulsar.
long double minsat[xnpsr], maxsatfnpsr], avgTspan=0.0;

double avDeltaT = 0.0; //the average sampling time

for (p=0;p<xnpsr;p++)
{
minsat[p]=maxsat[p]=psr[p].obsn[0]. sat;
for (j=0;j<psr[p].nobs;j++)
{
if (psr[p].obsn[j].sat< minsat[p]) minsat[p] = psr[p].obsn[j]. sat;
if (psr[p].obsn[j].sat> maxsat[p]) maxsat[p] = psr[p].obsn[j]. sat;
}
tspan[p] = maxsat[p]- minsat[p];
printf(”"tspan of pulsar %s = %g day®”,psr[p].name,tspan(p]);
avgTspan += (ong double) tspan|[p];
avDeltaT += (tspan[p] / (psr[p].nobs 1));
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}
maxTspan = TKfindMaxd (tspan #npsr);
avgTspan = avgTspan /l¢ng double) xnpsr;
avDeltaT = avDeltaT / {louble) xnpsr;

long double toffset = psr[0].param[paraopepoch].val[0];
long double toffset2 = 7000.0L; //so that the smoothing algorithm doesn’'t mess up with
negative measured SATs.

double delta_t[xnpsr]; //this is the timestep between days of simulated observatio
double numPtsknpsr]; //this is the number of points in the interpolated time sesie

//for setting flo and fhi, we use _bbs and also the average Nyquist frequency:
double flo;

double fhi;
flo = 1.0L/(20.0L * maxTspanx 86400.0L); //lowest GW simulate freq is 20 times the data
span

fhi = 1.0L/(1.0L x 86400.0L); //highest GW simulated freq is one day
gwamps= (pow(365.242586400.0,alpha));

/INow calculate time between consecutive observations
for (p=0;p<xnpsr;p++)
{
numPts[p] = 256.0; //NB this needs to be a power of 2.
if (numPts[p]> MAXFREQ) fprintf(stderr ,”Too many points in simulated time "es —>
increase value of MAXREQ\n");
delta_t[p] = tspan[p] / numPts[p];
printf("delta t = %g and numPts = %@”,delta_t[p],numPts[p]);
}
double avgTau;
long nfreq-in[«npsr];
double weights [MAXOBSN];
avgTspan = (ong double) TKmeand(tspan xnpsr);

/!l Determine the idealised site arrival times
makeldealSats (psk,npsr, parFile ,timFile);

// Store ideal sats in satO[][] TESTED that ideal sats reallgre ideal (rms of resid’s is 0)
for (p=0;p<xnpsr;p++)

{
for (i=0;i<psr[p].nobs;i++)
{
satO[p][i] = psr[p].obsn[i]. sat; /I note these are the ideal site arrival times
satO.d[p][i] = (double)psr[p].obsn[i]. sat; /I note these are the ideal site
arrival times
}
}

//FROM HERE ON we need to choose days vs. seconds. Choosing .da

/Inow calculate number of channels in psd and compute value of psdn which depends on
the input spectral model and the smoothing filter used

for (p=0;p<*npsr;p++)

{
avgTau = 60.0; //60 day smoothing filter for most pulsars if smoothing used
if (strcmp(psr[p].name,”1939+2134")==0) avgTau = 30.0; //to remove the bump near
the end of the time series.

nfreq-in[p] = (int)round ((1.0 / deltat[p]) / (1.0 / tspan[p]));
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int
for

for (i=0;i<nfreqg-in[p];i++)

{ freqg_in[p][i] = i/tspan|[p]; //this is in 1/days; it is important that the
numerator is "i”, so that we include a DC term.
if (i == 0)
{
psd.in[p][i] = 0.0; //no DC term
elie if (i <= (nfreq.in[p] / 2.0) )
{ psd.in[p][i] = modelspecy[p][0] * pow((freqg-in[p][i]/86400.0),modelspecy[p
1[1]); [//psd assuming freq is in days, psd measured in years
}
else
{
psd.in[p][i] = psd.in[p][ nfreq.in[p] — i 1;
}
}
it,nit = 1;

(it=0;it<nit;it++)

/INOW set up the GWB for this iteration!
GWhbackground (gw, ngw,&seed , flo , fhi ,gwamp, alpha ,1) ;
for (k=0;k<ngw;k++)
setupGW(&gw([k]) ;
for (p=0;p<xnpsr;p++)
{
for (i=0;i<nfreq.in[p];i++)
{
/I FILL IN NEGATIVE FREQUENCIES
if (i <= (nfreg.in[p] / 2.0) )
{
x[plli] TKgaussDev(&seed)* sqrt(psdin[p][i] / 4.0 / tspan[p] = 365.2425)
; /I'so x[p] in yr
ylp][i] = TKgaussDev(&seed)x* sqrt(psdin[p][i] / 4.0 / tspan[p] = 365.2425)
; /I'so y[p] in yr

}
else
{
x[pl[il = x[p][ nfreqg_in[p] — i I;
ylplli] = —1.0 = y[p][ nfreq.in[p] — i ];
}
}
/l/run the inverse FFT on complex array (x[p], y[p]) with x ang in units of years
-1
dir = —1; /-1 = inverse FFT, 1 = normal FFT

/«+ DESCRIPTION OF TKfft This computes an inplace complexto—complex FFT x and y
are the real and imaginary arrays of nres[p] = 2"m points. Itssumes the first
point is the DC term

*/

TK_fft(dir ,nfreq-in[p],x[p]l.ylp]);

/Imow x[p] is a complex time series measured in years and y[is] an independent
complex time series in years. both are realisations of theDPRgiven by psdin.

The number of points in x[p] is nfredn[p].

//convert units of x[p] y[p] to seconds (same units as resads) and find sample
times of x[p] and y[p]
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for (i=0;i<nfreq.in[p];i++)
{
x[pl[i] *= 86400.0:365.2425; //now x[p] measured in seconds.
t[p][i] = psr[p].obsn[0].sat + i* delta_t[p]; //t is measured in days

}

/INOW interpolate the derived time series function onto tlgeid of observations for
this pulsar.
TKinterpolateSplineSmoothFixedXPts (t[p],x[p],nfreim[p],sat0.d[p].,y[p].psr[p].nobs)

/l'so y[p] is now the same function as x[p] but sampled at theAREobservation times
of this pulsar.

/INOW calculate the effect of a GWB on the pulsars
for (i=0;i<psr[p].nobs;i++)
{
gwRes[p][i] = 0.0L;
for (j=0;j<ngw;j++)
gwRes[p][i] += calculateResidualGW (kp[p],&gw[j],(psp[].obsn[i].sat-toffset+
toffset2)x86400.0L, dist[p]);
}
//zero mean the GWB residuals for this pulsar
meanVal=0.0L;
for (i=0;i<psr[p].nobs;i++)
meanVal+=gwRes[p][i];
meanVal/=(double) psr[p]. nobs;

//INOW add GWB + white noise + timing noise to the ideal site aral times we made
earlier satO[][].

for (i=0;i<psr[p].nobs;i++)

{
if (noRed == 0)
{
psr[p].obsn[i].sat = satO[p][i] + (ong double) (y[p][i]/SECDAY) + ((gwRes[p
1[i] —meanVal) /SECDAY) + (TKgaussDev(&seed3 psr[p].obsn[i].toaErr* 1.0
e—6 |/ SECDAY);
}
else
{ //don’t simulate red noise from the model, just simulate twehinoise
consist. with error bars and a GWB.
psr[p].obsn[i].sat = satO[p][i] + ((gwRes[p][ HmeanVal)/SECDAY) + (
TKgaussDev(&seed )x psr[p].obsn[i].toaErrx 1.0e-6 / SECDAY);
}
}

sprintf(fname ,"%s.sim.sort.tim”,psr[p].name);
writeTim (fname , psr+p,"tempo2”);
}
if (it%1==0) {printf("COMPLETE, it+1/nit = %d/%d\r”,it+1,nit); fflush(stdout);}

}
printf (”\nCOMPLETE\n") ;
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B.3 ThePTA_CORRELATION _PLUG.C plugin

The algorithm that is implemented by this plugin is desatibeSection 6.2.1 of this thesis. It
has been slightly edited for its appearance from the origioarce code.

/************************************************************ */

I/« This plugin estimates the significance of a GWB signal in at s&f data. The correlation is
performed in the frequency domain. It uses the frequency alamcross—covariance
recommended by Bill with WEIGHTING. It also uses the transffunction which can be
calculated in xfecfunc or xferfunc[2,3,4] to improve the spectral analysis. It also uses
models for the power spectra which need to be in the specMbBdet described below.

*/

#include <stdio.h>

#include <string .h>

#include <stdlib .h>

#include <math.h>

#include "tempo2.h”

#include "GWsim.h”

#include "T2toolkit.h”

#include "TKspectrum.h”

#include "TKfit.h”

using namespace std;
#define MAX_FLAG 10
#define MAX_FREQ 5000

double calcHD (double angle);

double calcSignificance louble xcorr ,double xangle ,int ncorr ,int npsr);

double psrangle double centrellong ,double centrelat ,double psr.long ,double psr_lat);

void averagePtsfloat *x,float xy,int n,int width,float xmeanX,float xmeanY,int xnMean);

void fitHDcurve (double *x,double xy,double xe,int n,int wErr, int nharm ,double *A2,int =xo0utN,
double xeA2, double xreducedchisq);

void HDfunc(double x,double afunc[],int ma);

void HDfuncClk(double x1,double afunc[],int ma); /lused to fit the HD function AND a
constant

double TKfindWeightedRMSd(double xx,double xwt,int n);

double TKfindWeightedVarianced (double xx,double xwt,int n);

void interpolateSplineSmoothdouble xinX, double xinY, int inN, double separation ,double x*
interpX , double xinterpY , int xnlnterp);

void unique (double xin, int nIn, double xout, int *xnOut);

void TK_weightLS2(double xx,double xy,double xsig ,int n,double xoutX ,double xoutY ,int =outN,
double xoutY.re, double xoutY_.im, int useWeight);

void TK_weightLSorig(double *x,double xy,double xsig ,int n,double xoutX ,double xoutY ,int *xoutN
, double xoutY_re, double xoutY_im);

void interpolateSplineSmoothFixedPhaséduble xinX, double xinY, int inN, double separation ,
double xinterpX , double xinterpY , int xninterp, double fixedStart);

void interpolateSplineSmoothFixedXPtslouble xinX, double *inY, int inN, double xinterpX ,
double xinterpY , int nlnterp);

float TKfindWeightedRMSf(float *x,double xwt,int n);

/+ The main function called from the TEMPO2 package is ’'grapalinterface’ x/
I/« Therefore this function is required in all plugins */
extern "C” int graphicallnterfaceint argc,char xargv[], pulsar xpsr,int xnpsr)
{

char outFile [MAX_FILELEN];

outFile[0] = 'A’;

outFile[1] = "\0’;

char outFilePairs [MAXFILELEN];

outFilePairs[0] = 'A’";
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outFilePairs[1] 27

outFilePairs[2] \O";

long idum = TKsetSeed();

int fast=0;

char parFile [MAXPSR][MAX_FILELEN];

char timFile [MAX_PSR][MAX_FILELEN];

int i,p,n,j,k;

double globalParameter ;

double xkxxres xxxres.uniq , *xxres2, xxxres3; //xres is the times of the input residuals ,
xres3 is overlapping residuals

double firstday , lastday , minDiff;

double xxxres_.interp , xxxres.interp_1 , xxxres_interp_2; //for testing the power spectra of
the 2-portion pulsars.

double xxyres_.interp xxyres.interp_.1, xxyres_.interp_2; //the interpolated y values, andl
and _2 denote different sections of the time series with diffetewhite noise error
bars.

double xxerr_interp , xxerr_interp_1 , xxerr_interp-2 , xxvar_interp;

int nres.interp[MAX_PSR]; // number of points in interpolated series.

double xclock-x, xclock.y, «clock.-err; //the clock error time series.

int nclock;

double Pclockup; //The upper bound on the power in the clock error.

double **xXFER, xxXFER.interp, xxXFERX, x+xmeanPre; //meanPre is the average spectrum of
the white noise, used for plotting purposes

int nXFER[MAX_PSR];

double xxyres xxyres2 , xxyres2uniq , xxyres3; //yres is the initial set of residuals , yres3
is the overlapping set.

double *xxerr, xxerr2 , s=xerr2_uniq, *xerr3, xxweights; //same definitions as yres above

double xxxspec;

double xxyspecre , xxyspecim; //for the real and imaginary parts of the Fourier transform.

double xxyspec ,mean, meanl,meanZ,errspec; //errspec is the error on the fit of the power
spectrum

double clockspecx [MAX_FREQ], clockspecy [MAX FREQ],clockspecerr [MAXFREQ], clockspecy._re[
MAX FREQ], clockspecy_im[MAX FREQ];

int nclockspec;

double xkxcrossspecx , xkxCcrossspecy.re, xxCcrossspecy_-im, sxcrossspecerr; //the cross
spectrum of each pair of pulsars.

int numCrossspec [MAXSRMAX PSR];

double *xP_g; //this describes the gravitational wave power at that crespectral
frequency for use with the prewhitening

double modelspecy [MAX PSR][2]; //stores the analytic powerdaw model spectrum for each
pulsar in the form (mean, exponent).

int autoFlag=0;

int nspec [MAXPSR];

double tspan [MAXPSR];

double maxTspan;

long double toffset;

int nres [MAXPSR], nresuniq[MAX_PSR];

int nres2 [MAXPSR], nres3 [MAXPSR], maxNres;

float =fx1, x=fyl, xyerrl xyerr2 xfx2 ,xfy2 xfx3 ,xfy3;

float firstCommonX ,lastCommonX;

double minx, maxx, miny, maxy, minx2 ,maxx2,miny2 , maxy2;

double rad2deg = 180.0/MPI;

int readPar=0, readTim=0, noClock=1, noPlot=0, yesXSpec=@sBlotXSpec=0, noXFER=1, noEQUAD
=1, noSpecModel = 1, noquad=1// noClock = 0—> DO calculate clock errors; noPlot = 0
—> DO make a pgplot postscript file. noXFER = 1 s=noXFER is false, so DO CORRECT by
the transfer function. If noquad = 1, then DO fit a quadratic.
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int regular = 1; // regular = 1 => do smoothing IN PLACE, then interpolate onto a regular
grid using a constrained cubic spline interpolator.

int specType = 4; //=1 —> DFT (requires regular sampling!!), = 2—> Lomb periodogram, =
4 —> (can be weighted) least squares fit of Asinwt + Bcoswt
int useWeight = 1;//0 to not use a weighted spectral estimate, = 1 to use the wedgin

the spectral estimate (only can use weights for specType = 4)
int nharm = 1; /1=1 —> default is to fit ONLY for the HD curve; if nharm = 2 then fit for
clock error as well

int smooth = 1; //1==> default is to do smoothing, = 0 means no smoothing or interptibn.
int interp = 1; //1==> default is to do interpolation, = 0 means no interpolation.

int yesCalFac = 0; //1 = true, so we do do the calibration, 0 = false so we don’'t dd.i
int numCal = 10; //the number of channels to be calibrated.

char str[1000];

double width = 100.0;

int ngw=0;

double dist[MAX_PSR], alpha =-0.6666666666, gwamp = 1.0-€20;

double preWhAmp = 0.0; //the amplitude by which we will prewhiten

double factor = 1.0;

int distNum = 0;

double separation = 14.0;

/I'What value of alpha (the gwb spectral exponent) are we hungt for when we convert the
estimate of A2 into a limit etc.?

double alphaGWB = -2.0 / 3.0

for (p=0;p<MAX_PSR;p++)

dist[p] = 0.91; /I default distance is 0.91 kiloparsecs for all pulsars

int jmax;

double tk_var;

int nFreq;

float IfregqVal_f[MAX FREQ], Ipy-f[MAX FREQ]; //log of frequency values and power values (for
pgplot)

char line[1000];

FILE =fin;

int nread;

float meanPost[MAXFREQ];

double suml,sum2,sum3,sum4,sum5,sum6, weight;

int pl,p2,plotCol;

float fx[MAX _OBSN], fy [MAX_OBSN];

int ncorr=0,totalcorr;

double corr [MAX_PSR-MAX PSR]; // correlation between pulsar pairs

double a2zeta [MAXPSR«MAX _PSR]; //covariance between pulsar pairs

double a2zetaim [MAX_PSRMAX PSR]; //imaginary part of A"2 zeta estimate for each pulsar
pair

double a2zetaerr[MAX PSR-MAX PSR]; // error in each covariance between pulsar pairs

double angle [MAXPSRMAX_PSR]; //angle on sky betw pulsar pairs

double Toverlap [MAXPSRMAX PSR]; //overlapping time interval betw pulsar pairs

double avToverlap; //the weighted average of the overlap times.

float corr_f[MAX PSRMAX PSR]; // correlation between pulsar pairs

float a2zetaf[MAX _PSR:MAX_PSR]; //covariance between pulsar pairs

float a2zetaerr_f[MAX PSRMAX_PSR]; //covariance between pulsar pairs

float angle.f [MAX PSRMAX _PSR];

float ymin,ymax; //axis limits for plotting

FILE «fout;

char fname[100];

char dummy[100]; // for ensuring the scanning in of spectral models goes in thight order
(the models match the pulsars they are supposed to match)

char specModelFile [MAXFILELEN];

sprintf (specModelFile ,”SpectralModel&inal2_psr”);

double phase = 13.0; //the phase offset in the "fixedPhase variable® defines where in
the fortnight we take each sample after interpolation.
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xnpsr = 0;

printf ("Graphical Interface: PTACorrelation\n”);

printf (”Author: D. Yardley\n");
printf(”"Version: v2.0 \n");
printf (" — type ’'tempo2—gr PTA_Correlation —h’ for help information\n”);

/x Obtain all parameters from the command line/
for (i=2;i<argc;i++)

{
if (strcmp(argv[i],=f")==0)
{
strcpy (parFilefnpsr],argv[i+1]);
strcpy (timFile xnpsr],argv[i+2]);
(*npsr)++;
readPar=0; readTim=0;
}
else if (strcmp(argv[i],=par”)==0)
{
readPar=1;
readTim=0;
xnpsr=0;
}
else if (strcmp(argv([i],=tim”)==0)
{
readPar=0;
readTim=1;
xnpsr=0;
}
else if (strcmp(argv[i],=dist”)==0)
{
sscanf (argv[++i], "lf”, &dist[distNum]);
dist[distNumx=3.086e19;
distNum ++;
}
else if (strcmp(argv[i],>=ngw”)==0)
{

/I printf("ngw = %d 2\n”,ngw);
sscanf (argv[++i], "nd”, &gw);
/I printf("ngw = %d 3\n”,ngw);
}
else if (strcmp(argv[i],~seed”)==0)
sscanf (argv[++i], "%d”, &dum);
else if (strcmp(argv[i],~specModelFile”)==0)//input file containing the mean and the
spectral exponent for this range of pulsars.
sscanf (argv[i+1],"%s”,&specModelFile);
else if (strcmp(argv[i],=alpha”)==0)
sscanf (argv[++i], "%lf”, &alpha);
else if (strcmp(argv[i],™>alphaGWB")==0)
sscanf (argv[++i], "%lf”, &lphaGWB);
else if (strcmp(argv[i],~factor”)==0) // factor to multiply rmses by.
sscanf (argv[++i], "%lf”, &factor);
else if (strcmp(argv[i],>~gwamp”)==0)
sscanf (argv[++i], "%lIf”, &wamp);
else if (strcmp(argv[i],>~separation”)==0)
sscanf (argv[++i], "lf”, &separation);
else if (strcmp(argv[i],=preWhAmp”)==0)
sscanf (argv[++i], "%lf”, &reWhAmp);

else if (strcmp(argv[i],~phase”)==0)
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sscanf (argv([++i], "%lf”, &phase);
else if (strcmp(argv[i],=yesClock”)==0)

noClock = 0; /! carry out clock error estimation
else if (strcmp(argv[i],=noPlot”)==0)
noPlot = 1; /!l do not produce the pgplot postscript file
else if (strcmp(argv[i],=noXFER")==0)
noXFER = 0; /!l do not correct by the transfer function
else if (strcmp(argv[i],™=noquad”)==0)
noquad = O0; /!l do not fit out a weighted quadratic to each overlapping daspan
else if (strcmp(argv[i],~noSpecModel”)==0)
noSpecModel = 0; // do not include spectral models
else if (strcmp(argv[i],=noEQUAD")==0)
noEQUAD = 0; I/l do not correct by any EQUAD terms
else if (strcmp(argv[i],=noSmooth”)==0)
smooth = 0; // do not do smoothing or interpolation
else if (strcmp(argv[i],=nolnterp”)==0)
interp = 0; // do not do interpolation
else if (strcmp(argv[i],-yesXSpec”)==0)
yesXSpec = 1; // produce an output file with the first few harmonics of theoss

power spectrum (real and imag parts) for each pair.
else if (strcmp(argv[i],=yesPlotXSpec”)==0)

yesPlotXSpec = 1; /! produce plot of the cross power spectrum for each pair of
pulsars.
else if (strcmp(argv[i],=yesCalFac”)==0)
yesCalFac = 1; /l Calibrate each cross spectrum using CalibrationFact@as8os files

else if (strcmp(argv[i],>=numCal”)==0)
sscanf (argv[++i], "%d”, &wumCal);
else if (strcmp(argv[i],=noregular”)==0)
regular = 0;
else if (strcmp(argv[i],—specType”)==0) //2 => Lomb Scarlge , 4 > Weighted Lomb
Scargle , 1== DFT
sscanf (argv[++i], "%d”, &specType);
else if (strcmp(argv[i],=nharm”)==0) //=1 —> only fit for HD curve. =2—> fit for
HD curve and a constant simultaneously.
sscanf (argv[++i], "%d”, &harm);
else if (strcmp(argv[i],=nouseWeight”)==0) //=0 to do an unweighted LSQ fit of sin
and cos to determine spectrum, =1 to do a weighted LSQ fit.
useWeight = 0;
else if (strcmp(argv[i],~outFile”)==0) //output file for estimate of A, A"2,
significances and the reduced chsquared.
sscanf (argv[i+1],"%s",&outFile);
else if (strcmp(argv[i],~outFilePairs”)==0) //output file for each cross spectrum of
each pair. Order is Re(l), Imag(l), Re(2), Imag(2), Re(3)mapg(3)... One row is
one iteration of the code.
sscanf (argv[i+1],"%s",&outFilePairs);
else if (strcmp(argv[i],™auto”)==0)
{
readPar=0;
readTim=0;
autoFlag=1;
}
else if (readPar==1)
{
strcpy (parFilefknpsr],argv[i]);
(xnpsr)++;
}
else if (readTim==1)

{
strcpy (timFile xnpsr],argv[i]);
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(xnpsr)++;

}
else if (strcmp(argv[i],=h")==0||strcmp(argv[i],~—help”)==0)
{
printf ("\n TEMPO2 PTACorrelation pluginn”);
printf(” ===3n");
printf ("\nUSAGE: \n\t tempo2—gr PTA_Correlation —par =*.par —tim =.tim ...(as many
as desired) [options\In");
printf ("\n Command line options\in”);
printf ("—yesClock: calculates clock errors (default is no clock cections)\n");
printf ("—noPlot: does not produce the pgplot output’);
printf ("—outFile:\t choose output file for statistics (default is 'A\n”);
printf ("—seed\t change the random number seed (default—123) \n");
printf ("—dist:\'t input the distance to the pulsar in kpc (default is 0.91 kpe));
printf ("—specType\t determines which kind of periodogram to de—> 1 gives DFT, 2
gives Lomb Scargle, 4 gives Weighted Lomb Scargle (defaubkt 4)\n");
printf ("—noregular\t regular = 0 == do smoothing and interpolating together, and
don’'t interpolate across gaps that are larger thantau (default is smooth in
place and then interpolate onto a regular grid));
printf ("—nouseWeight{t does not use weights to calculate the LSQ fit of sins and
cosines to determine the power spectrum (default is to useigWes)\n");
printf ("—specModelFile:\t prefix of input file containing the mean and the
spectral exponent for this range of pulsars (default is 'S8pe@lModels.Final2
“An");
printf ("—outFilePairs:\t prefix of output file for each cross spectrum of each
pair. Order is Re(1), Imag(l), Re(2), Imag(2), Re(3), Im& (\n");
printf ("—noSmooth\t don’t do smoothing or interpolatioyn”);
printf ("—nolnterp\'t don’'t do interpolationn”);
printf ("—noEQUAD:\'t don’t use the EQUABlike correction stepn”);
printf ("=========GWB input stuff=====3xn");
printf("—ngw:\'t Number of gws to put in simulated background”);
printf("—alpha\t spectral exponent of backgroulkd”);
printf ("—gwamp)\t dimensionless amplitude of background, but it assumes tth&’ is
measured in 1/1s, not 1/1¥n”");
printf ("—alphaGWB\t spectral exponent of background when determining limitsc e
really this should be the same as alphgh”);
exit (0);
}
}
/% Form pulsar timing residualssx/
readParfile (psr, parFile ,timFilex,npsr); /x Load the parameters ®/
readTimfile (psr,timFile s npsr); /* Load the arrival times */
preProcess (psr,npsr,argc,argv);
formBatsAll (psr xnpsr); I/« Form the barycentric arrival timessx/
formResiduals (psrxnpsr,0); I/« Form the residuals these are PREFIT residuals
*/

doFit(psr #npsr,0);

formBatsAll(psr #npsr); I/« Form the barycentric arrival timesx/
formResiduals (psrxnpsr,0); I/« Form the residuals these are POSTFIT residuals
*/

/I Allocate memory

crossspecx = (double *x)malloc (MAXPSRMAX PSR«sizeof(double x));
crossspecy_re = (double xx)malloc (MAX.PSRMAX PSRxsizeof(double x*));
crossspecy_im = (double xx)malloc (MAX.PSRMAX PSR«sizeof(double x));
crossspecerr = (double xx)malloc (MAXPSRMAX_PSR:xsizeof(double x));
P_g = (double xx)malloc (MAX.PSR-MAX PSRxsizeof(double x*));
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xres = (double xx)malloc (MAXPSR:sizeof(double x));

xres2 = (double xx)malloc (MAXPSR«sizeof(double x));

xres3 = (double xx)malloc (MAXPSR«sizeof(double x*));
xres_interp = (double xx)malloc (MAXPSR:sizeof(double x));
xres_.interp-1 = (double xx)malloc (MAX_PSRxsizeof(double x));
xres_interp_.2 = (double xx)malloc (MAXPSR:sizeof(double x*));
xres_uniq = (double xx)malloc (MAXPSR:sizeof(double x));
yres_.interp = (double xx)malloc (MAXPSR:sizeof(double x));
yres_.interp_.1 = (double xx)malloc (MAXPSR:sizeof(double x*));
yres_.interp_.2 = (double xx)malloc (MAXPSR:sizeof(double x*));
err_interp = (double xx)malloc (MAX.PSR:sizeof(double x));
err_interp_.1 = (double *x)malloc (MAXPSR:«sizeof(double *));
err_interp_.2 = (double *xx)malloc (MAXPSR:sizeof(double *));
var_interp = (double xx)malloc (MAXPSR:sizeof(double x));
yres = (double xx)malloc (MAXPSR:«sizeof(double x));

yres2 = (double xx)malloc (MAXPSR:sizeof(double x));
yres2uniqg = (double xx)malloc (MAX_PSR:sizeof(double x));
yres3 = (double xx)malloc (MAXPSRtsizeof(double x));

err = (double xx)malloc (MAXPSR:sizeof(double x));
err2 = (double xx)malloc (MAXPSRcsizeof(double x));
err2.uniq = (double *xx)malloc (MAXPSR:sizeof(double x));
err3 = (double xx)malloc (MAXPSRtsizeof(double x));

weights = (double xx)malloc (MAX_PSRxsizeof(double x));
xspec = (double xx)malloc (MAXPSRtsizeof(double x));
yspec = (double xx)malloc (MAXPSRtsizeof(double x));
yspecre = (double xx)malloc (MAXPSR:sizeof(double x));
yspecim = (double xx)malloc (MAX_PSRxsizeof(double x));
meanPre = @ouble *xx)malloc (MAXPSR:sizeof(double x));
XFER = (double xx)malloc (MAXPSR:sizeof(double x));
XFERX = (double xx)malloc (MAXPSRtsizeof(double x));
XFER_interp = (double xx)malloc (MAXPSR:sizeof(double x*));
errspec = @double xx)malloc (MAXPSR:sizeof(double x)); //errspec is the error on the fit
the power spectrum
clock_x = (double *x)malloc (MAXOBSN«tsizeof(double));
clock_.y = (double x)malloc (MAXOBSN«tsizeof(double));
clock_err = (double x)malloc (MAX.OBSN«sizeof(double));

for (p=0;p<MAX_PSR;p++)
{

xres[p] = (double x)malloc (MAXOBSN«sizeof(double));
xres2[p] = (double x)malloc (MAXOBSNtsizeof(double));
xres3[p] = (double x)malloc (MAXOBSNtsizeof(double));
xres_unig[p] = (double x)malloc (MAXOBSNtsizeof(double));
xres_interp[p] = (double x)malloc (1000& sizeof(double));
xres_interp_1[p] = (double x)malloc (1000&sizeof(double));
xres_interp_2[p] = (double x)malloc (1000&sizeof(double));
yres_interp[p] = (double x)malloc (1000& sizeof(double));
yres_.interp_-1[p] = (double x)malloc (1000Gsizeof(double));
yres_.interp_-2[p] = (double x)malloc (1000Gsizeof(double));
err_interp[p] = (double *x)malloc (1000&sizeof(double));
err_interp-1[p] = (double x)malloc (1000G sizeof(double));
err_interp-2[p] = (double x)malloc (1000G sizeof(double));
var_interp[p] = (double x)malloc (1000& sizeof(double));
yres[p] = (double x)malloc (MAXOBSNtsizeof(double));
yres2[p] = (double x)malloc (MAXOBSNtsizeof(double));
yres2 uniq[p] = (double *)malloc (MAXOBSN«tsizeof(double));
yres3[p] = (double x)malloc (MAXOBSNtsizeof(double));
err[p] = (double x)malloc (MAXOBSN«sizeof(double));
err2[p] = (double x)malloc (MAXOBSN«sizeof(double));
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err2_uniq[p] = (double *)malloc (MAXOBSNtsizeof(double));
err3[p] = (double x)malloc (MAXOBSN«sizeof(double));
weights[p] = (double x)malloc (MAX.OBSN«sizeof(double));
xspec[p] = (double x)malloc (MAXFREQtsizeof(double));
yspec[p] = (double x)malloc (MAXFREQxsizeof(double));
yspecre[p] = (double x)malloc (MAXFREQxsizeof(double));
yspecim[p] = (double x)malloc (MAXFREQ:sizeof(double));
errspec[p] = double x)malloc (MAXFREQxsizeof(double));
meanPre[p] = @ouble x)malloc (MAXFREQ:sizeof(double));
XFER[p] = (double x)malloc (MAXFREQ:sizeof(double));
XFERx[p] = (double x)malloc (MAXFREQtsizeof(double));
XFER_interp[p] = (double x)malloc (MAXFREQrsizeof(double));

for (k=0;k<MAX_PSRMAX_PSR;k++)

crossspecx[k] = (double x)malloc (MAXFREQ:sizeof(double));
crossspecy_re[k] = (double x)malloc (MAXFREQrsizeof(double));
crossspecy_-im[k] = (double x)malloc (MAXFREQ:sizeof(double));
crossspecerr[k] = (double x)malloc (MAXFREQxsizeof(double));
P_g[k] = (double x)malloc (MAXFREQxsizeof(double));

long double minsat[xnpsr], maxsatfnpsr], avgTspan=0.0;
// following is essentially for splitting up the 1857 data tse though it could be generally
applicable.
double maxallowablegap = 2000.0; //in units of days. THIS IS AN ARBITRARY CHOICE, simply so
that we know 1857 gets split up.
long double maxgapfknpsr];
int locmaxgapknpsr]; //the location of the biggest gap in the time series.
for (p=0;p<xnpsr;p++)
{
minsat[p]=maxsat[p]=psr[p].obsn[0]. sat;
maxgap[p] = 0.0L;
for (j=0;j<psr[p].nobs;j++)
{
if (psr[p].obsn[j].sat< minsat[p]) minsat[p] = psr[p].obsn[j]. sat;
if (psr[p].obsn[j].sat> maxsat[p]) maxsat[p] = psr[p].obsn[j]. sat;
if (psr[p].obsn[j+1].sat— psr[p].obsn[j].sat> maxgap[p] & j < psr[p].nobs-1)

{
maxgap[p] = psr[p].obsn[j+1].sat psr[p].obsn[j]. sat;
locmaxgap([p] = j; /lso the biggest gap appears between theth and j+l1-th
observations.
}

}

tspan[p] = maxsat[p]— minsat[p];
printf("tspan of pulsar %s = %g day®”,psr[p].name,tspan[p]);
avgTspan += (ong double) tspan[pl;
printf ("maxgap[p] = %Ld\n",maxgap[p]);
}
toffset = psr[0].param[paraopepoch].val[0];
long double toffset2 = 3100.0L; //so that the smoothing algorithm doesn’t mess up with
negative measured SATs. However, the GWB code freaks outhiE day number is too big.
avgTspan = avgTspan /l¢ng double) xnpsr;
maxTspan = TKfindMaxd (tspan s npsr);

//READ PULSAR DATA INTO MEMORY and caluclate weighted vamda of residuals
sprintf (fname , "WeightedVAR%dpsrsGWB” ,« npsr) ;
if ( (fout = fopen(fname,”a”)) == NULL)

{
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printf ("Unable to open/find file %§n”,fname);
exit(1);
}
for (p=0;p<xnpsr;p++)
{
printf ("Reading data for psr number %d”,p+1);
/Imow if maxgap for this pulsar is bigger than maxallowableapg then choose the latest
portion of this pulsar and discard the first few observati®on
if (maxgap[p] <= maxallowablegap)
{
locmaxgap[p] =-1;
}
printf(”"locmaxgap[p] = %dn”,locmaxgap[p]);
printf("nres[p] = %d, psr[p].nobs = %d",nres[p],psr[p].nobs);
for (i=0;i<psr[p].nobs— locmaxgap[p]— 1;i++) //from the other side of the biggest
gap onwards, start recording observations.

xres[p][i] = (double)(psr[p].obsn[i + locmaxgap[p] + 1].sat toffset + toffset2);

yres[p][i] = (double)psr[p].obsn[i + locmaxgap[p] + 1].residual;

err[p][i] = (double)psr[p].obsn[i + locmaxgap[p] + 1].toaEwmle—6; //so err is in
seconds now

weights[p][i] = 1.0 / err[p][i] / err[p][il];
}
if (maxgap[p] <= maxallowablegap)
{
nres[p] = psr[p].nobs;
}
else
{
nres[p] = psr[p].nobs— locmaxgap[p]— 1;

psr[p].nobs = nres[p];
tspan[p] = xres[p][psr[p]. nobs- 1] — xres[p][0];

}
fprintf (fout,"%g ", TKfindWeightedVarianced (yres[p],weights[p],psr[p].nobs));

}
fprintf (fout,”\n");
fclose (fout);

/I Remove unweighted mean
for (p=0;p<xnpsr;p++)
{
mean=0.0;
for (i=0;i<psr[p].nobs;i++)
mean+=yres[p][i];
mean/=(double) (psr[p]. nobs);
for (i=0;i<psr[p].nobs;i++)
yres[p][i]-=mean;

}
int filterid = 2; Il filterid is an integer describing which kind of filter to
use: 1 = Gaussian filter , 2 = Exponential filter
int filterPlot = 0; /10 to not plot the filters, 1 to plot them.

double filter [(int)width]; //only take mean if there is more than 1 day between obsns.

double tau[«npsr];
double avgTau = 1.0; /I this is needed for the calculation of separation (how fahet

points are separated).

double invsdev = 2.5, bw;
double currentday ; //describes which day in the interpolated data set we are How

at .
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int countl, count2;
for (p=0;p<xnpsr;p++)
{
tau[p] = tspan[p] / 2 / MPI | 3; /l time constant for filter , note different for
each pulsar. The "3” is because we want the filter to fall te6dB at the 3rd point
in the spectrum, which occurs at 3 / tspan[p];
avgTau x= tau[p]; //we want the geometric mean, not arithmetic...
for (i=0;i<(int)width;i++)
{
if (filterid==1) //Choose Gaussian filter
{
invsdev = 700.0 / tau[p];//changes (inverse of) standard deviation of filter (
default MATLAB value is 2.5)

filter[i]J=exp(—0.5«pow(invsdew((double) ((i+1) —0.5«(width+1)) /(width+1)/2.0) ,2))

}
else if (filterid==2) //form and plot exponential filter. Note we’'re using a
different expnl. filter for each pulsar
filter[i]=exp(—fabs ((i—width/2)/tau[p]));
if (noPlot == 0 & filterPlot == 1)
{
fx[i]
fy[i]

(float)i;
(float) filter[i];

}

}
avgTau = pow(avgTau, double) (1.0 / (double)xnpsr));

double fixedPhase =-15000.0— (double)toffset + phase;//fixes the phase of the grid of
points for interpolation.

//INOW PREPARE TIME SERIES using smoothing and interpolatio

double varp.1 = 0.0, varp2 = 0.0; //the variance of two different sections of time series
— e.g. if sudden change in white noise variance.

int countl = 0, count2 = 0; //the number of points before and after the cutoff point for
the non-stationarity of the time series.

if (smooth == 1) //then do the smoothing and possibly also the interpolation
{
for (p=0;p<xnpsr;p++) /lto analyse and plot all the timing resids etc.
{

avgTau = 60.0;
if (strcmp(psr[p].name,”1939+2134")==0) avgTau = 30.0; //to remove the
bump near the end of the time series.
if (p ==10) printf("fixing smoothing width to be avgTau = %\n",avgTau);
if (regular == 1) //SMOOTH pulsar p in place if we want "regular”
resampling
{
for (i=0; i<nres[p]; i++)
{
suml = 0.0; yresinterp[p][i] = 0.0; var.interp[p][i] = 0.0;

currentday = xres[p][i]; //smooth onto the same points as the input time

series
for (k=0;k<psr[p].nobs;k++)
{
if (filterid == 1) weight = exp(0.5 * pow(xres[p][k] — currentday, 2) /
avgTau);
else if (filterid == 2) weight = exp¢tfabs(currentday— xres[p][k]) /

avgTau) / err[pl[k] / err[p]l[k];
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suml+=weight;
yres_interp[p][i]+=weightxyres[p][k];
var_interp[p][i]l+=(weightxweightxerr[p][k]xerr[p][k]);
}
yres2[p][i] = yresinterp[p][i] / sumil;
err2[pl[i] = sqrt(var.interp[p][i]) / suml;
xres2[p][i] = currentday ;
if (interp == 1)
{
//Now if any observations are too close together in time, wenut
really need them any more (since we've already smoothed tla¢ad we
've taken advantage of the multiple observations). The imtelation
step does not need lots and lots of observations to be more
accurate, so we can set the observations equal to each othémnen
the unique () function which | run below will remove them.
if (xres2[p][i] — xres2[p][i—1] < 1.0e-3 & i > 0)

{
yres2[p][i] = yres2[p][i—1];
err2[p][i] = err2[p][i—1];
xres2[p][i] = xres2[p][i—1];
}

}

/I Remove means
countl = O;
meanl = 0.0;

for (i=0;i<nres[p];i++) meanl+=yres2[p][i];
meanl/=double) (nres[p]);
for (i=0;i<nres[p];i++) yres2[p][i}l=meanl;

if (TKmeand(yres2[p],nres[p])> 1.0e-10) {printf ("ERROR!! mean of yres2[%d]
=%g != 0, nres[p] = %4n”",p, TKmeand(yres2[p],nres[p]), nres[p]); exit(1);
if (interp == 1)
{
/Inow interpolate smoothed data onto a regular grid using @anstrained
cubic spline— day separations given by "separation”.
unique (xres2[p],nres[p], xresniqg[p],&nres.uniq[p]);
unique (yres2[p],nres[p],yres&niq[p].&nres.uniq[p]);
unique (err2[p],nres[p],err2uniq[p],.&nres.uniq[pl]); //MAKE SURE ERRORS AREN
'T ALL EQUAL AT THIS POINT!!

//Now run the spline interpolation to get the residuals.
interpolateSplineSmoothFixedPhase (xtasiq[p], yres2uniq[p], nresuniq[p],
separation , xresinterp[p], yresinterp[p], &nres.interp[p],fixedPhase)

//Now run the spline interpolation ON THE ERROR BARS usingeitrh variance.
First calculate variance of the err2unig[p] array
for (i=0;i<nresuniq[p];i++)
err2_uniq[p][i] = err2_uniq[p][i] * err2_unig[pl[i];
interpolateSplineSmoothFixedPhase (xctesiq[p], err2uniq[p], nresuniq[p],
separation , xresinterp[p], var.interp[p], &nres.interp[p],fixedPhase);
/I reset value of uniq error to be the standard deviation FORMPLETENESS’
SAKE
for (i=0;i<nresuniq[p];i++)
err2_uniq[pl][i] = sqrt(err2.uniq[pl[il]);
//So the almost final data set is contained in xrésterp[p],yres.interp[p
],var_interp[p], nres.interp[p], where varinterp[p][i] is the SQUARE of
the error on the ith observation. This gets corrected belowew we do
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the "error boosting”

}
else if (interp == 0) //don't do the interpolation
{
for (i=0;i<nres[p];i++)
{
xres_interp[p][i] = xres2[p][i];
yres_interp[p][i] = yres2[p][i];
var_interp[p][i] = err2[p][i] = err2[p][il;
}
nres.interp[p] = nres[p];
}
}
else if (regular == 0) //don’t smooth in place, rather smooth onto the
interpolated grid that we want (so smoothing and interp arené together)
{

avgTau = 60.0;//this is the smoothing width
if (strcmp(psr[p].name,”1939+2134")==0)
{
avgTau = 30.0; //to remove the bump near the end of the time series.
printf ("FIXING!!! avgTau = %lg for psr 1939n”",avgTau);
}
firstday = ceil (TKfindMin_d (xres[p],psr[p].nobs));
lastday = floor (TKfindMaxd (xres[p],psr[p].nobs));
separation = 2.0x avgTau; /I resampling rate is just twice the smoothing width

countl = 0; //a counter to tell us how many observations are actually ihet
post—interpolated time series.

nres.interp[p] = 1 + (int)floor ((lastday — firstday) / separation); //this is
the first guess at the number of points in the pesmterpolated series.

for (i=0; i<nres.interp[p]; i++) [//i is observation number in postinterpolated
time series.

currentday = firstday + @ouble)ixseparation; /I x—values are a time
series with samples separated by "separation”.

minDiff = fabs(xres[p][0] — currentday);

//IDO the smoothing and interpolation only if the new pointrées2[p][i])
will be within tau/1.0 of a point in the original time seriesfilterid
controls whether to use gaussian or exponential smoothed = Gaussian,

2 = expnl.
for (k=0;k<psr[p].nobs;k++)
{
if (fabs(xres[p][k]— currentday )< minDiff) minDiff = fabs(xres[p][k]
— currentday); //could use while loop here- faster.
}

printf ("minDiff = %g\n”, minDiff);

//'if the minimum difference is still more than tau/1.0, th&®ON'T put down
an interpolated point.
if (minDiff <= (avgTau / 1.0) ) //then do the interpolation
{
sum1=0.0;
yres_interp[p][countl]=0; vatinterp[p][countl]=0;
for (k=0;k<psr[p].nobs;k++)
{
if (filterid == 1) weight = exp(0.5 x pow(xres[p][k] —
currentday , 2) / avgTau);
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else if (filterid == 2) weight = exptfabs(xres[p][k] — currentday)/
avgTau) / pow(err[p][k],2);
suml+=weight;
yres_interp[p][countl]+=weigh&yres[p][k];
var_interp[p][countl]+=pow(weighterr[p][k],2);
}
yres_interp[p][countl] = yresinterp[p][countl] / suml;
var_interp[p][countl] = vactinterp[p][countl] / pow(suml,K2);
xres_interp[p][countl] = currentday ;
++countl; //one more observation in the posinterpolated series.
}
else //this point in the postinterpolated series is too far from the
nearest point in the raw data series.
continue; //return to start of loop over observation number in
interpolated series.

}
nres.interp[p] = countl; //countl now measures the correct number of points.
}
/Imow adjust error bars using an EQUAD term, which may be difént for the first
few years of data compared to the last few years for the-fibrtion” pulsars.
varp-1 = 0.0, varp2 = 0.0; //the variance of two different sections of time series
— e.g. if sudden change in white noise variance.
countl = 0, count2 = 0; //the number of points before and after the cutoff point
for the non-stationarity of the time series.
if (NOEQUAD == 1)

{
if (strcmp(psr[p].name,”16003053")==0)
{
for (i=0;i<nres.interp[p];i++)
{
if (xres.interp[p][i] + toffset — toffset2 < 52654.0) { yres.interp_1[p
]J[count.1] = yres.interp[p][i]; ++count.l; }
else { yres.interp-2[p
]J[count.2] = yres_.interp[p][i]; ++count.2; }
}
varp.1 = TKvarianced(yresinterp_1[p],countl); varp.2 = TKvarianced/
yres_interp_2[p],count2);
// Correct error bar using unweighted variance of interpdlad time series,
in 2 pieces:
for (i=0;i<nres.interp[p];i++)
{
if (xres.interp[p][i] + toffset — toffset2 < 52654.0) { err_interp[p][i]
= sqrt(varinterp[p][i]+tvarp-1); }
else { err_interp[p][i]
= sqrt(varinterp[p][i]+varp-2); }
}
}
else if (strcmp(psr[p].name,”1713+0747")==0)
{

for (i=0;i<nres.interp[p];i++)

if (xres.interp[p][i] + toffset — toffset2 < 52462.5) { yres.interp_1[p
]J[count.1] = yres.interp[p][i]; ++count.1;}

else { yres.interp-2[p
]J[count.2] = yres_.interp[p][i]; ++count.2;}
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varp_.1 = TKvarianced(yres.interp_1[p],countl); varp.2 = TKvarianced/(
yres_interp_2[p],count2);

/I Correct error bar using unweighted variance of interpdlad time series,
in 2 pieces:

for (i=0;i<nres.interp[p];i++)

{
if (xres.interp[p][i] + toffset — toffset2 < 52462.5) { err_interp[p][i]
= sqrt(varinterp[p][i]+varp-1); }
else { err_interp[p][i]
= sqrt(varinterp[p][i]+tvarp-2); }
}
}
else if (strcmp(psr[p].name,”17441134")==0)
{
for (i=0;i<nres.interp[p];i++)
{
if (xres.interp[p][i] + toffset — toffset2 < 52462.61){ yres.interp_1[p
]J[count.1] = yres.interp[p][i]; ++count.l; }
else { yres.interp.2[p
]J[count.2] = yres.interp[p][i]; ++count.2; }
}
varp_.1l = TKvarianced(yresinterp_1[p],countl); varp.2 = TKvarianced/

yres_interp_2[p],count2);

/I Correct error bar using unweighted variance of interpdlad time series,
in 2 pieces:
for (i=0;i<nres.interp[p];i++)

{
if (xres.interp[p][i] + toffset — toffset2 < 52462.61){ err_.interp[p][i
] = sqrt(var.interp[p][i]+varp-1); }
else { err_interp[p][i
] = sqrt(var.interp[p][i]+tvarp-2); }
}
}
else if (strcmp(psr[p].name,”J17325049")==0)
{
for (i=0;i<nres.interp[p];i++)
{
if (xres.interp[p][i] + toffset — toffset2 < 52967.5) { yres.interp_1[p
]J[count.1] = yres_.interp[p][i]; ++count.l; }
else { yres.interp-2[p][
count2] = yres.interp[p][i]; ++count.2; }
}
varp_.1l = TKvarianced(yres.interp_1[p],countl); varp.2 = TKvarianced/(

yres_interp_2[p],count2);

// Correct error bar using unweighted variance of interpdlad time series,
in 2 pieces:

for (i=0;i<nres.interp[p];i++)

{
if (xres.interp[p][i] + toffset — toffset2 < 52967.5) { err_interp[p][i]
= sqrt(varinterp[p][i]+varp-1); }
else { err_interp[p]l[i
] = sqrt(var.interp[p][i]+tvarp-2); }
}
}
else if (strcmp(psr[p].name,”"21243358")==0)
{
for (i=0;i<nres.interp[p];i++)
{
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if (xres.interp[p][i] + toffset — toffset2 < 52984.5) { yres.interp_1[p
]J[count.1] = yres.interp[p][i]; ++count.l; }
else { yres_interp.2[p][
count2] = yres.interp[p][i]; ++count.2; }
}
varp_.1l = TKvarianced(yres.interp_1[p],countl); varp.2 = TKvarianced/(
yres_interp_2[p],count2);
// Correct error bar using unweighted variance of interpdlad time series,
in 2 pieces:
for (i=0;i<nres.interp[p];i++)

{
if (xres.interp[p][i] + toffset — toffset2 < 52984.5) { err_interp[p][i]
= sqrt(varinterp[p][i]+tvarp-1); }
else { err_interp[p]l[i
] = sqrt(var.interp[p][i]+varp-2); }
}

}
else if (strcmp(psr[p].name,”21295721")==0) //change in front end!!! not back

end!!!'rest are due to change in back end...
{
for (i=0;i<nres.interp[p];i++)
{
if (xres.interp[p][i] + toffset — toffset2 < 51410.0) { yres.interp_1[p
]J[count.1] = yres.interp[p][i]; ++count.l; }
else { yres_interp.2[p][
count2] = yres.interp[p][i]; ++count.2; }
}
varp_.1l = TKvarianced(yres.interp_1[p],countl); varp.2 = TKvarianced/(
yres_interp_2[p],count2);
// Correct error bar using unweighted variance of interpdlad time series,
in 2 pieces:
for (i=0;i<nres.interp[p];i++)

{
if (xres.interp[p][i] + toffset — toffset2 < 51410.0) { err_interp[p][i]
= sqrt(varinterp[p][i]+tvarp-1); }
else { err_interp[p]l[i
] = sqrt(var.interp[p][i]tvarp-2); }
}
}
else if (strcmp(psr[p].name,”21450750")==0)
{
for (i=0;i<nres.interp[p];i++)
{
if (xres.interp[p][i] + toffset — toffset2 < 52975.5) { yres.interp_1[p
]J[count.1] = yres.interp[p][i]; ++count.l; }
else { yres.interp.2[p
]J[count.2] = yres.interp[p][i]; ++count.2; }
}
varp.1 = TKvarianced(yres.interp_1[p],countl); varp.2 = TKvarianced/

yres_interp_2[p],count2);

// Correct error bar using unweighted variance of interpdlad time series,
in 2 pieces:

for (i=0;i<nres.interp[p];i++)

{
if (xres.interp[p][i] + toffset — toffset2 < 52975.5) { err_interp[p][i]
= sqrt(varinterp[p][i]+tvarp-1); }
else { err_interp[p]l[i
] = sqrt(var.interp[p][i]+varp-2); }
}
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}
else //there are no significant sudden white noise changes in tthata set, and
we prefer uniformity where possible.

varp-1 = TKvarianced(yres.interp[p],nresinterp[p]);
varp.2 = 0.0;
/I Correct error bar using unweighted variance of interpalad time series:
for (i=0;i<nres.interp[p];i++)
err_interp[p][i] = sqrt(var.interp[p][i]+varp.1);

}
}
else //don’'t do the correction by an EQUAD term.
{
varp-1 = 0.0;
varp-2 = 0.0;

// Correct error bar using unweighted variance of interpdlad time series:
for (i=0ji<nres.interp[p];i++)
err_interp[p][i] = sqrt(var.interp[p][i]);

}
else //don’'t do any smoothing or interpolation, but DO do the errdar augmentation step
1111 This makes the least squares fitter work better.
{
for (p=0;p<xnpsr;p++)
{
for (i=0; i<nres[p]; i++)
{
xres_interp[p][i] = xres[p]l[il;
yres.interp[p][i] = yres[p][il];
err_interp[p][i] = err[p]l[il;
var_interp[p][i] = err[pl[i] * err[pl[i];
}

nres.interp[p] = nres[p];

varp-1 = 0.0, varp2 = 0.0; //the variance of two different sections of time series
— e.g. if sudden change in white noise variance.

countl = 0, count2 = 0; //the number of points before and after the cutoff point
for the non-stationarity of the time series.

if (NOEQUAD == 1)

{
if (strcmp(psr[p].name,”160863053")==0)
{
for (i=0;i<nres.interp[p];i++)
{
if (xres.interp[p][i] + toffset — toffset2 < 52654.0) { yres.interp_1[p
]J[count.1] = yres.interp[p][i]; ++count.l; }
else { yres.interp.2[p
]J[count.2] = yres_.interp[p][i]; ++count.2; }
}
varp.1 = TKvarianced(yresinterp_1[p],countl); varp.2 = TKvarianced

yres_interp_2[p],count2);
// Correct error bar using unweighted variance of interpdlad time series,
in 2 pieces:
for (i=0;i<nres.interp[p];i++)
{
if (xres.interp[p][i] + toffset — toffset2 < 52654.0) { err_interp[p][i]
= sqrt(varinterp[p][i]+tvarp-1); }
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else { err_interp[p][i]
= sqrt(varinterp[p][i]+varp-2); }

}
}
else if (strcmp(psr[p].name,”1713+0747")==0)
{
for (i=0;i<nres.interp[p];i++)
{
if (xres.interp[p][i] + toffset — toffset2 < 52462.5) { yres.interp_1[p
]J[count.1] = yres_.interp[p][i]; ++count.l; }
else { yres.interp-2[p
]J[count.2] = yres_.interp[p][i]; ++count.2; }
}
varp.1 = TKvarianced(yres.interp_1[p],countl); varp.2 = TKvarianced/

yres_interp_2[p],count2);

/I Correct error bar using unweighted variance of interpdlad time series,
in 2 pieces:

for (i=0;i<nres.interp[p];i++)

{
if (xres.interp[p][i] + toffset — toffset2 < 52462.5) { err_interp[p][i]
= sqrt(varinterp[p][i]+varp-1); }
else { err_interp[p][i]
= sqrt(varinterp[p][i]+varp-2); }
}
}
else if (strcmp(psr[p].name,”17441134")==0)
{
for (i=0;i<nres.interp[p];i++)
{
if (xres.interp[p][i] + toffset — toffset2 < 52462.61){ yres.interp_1[p
]J[count.1] = yres.interp[p][i]; ++count.l; }
else { yres.interp.2[p
]J[count.2] = yres.interp[p][i]; ++count.2; }
}
varp_.1 = TKvarianced(yres.interp_1[p],countl); varp.2 = TKvarianced/(

yres_interp_2[p],count2);

/I Correct error bar using unweighted variance of interpdlad time series,
in 2 pieces:

for (i=0;i<nres.interp[p];i++)

{
if (xres.interp[p][i] + toffset — toffset2 < 52462.61){ err_.interp[p][i
] = sqrt(var.interp[p][i]+varp-1); }
else { err_interp[p][i
] = sqrt(var.interp[p][i]tvarp-2); }
}
}
else if (strcmp(psr[p].name,”J17325049")==0)
{
for (i=0;i<nres.interp[p];i++)
{
if (xres.interp[p][i] + toffset — toffset2 < 52967.5) { yres.interp_1[p
]J[count.1] = yres.interp[p][i]; ++count.l; }
else { yres_interp.2[p][
count2] = yres.interp[p][i]; ++count.2; }
}
varp.1 = TKvarianced(yres.interp_-1[p],countl); varp.2 = TKvarianced/(

yres_interp_2[p],count2);
// Correct error bar using unweighted variance of interpdlad time series,
in 2 pieces:
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for (i=0;i<nres.interp[p];i++)

{
if (xres.interp[p][i] + toffset — toffset2 < 52967.5) { err_interp[p][i]
= sqrt(varinterp[p][i]+tvarp-1); }
else { err_interp[p]l[i
] = sqrt(var.interp[p][i]+tvarp-2); }
}
}
else if (strcmp(psr[p].name,”21243358")==0)
{
for (i=0;i<nres.interp[p];i++)
{
if (xres.interp[p][i] + toffset — toffset2 < 52984.5) { yres.interp_1[p
]J[count.1] = yres.interp[p][i]; ++count.l; }
else { yres.interp-2[p][
count2] = yres.interp[p][i]; ++count.2; }
}
varp.1 = TKvarianced(yresinterp_1[p],countl); varp.2 = TKvarianced

yres_interp_2[p],count2);

// Correct error bar using unweighted variance of interpdlad time series,
in 2 pieces:

for (i=0;i<nres.interp[p];i++)

{
if (xres.interp[p][i] + toffset — toffset2 < 52984.5) { err_interp[p][i]
= sqrt(varinterp[p][i]+tvarp-1); }
else { err_interp[p]l[i
] = sqrt(var.interp[p][i]+varp-2); }
}

}
else if (strcmp(psr[p].name,”21295721")==0) //change in front end!!! not back

end!!!'rest are due to change in back end...
{
for (i=0;i<nres.interp[p];i++)
{
if (xres.interp[p][i] + toffset — toffset2 < 51410.0) { yres.interp_1[p
]J[count.1] = yres.interp[p][i]; ++count.l; }
else { yres_interp_2[p][
count2] = yres.interp[p][i]; ++count.2; }
}
varp_.1l = TKvarianced(yres.interp_1[p],countl); varp.2 = TKvarianced/
yres_interp_2[p],count2);
// Correct error bar using unweighted variance of interpdlad time series,
in 2 pieces:
for (i=0;i<nres.interp[p];i++)

{
if (xres.interp[p][i] + toffset — toffset2 < 51410.0) { err_interp[p][i]
= sqrt(varinterp[p][i]+tvarp-1); }
else { err_interp[p]l[i
] = sqrt(var.interp[p][i]+varp-2); }
}
}
else if (strcmp(psr[p].name,”21450750")==0)
{
for (i=0;i<nres.interp[p];i++)
{

if (xres.interp[p][i] + toffset — toffset2 < 52975.5) { yres.interp_1[p
]J[count.1] = yres.interp[p][i]; ++count.l; }

else { yres.interp.2[p
]J[count.2] = yres_.interp[p][i]; ++count.2; }
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}

varp.1 = TKvarianced(yresinterp_1[p],countl); varp.2 = TKvarianced/
yres_interp_2[p],count2);
/I Correct error bar using unweighted variance of interpdlad time series,
in 2 pieces:
for (i=0;i<nres.interp[p];i++)
{
if (xres.interp[p][i] + toffset — toffset2 < 52975.5) { err_interp[p][i]
= sqrt(varinterp[p][i]+tvarp-1); }
else { err_interp[p][i
] = sqrt(var.interp[p][i]+varp-2); }

}

else //there are no significant sudden white noise changes in tthata set, and
we prefer uniformity where possible.

varp-1 = TKvarianced (yres.interp[p],nresinterp[p]);
varp-2 = 0.0;
/I Correct error bar using unweighted variance of interpdlad time series:
for (i=0;i<nres.interp[p];i++)
err_interp[p][i] = sqrt(var.interp[p][i]+varp-1);
}
printf ("psr = %s, nresinterp[p] = %d, countl = %d, varpl = %g, so unweighted rms
= %g, coun2 = %d, varp2 = %g, unw rms = %yn”,psr[p].name, nresinterp[p],
countl, varpl, sqrt(varpl), count2, varp2, sqrt(varp2));

}

/INOW READ in transfer functions in preparation for the a2aariance calculation. We care
about the prefit spectrum too, since this is a measure of thhite noise described by
the error bars. The transfer functions go to much higher fuemcies than the "average”
Nyquist frequency, because when we take the overlappingtipors between different data
sets , that overlapping portion may correspond to a regiontlwia much higher density of
points than the overall data set, meaning that the averageqiigt frequency is much
higher for the overlapping portion than for the overall datat.

for (p=0;p<xnpsr;p++)

{
nXFER[p]=0;
sprintf(fname ,” Transferfunction_.SmoothlnPlace . dapsr%s”,psr[p]. name);
if ( (fin = fopen(fname,”r”)) == NULL)
{
printf ("Unable to open/find file %§n”,fname);
exit(1);
}
while (!feof(fin))
{
if (fgets(line ,1000,fin)!=NULL)
{
nread = sscanf(line ,"%lg %lg %f %lg”,&XFER[p][nNXFER[p]],&meanPre[p][nXFER[p
11.&meanPost[nXFER[p]],&XFER[p][nXFER[p]]) ;
XFERX[p][nXFER[p]] == 86400.0L; //to convert back to cycles per day
nXFER[p]++;
}
}
fclose (fin);
}

//NOW READ IN MODELS for each pulsar power spectrum in preadon for calculating errors on
the cross power spectrum.
for (p=0;p<knpsr;p++)
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sprintf (fname, specModelFile);
strcat (fname, psr[p].name);
if ( (fin = fopen(fname,”r”)) == NULL)

{
printf ("Unable to open/find file %§n”,fname);
exit(1);
}
while (!feof(fin))
{
if (fgets(line ,1000, fin)!=NULL)
{
nread = sscanf(line ,"%s %lg %lg” ,dummy,&modelspgdp][l],&modelspecy[p][0]);
if (strcmp(psr[p].name,dummy)!=0)
{
printf ("ERROR IN MODEL SCANNING! %s does not equal %s8”,psr[p].name,dummy);
fprintf (stderr ,"ERROR scanning %" ,fname);
exit(1);
}
}
}
fclose(fin);
}
/INOW read in all the calibration factors from a file.
double calFacpnpsr = xnpsr][numcCal]; //this is the calibration factor

double calFreqgfnpsr x xnpsr][numCal]; //this is the frequency of the first 10 factors

since we only care about the first 10 calibration factors.
double calFacErrfnpsr x xnpsr][numCal]; //probably don’'t need this, but it's good to read
it in since the CalFac files will now be 10 columns wide.

char dummy2[100], dummy3[100];

ncorr = 0;
for (p2=1;pXs*npsr;p2++)
{
for (pl=0;pkp2;pl++) /l'so pl is always less than p2, which makes more sense given

their names.

if (yesCalFac == 1)

{
sprintf(fname ,”CalibrationFactor8os%s%s”,outFilePairs ,psr[pl].name, psr[p2].name
)
if ( (fin = fopen(fname,”r”)) == NULL)
{
printf ("Unable to open/find file %§n”,fname);
exit(1);
}
i = 0;
while (i < numCal)
{
if (fgets(line ,1000,fin)!=NULL)
{
nread = sscanf(line ,"%s %s %lg %lg %lg”,&dummy2, &ummy3,c& Freq[ncorr
1[i],&calFac[ncorr][i],&calFacErr[ncorr][i]);
i++;
}
}
fclose (fin);
}
else
{
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for (i=0;i<numCal;i++)

{
calFac[ncorr][i] = 1.0;
}
}
ncorr++;

//INOW read in the errors obtained from simulation for eachtiesate of a2zetaerr. This step
saves having to run my "fitHDfast.csh” script every time. Imheans that this code now

in a single pass produces the correct estimate of A"2 and therrect error bar on that
estimate .

double junkl, junk2;

int foundErrs = 0;

ncorr = 0;

sprintf (fname , "REALPAIR_.RESULTS") ;

if ( (fin = fopen(fname,”r”)) == NULL)

{
printf ("Unable to open/find file %§n”,fname);
}
else foundErrs = 1; [//yes, we found a file with errors in it.
if (foundErrs == 1) /l'i.e., if we've found a file containing the correct simulkd errors
, then read it.
{
for (p2=1;pXx=*npsr;p2++)
{
for (pl=0;pkp2;pl++) //'so pl is always less than p2, which makes more sense
given their names.
{
if (fgets(line ,1000,fin)!=NULL)
{
nread = sscanf(line ,"%s %s %lg %lg %lg %lg %lg”,&dummy2, &my3, &angle |
ncorr],&a2zeta[ncorr],&a2zeteerr[ncorr], &unkl, &unk2);
}
ncorr++;
}
}
fclose (fin);
}

/INOW CALCULATE CORRELATION AND A2ZETAARIANCE BETWEENADAETS IN THE FREQUENCY DOMAIN

int extraObsFlag = O0;

ncorr = 0;

double chisgsum = 0.0; //CONSISTENCY check!!!! this is the sum of the chisq of the
imaginary part of each a2zeta estimate.

double chisg.im = 0.0; //'the chisquared of the imaginary part (is chisqgsum / totate).

int startl , start2, endl, end2; //the starting and ending observations of each pulsar in
this pair. So, startl is the first observation from pulsar lhiwh IS included in the
overlapping region (so "startl— 1" will be the first 1 NOT to be included.)

FILE xfout2;

sprintf (fname ,”PulsarPairs_.Results”);

fout = fopen(fname,”a”);

for (p2=1;pXs*npsr;p2++)

{
for (pl=0;pkp2;pl++) /I'so pl is always less than p2, which makes more sense given
their names.
{
printf(”\n pl = %s, p2 = %s——\n",psr[pl].name, psr[p2].name);

/l for each pulsar pair, there will be a different number of enapping points:
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countl 0;

count2 0;

//find earliest and latest common data points for these twalgars
firstCommonX = xresinterp[pl][0];

lastCommonX = xresinterp[pl][nresinterp[pl]-1];

if (firstCommonX< xres_interp[p2][0])

{

firstCommonX = xresinterp[p2][0];
}
if (lastCommonX> xres_interp[p2][nresinterp[p2]-1]) lastCommonX = xresinterp
[p2][ nres.interp[p2] — 1];
// find overlapping portion of pulsar pl, and put into xres3yres3, err3
for (i=0;i<nres.interp[pl];i++)

{
if (xres.interp[pl][i] — firstCommonX >= —1.0e-3 & xres_interp[pl][i] —
lastCommonX <= 1.0e—3)
{
//'if the previous obs does NOT fall in the overlapping regipnthen set the
startl number.
if ((xres.interp[pl][i—1] — firstCommonX < —1.0e-3 & xres_interp[pl][i—1] —
lastCommonX <= 1.0e-3) || i == 0)
{
startl = i;
printf(”"startl = %dn”,startl);
}
//'if the next obs does NOT fall in the overlapping region, nheet the endl
number .
if ((xres.interp[pl][i+1l] — firstCommonX >= —1.0e-3 & xres_interp[pl][i+1]
— lastCommonX> 1.0e-3) || i == nres.interp[pl]-1)
{
endl = i;
printf("endl = %dn”,endl);
}
xres3[pl][countl] = xresinterp[pl][i];
yres3[pl][countl] = yresinterp[pl][il];
err3[pl][countl] = ercinterp[pl][il;
++countl ;
}
}

//do same for pulsar p2.
for (i=0;i<nres.interp[p2];i++)
{
if (xres.interp[p2][i] — firstCommonX >= —1.0e-3 & xres_interp[p2][i] —
lastCommonX <= 1.0e-3)

//'if the previous obs does NOT fall in the overlapping regipnthen set the
startl number.
if ((xres.interp[p2][i—1] — firstCommonX < —1.0e-3 & xres_interp[p2][i—1] —

lastCommonX<= 1.0e-3) || i == 0)
{
start2 = i;
printf(”"start2 = %dn”,start2);
}
//'if the next obs does NOT fall in the overlapping region, mheet the endl
number .
if ((xres.interp[p2][i+1] — firstCommonX >= —1.0e-3 & xres_interp[p2][i+1]
— lastCommonX> 1.0e-3) || i == nres.interp[p2]-1)
{
end2 = i;
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printf("end2 = %dn”,end2);
}
xres3[p2][count2] = xresinterp[p2][i];
yres3[p2][count2] = yresinterp[p2][i];
err3[p2][count2] = ercinterp[p2][il];

++count2;
}

}
nres3[pl] = countl; nres3[p2] = count2;
/INOW fit out a quadratic from both data sets in the overlappgi portion if

requested .

if (noquad == 1)

{

TKremoveWtdPolyd (xres3[pl],yres3[pl],err3[pl],nres3[pl],3);
TKremoveWtdPolyd (xres3[p2],yres3[p2],err3[p2],nres3[p2],3);
}

//so now xres3 ,yres3 ,err3,nres3 describe the two smoothddterpolated , overlapping
data sets we have for this pair, possibly including removal @ weighted
quadratic from the overlap region.

printf (”\n pl = %s, p2 = %s————\n numptsl = %d, numpts2 = %d)\nfirstdayp1l
= %g, firstdayp2 = %g, lastdaypl = %g, lastdayp2 =\MdirstCommonX = %qg,
lastCommonX = %g,\nnum overlapping: countl = %d, count2 = %d [may be different
due to differing gap size without the—regular’ option], \nspan of overlap = %g
years\n",psr[pl].name, psr[p2].name, nreinterp[pl], nresinterp[p2],
xres_interp[pl][0], xresinterp[p2][0], xresinterp[pl][nresinterp[pl] — 1],
xres_interp[p2][ nresinterp[p2]—1], firstCommonX , lastCommonX, nres3[pl], nres3|
p2], (lastCommonX— firstCommonX) / 365.25);

/INOW calculate the ONESIDED power spectrum of each of pl and p2 in the overlapping
portion .

double ofacpl=1.0, ofacp2=1.0, freqO;

/Imow set the values of ofac such that the lowest frequencyaisthe SHORTER of the
two data spans

if ((xres3[pl][nres3[pl]— 1] — xres3[pl][0]) — (xres3[p2][nres3[p2]— 1] — xres3[p2
1[0]) > 1.0e-8)

//then pl has a longer data span than p2, so take the frequenbwat goes with
p2:
freq0 = 1.0 / ((xres3[p2][nres3[p2} 1] — xres3[p2][0]) = 86400.0);
ofacpl = 1.0 / freqO0 / ((xres3[pl][nres3[pl} 1] — xres3[pl][0]) = 86400.0);
ofacp2 = 1.0;
}
else if ((xres3[pl][nres3[pl]— 1] — xres3[pl][0]) — (xres3[p2][nres3[p2]— 1] —
xres3[p2][0]) < — 1.0e-8)

//this means p2 has a longer data span than pl, so take the ftd@at goes with
pl.
freq0 = 1.0 / ((xres3[pl][nres3[pl} 1] — xres3[pl][0]) = 86400.0);
ofacpl = 1.0;
ofacp2 = 1.0 / freqO0 / ((xres3[p2][nres3[p2} 1] — xres3[p2][0]) = 86400.0);
}

else
{
//this means they are the same length, so use ofacpl = ofacp2.6;
ofacpl = 1.0;
ofacp2 1.0;
}
TKspectrum (xres3[pl],yres3[pl],err3[pl],nres3[pl],M0,0,0,6,0facpl ,1.0,1,xspec[pl
],yspec[pl],&nspec[pl],0,0,yspece[pl],yspecim[pl],useWeight);
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TKspectrum (xres3[p2],yres3[p2],err3[p2],nres3[p2],M,0,0,0,6,0facp2,1.0,1,xspec[p2
]1,yspec[p2],&nspec[p2],0,0,yspece[p2],yspecim[p2],useWeight);

/I Check overlap has worked because they should have the saumeber of channels.

if (interp != 0)

{
if (fabs(nspec[pl]— nspec[p2])>= 1) {printf("ERROR in overlapping data: nspec
pl = %d, nspec p2 = %" ,nspec[pl],nspec[p2]); fprintf(stderr ,”"ERROR in
overlap\n”); exit(1);}
}

// choose the maximum loop index to be the shorter of the twecipa

int maxloop = nspec[pl];

if (nspec[pl]> nspec[p2]) maxloop = nspec[p2];

// set number of cross spectral channels

numcCrossspec[ncorr] = maxloop;

/INOW interp Xfer func of each dataset onto-walues given by their power spectra
above if the data span has changed by taking the overlappingrtipn

if (TKranged(xres.interp[pl],nresinterp[pl]) — TKranged(xres3[pl],nres3[pl])>
1.0e—-20)

[/ first check that XFER function is long enough for interppdion
if (TKranged(xres3[pl],nres3[pl])- 1.0/XFERx[p1][0] > 1.0e-8)

{
fprintf(stderr ,”Huge problem with pl because LOWFREQ trafrer function is
too short— code will crash: psr = %s, psr # = %d, datalength = %.20g,
lowest XFERfunc frequency = %.209n”", psr[pl].name, pl, TKrangel(
xres_.interp[pl],nresinterp[pl]), 1.0/XFERx[pl][O0]);
exit(1);
}

printf(”"interpolating XFER %s, since range has changed by %ays due to overlap
\n", psr[pl].name, TKrangea (xres.interp[pl],nresinterp[pl]) — TKranged (
xres3[pl],nres3[pl]));

interpolateSplineSmoothFixedXPts (XFERpl], XFER[pl], nXFER[pl], xspec[pl],
XFER.interp [pl], nspec[pl]);

}
else //the range hasn’'t changed, so the frequency sampling is daee and the
value of the interpolated function is the same.

printf ("All pulsar %s data contained in overlapping portign”,psr[pl].name);
for (i=0;i<nspec[pl];i++) XFERinterp [pl][i] = XFER[p1][i];
}
/INOW do the same for pulsar p2.

if (TKranged(xres.interp[p2],nresinterp[p2]) — TKranged(xres3[p2],nres3[p2])>
1.0e-8)

[/ first check that XFER function is long enough at the low duency end
if (TKranged(xres3[p2],nres3[p2])- 1.0/XFERx[p2][0] > 1.0e-8)
{
fprintf(stderr ,”Huge problem with p2 because LOWFREQ trafrer function is
too short— code will crash: psr = %s, psr # = %d, datalength = %.20g,
lowest XFERfunc frequency = %.209n", psr[p2].name, p2, TKrangel(
xres_.interp[p2],nresinterp[p2]), 1.0/XFERx[p2][0]);
exit(1);
}
printf(”"interpolating XFER %s, since range has changed by %ays due to overlap
\n", psr[p2].name, TKrangea (xres.interp[p2],nresinterp[p2]) — TKranged (
xres3[p2],nres3[p2]));
interpolateSplineSmoothFixedXPts (XFERp2], XFER[p2], nXFER[p2], xspec[p2],
XFER_interp [p2], nspec[p2]);
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else //the range hasn’'t changed, so the frequency sampling is tdaee and the

value of the interpolated function is the same.

{
printf ("All pulsar %s data contained in overlapping portign”,psr[p2].name);
for (i=0;i<nspec[p2];i++) XFERinterp [p2][i] = XFER[p2][i];

}

/l'the following variable is a bit of a fudge factor sometimes there is a numerical
glitch with the last few channels of the cross spectra, or thegh fregeuncies
in the transfer function are not sufficient because the igndar sampling
means that if, as part of an overlapping region, we encountdre higher than
average pointdensity , then the transfer function will suddenly be too sthamt
the high frequency end because the highest frequency in tha&nd$fer function is
calculated as the AVERAGE separation of points.

int extraSpecChans = 4;

if (xspec[pl][maxloop— extraSpecChans- 1] — XFERXx[p1l][nXFER[pl] — 1] > 1.0e-8)

{
fprintf (stderr ,”"Huge problem with pl because HIGHFREQ tr&fer function is too
short — code will crash: psr = %s, psr # = %d, pair # = %d, max xspec = %.20
g, max XFERfunc freq = %.20gn”, psr[pl].name, pl, ncorr, xspec[pl][nspec]|
pl] — extraSpecChans- 1], XFERx[p1l][nXFER[pl] — 1]);
exit(1);
}
if (xspec[p2][maxloop— extraSpecChans- 1] — XFERX[p2][nXFER[p2] — 1] > 1.0e-8)
{
fprintf (stderr ,”"Huge problem with p2 because HIGHFREQ tra&fer function is too
short — code will crash: psr = %s, psr # = %d, pair # = %d, max xspec = %.20
g, max XFERfunc freq = %.20§n”, psr[p2].name, p2, ncorr, xspec[p2][nspec]|
p2] — extraSpecChans- 1], XFERX[p2][nXFER[p2] — 1]);
exit(1);
}

/INOW form cross spectrum of pulsars pl and p2, only need reart since when we
sum it to find the a2zetaariance , the imaginary parts will nmel out for
negative and positive frequencies: therefore {RE[pl]xFT[p2]x} = FT_re[pl] x
FT_re[p2] + FT_im[pl] x FT.im[p2]. However the imaginary part maybe useful for
giving us a good estimate of the noise on each pulsar (since witll not be
affected by GWs or clock errors)

for (i=0;i<maxloop;i++)

{
if (interp !=0)
{
if (fabs(xspec[pl][i]— xspec[p2][i]) > 1le—3) {printf("ERROR in overlapping
data: i = %d, freq %s = %g, freq %s = %g”,i,psr[pl].name, xspec[pl][i],
psr[p2].name, xspec[p2][i]); fprintf(stderr ,"ERROR inverlap\n”); exit
(1):}
}
if (fabs(XFERx[pl][i] — xspec[pl][i]) < O || fabs(XFERx[p2][i] — xspec[p2][i])
< 0) {printf("Transfer function has incorrect sampling leads to
extrapolation not interpolation!! %g %g %g %g %g %g %g Yy ,XFERX[pl][i],
XFER[pl][i],xspec[pl][i], XFERinterp[pl][i],XFERX[p2][i], XFER[p2][i],
xspec[p2][i], XFERinterp[p2][i]); fprintf(stderr ,"ERROR in overlafn”);
exit(1);}
crossspecx[ncorr][i] = xspec[pl][il; /Ipl and p2 have same-walues
crossspecy_re[ncorr][i] = yspecre[pl][i] * yspecre[p2][i] + yspecim[pl][i] =*
yspecim[p2][i]; /lreal part of 2-sided cross spectrum in (DFT units)"2
crossspecy_im[ncorr][i] = yspec.im[pl][i] * yspecre[p2][i] — yspecre[pl][i] =*
yspecim[p2][i]; /limag part of 2-sided cross spect in (DFT units)"2

/INOW convert the units of the real and imaginary parts of tRBesided cross
spectrum into units of 4sided PSD using the same conversion factor as we
use for the power spectra. This conversion for the power dpa&cis outY[j
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] = (outY[j]/pow(365.25x86400.0 ,2) x2x(tspan/365.25)/(double)n/(double)n;
note the factor of 2 that converts—&ided to tsided spectrum.

crossspecy_re[ncorr][i] = (crossspecy_re[ncorr][i]/pow(365.25%86400.0,2))
x*2*(1/sqrt(xspec[pl][0¥ xspec[p2][0])/365.25)/¢@ouble)nres3[pl]/(double)
nres3[p2];

crossspecy_im[ncorr][i] = (crossspecy_im[ncorr][i]/pow(365.2586400.0,2))
x*2*(1/sqrt(xspec[pl][0¥ xspec[p2][0])/365.25)/¢@ouble)nres3[pl]/(double)
nres3[p2];

/I CONSISTENCY CHECK: real part of the cross spectrum canxceed the sqrt of
the product of the 2 input power spectra. This is a conseqeenef the
identity (AB)"2 >= 0, with A = Rplklp2; B = Rp2«Ipl.

if (crossspecy_re[ncorr][i] / sqrt(yspec[pl][i]* yspec[p2][i]) > 1.01 )

{
fprintf(stderr ,"ERROR! Cross spectrum exceeds sqrt of guat of input power
spectra: freqnum = %d, cross spec = %g, sqrt(yspec[pllyspec[p2] = %g
\n”, i, crossspecy.re[ncorr][i], sqrt(yspec[pl][i]=* yspec[p2][il]));
exit(1);
}

}

//INOW divide the %sided cross spectrum by the square root of the product of the
XFER functions. Also divide each pulsar spectrum by its owmntsfer function.

double sqrtprod; // for computational speed
for (i=0;i<maxloop;i++)
{

sqrtprod = sqrt(XFERinterp[pl][i] * XFER_interp[p2][i]);

if (noXFER == 0) sqrtprod = 1.0;

yspec[pl][i] /= XFERinterp[pl][i];

yspec[p2][i] /= XFER.interp[p2][i];

crossspecy_re[ncorr][i] /= sqrtprod;

crossspecy_im[ncorr][i] /= sqrtprod;

P_g[ncorr][i] = preWhAmp x preWhAmp x pow( (double) (xspec[pl][i] * 365.2425)
,(2.0«alphaGWB — 3.0) ) / 12.0 / MPI /| M_PI;

crossspecerr[ncorr][i]=sqrt( (modelspecy[pl][0] * pow(xspec[pl][i]/86400.0,
modelspecy[pl][1]) + P_g[ncorr][i]) * (modelspecy[p2][0] * pow(xspec[pl][i
1/86400.0 , modelspeg [p2][1]) + P_g[ncorr][i]) / 2.0 );

//NOW INCLUDING THE CALIBRATION FACTOR!!!!Il remember toabbrate the error as
well .

if (i < numCal & yesCalFac == 1)

{

crossspecy_re[ncorr][i] 1.0 / calFac[ncorr][i]* (crossspecy_re[ncorr][i
D
crossspecy_im[ncorr][i] = 1.0 / calFac[ncorr][i] = (crossspecy_im[ncorr][i

R

crossspecerr[ncorr][i]

s

1.0 / calFac[ncorr][i]=* (crossspecerr[ncorr][i

}

/INow calculate the estimate of A"2 times zeta (using the Bignmation formulae)
where the errors in the cross spectrum are NOT independent fedquency (because
the spectra are not white in general). Note there are 2 avdila versions here
— the pre-whitening version where we allow for the idea that the graatitonal
wave signal might be large enough that.® ~ P.N, and the nompre—whitening
version where we assume_® << P_N.

sum1=0.0;

sum2=0.0;

sum4=0.0;

for (k=0;k<maxloop — extraSpecChans;k++)
suml+= ( crossspeg._re[ncorr][k]xpow((double)(k+1),—1.0«(3.0 — 2.0«alphaGWB)) /

crossspecerr[ncorr][k] / crossspecerr[ncorr][k] );
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sum2+= ( pow(double) (k+1),—2.0«(3.0 — 2.0xalphaGWB)) / crossspe@rr[ncorr][k]
| crossspecerr[ncorr][Kk] );
/I CONSISTENCY CHECK- we don’'t expect the imaginary part to be correlated, so
the chi squared of the imaginary part should be 1.
sum4 += ( crossspeg-im[ncorr][k]«xpow((double)(k+1),—1.0«(3.0 — 2.0«xalphaGWB))
| crossspecerr[ncorr][k] / crossspecerr[ncorr][k] );
a2zeta[ncorr] = 12.@8M_PIxM_Plxpow (( xspec[pl1][0] * 365.2425) ,(3.0— 2.0xalphaGWB)) x
suml / sum2;
/I CONSISTENCY check with imaginary part of the cross poweecirum.
a2zetaim[ncorr] = 12.0«M_PIxM_Plxpow (( xspec[pl][0] * 365.2425) ,(3.0— 2.0xalphaGWB)
) * sum4 / sum2;
/INOW calculate the error on the estimate of a2zeta given tththe error on the
cross spectrum DOES vary with frequency.

sum3=0.0;
for (k=0;k<maxloop — extraSpecChans;k++)
{

/lusing the calibrated error estimate on the cross spectrum
sum3+= (1.0 / crossspeerr[ncorr][k] / crossspecerr[ncorr][k] / pow((double)(k
+1) ,2.0«(3.0 — 2.0xalphaGWB)));

/1'1f we haven’'t found a file with the errors from our processorctained in it, then
calculate the error analytically.
if (foundErrs == 0)
{
a2zetaerr[ncorr] = 12.0«* M_Pl x M_Pl x pow(xspec[pl][0] x 365.2425,(3.0— 2.0«
alphaGWB)) / sqrt(sum3);
printf(”"calculating errors from the spectral models!!!'!UB to no file called
REAL_PAIR.RESULTS !litrrrrrrrrrrrnrt \n");
}
/I CONSISTENCY CHECK with chisq of imaginary part
chisgsum += ( a2zetam[ncorr] / a2zetaerr[ncorr]) = (a2zetaim[ncorr] /
a2zetaerr[ncorr]);
angle[ncorr] = psrangle (psr[p2].param[paramj].val[0], psr[p2].param[parandecj].
val[0],
psr[pl].param[paranraj].val[0],psr[pl].param[parandecj].
val[0]);
printf ("A2zetaEstimates %s %s %d %g %g %g ¥Wd ,psr[pl].name, psr[p2].name, ncorr ,
angle[ncorr], a2zeta[ncorr], a2zetarr[ncorr], a2zeta[ncorr] / a2zetarr[ncorr
D
/+ Quick correlation */
sum1=0.0;
sum2=0.0;
sum3=0.0;
for (i=0;i<nres3[pl];i++)
{
suml += yres3[pl][ikyres3[p2][il;
sum2 += yres3[pl][ikyres3[pl][il];
sum3 += yres3[p2][ikyres3[p2][il];
}
corr[ncorr] = (float)(suml/sqgrt(sumsum3));
Toverlap[ncorr] = 1.0 / xspec[pl][0]; //the overlapping time interval of the two
pulsars, in units of days.
fprintf (fout, "%s %s %.89 %.89 %.89 %.89 %.89 %.8w",psr[pl].name, psr[p2].name,
angle[ncorr], a2zeta[ncorr], a2zetarr[ncorr], Toverlap[ncorr] / 365.2425, corr
[ncorr], a2zetaim[ncorr]);
if (yesXSpec == 1)
{
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/INB!! If you change the name of the Calibration factor filesyou need to
change the name of these ones too!!

sprintf (fname, outFilePairs);

strcat (fname, psr[pl].name);

strcat (fname, psr[p2]. name);

fout2 = fopen(fname,”a”);

fprintf (fout2 , "%.2g9 %.2g %.2g %.29 %.2g %.2g %.29 %.2g %.26.29 %.29 %.2g %.29g
%.29 %.29 %.29 %.29 %.29 %.29 %.29 %.29 %.29 %.29 %.29 %.299%0@229 %.29
%.29 %.2g ", crossspeg_re[ncorr][0], crossspecgy_im[ncorr][0],
crossspecerr[ncorr][0],crossspecy_re[ncorr][1l], crossspecy_im[ncorr][1],
crossspecerr[ncorr][1],crossspegy_re[ncorr][2], crossspecy_im[ncorr][2],
crossspecerr[ncorr][2],crossspecy_re[ncorr][3], crossspecy_im[ncorr][3],
crossspecerr[ncorr][3],crossspecy_re[ncorr][4], crossspecy_im[ncorr][4],
crossspecerr[ncorr][4],crossspegy_re[ncorr][5], crossspecy_im[ncorr][5],
crossspecerr[ncorr][5],crossspecy_re[ncorr][6], crossspecy_im[ncorr][6],
crossspecerr[ncorr][6],crossspecy_re[ncorr][7], crossspecy_im[ncorr][7],
crossspecerr[ncorr][7],crossspecy_re[ncorr][8], crossspecy_im[ncorr][8],
crossspecerr[ncorr][8],crossspecy_re[ncorr][9], crossspecy_im[ncorr][9],
crossspecerr[ncorr][9]);

fprintf (fout2 , "\n");

fclose (fout2);

}
ncorr++;

Printf (7 ssskokssokkonskoksoskokokokokokokokkoxk END OF THIS  PAIRksk skt ksosktsosksko ok skokoskkox ok \ N7

}

fclose (fout);
totalcorr = ncorr; //this is the total number of estimates of the correlationssqual to
the nmber of pulsar pairs.
/I CONSISTENCY CHECK
chisg.im = chisqsum / @ouble)totalcorr;
printf("chi squared of the imaginary part of the %d a2zetatiesates is %g; this number
should be close to \In",totalcorr ,chisgim);
// Determine the weighted average _dverlap (in units of days) in the data set, weighted by
error on each A2 zeta estimate.
double wts[totalcorr];
for (i=0;i<totalcorr;i++)
wis[i] = 1.0 / a2zetaerr[i] / a2zetaerr[i];
avToverlap = TKWeightedmean (Toverlap ,wts, totalcorr);
printf(”"average overlap time is %g yeaks”, avToverlap / 365.2425);
/l Calculate significance of detection using the Jenet et. asignificance parameter "S”
double R_sig = calcSignificance (corr,angle ,totalcorfnpsr);
//PERFORM Least Squares fit to A2zetaariances...
/12 fit parameters if we are searching for the HD curve AND ansdant. Just 1 if we are
only searching for HD curve.
printf ("nharm = %d\n”,nharm);
double A2[nharm], eA2[nharm], afunc[10], e[totalcorr];
int outN;
eA2[0] = 0.0;
if (nharm == 2) eA2[1] = 0.0;
/!l Do LSQ Fit of the HD function to the data.
for (i=0;i<totalcorr;i++)
{
e[i] = a2zetaerr[i];
}
int wkrr = 1; //'with Error
if (wErr == 0) printf ("\n\n\n\nwErr = 0!!! This means not using errok®\n\n");
double reducedchisq[1];
//DO THE FIT
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//FIT TO THE REAL PART (which contains the correlated signpal

fitHDcurve (angle ,a2zeta ,e, totalcorr ,wErr,nharm ,AD&N ,eA2, reducedchisq);
fout = fopen(outFile ,”a");

char msg[100];

double B_sig = A2[0] / eA2[0]; //significance of detection

double gwAmp, UpperBoundAmp;

if (A2[0] < 0) //'if the estimate of A2 is negative , then:
gwAmp = 0;

else
gwAmp = sqrt (A2[0]);

if (ngw==0) gwamp = 0.0;

printf("derived gwAmp = %g, input gwAmp = %g\n”, gwAmp, gwamp/pow(365.242686400.0,alpha));
//'the factor is to get the input gwamp normalised to 1 year ¢$iead of 1 second)
if (B.sig < —1.7)
UpperBoundAmp = 0.0;
else
UpperBoundAmp = sqrt(A2[0] + 1.7« eA2[0]); //the number 1.7 comes from the erf function;
it gives us a 90% confidence interval; since we only want thpper side, this
corresponds to a 95% confidence upper bound.
//Now determine the equivalent values of omega for the esatienand the limit, using eq. 36
from Anholm et al. paper

double h = 0.72; //assumed value of W = 72 km / s / Mpc

double alphaOmegaGWB = 2 x alphaGWB + 2.0; /l'this is the spectral exponent of the omega
background

double H.O = h « 100.0 * 1000.0 / 3.08568025e22% 365.2425x 86400.0; // hubble constant
in 1 / years

double f_1yr = 1.0; /I 1/ 1 year in years

double omegaGWB = A2[0] * 2.0 * M_Pl « M_PlI / 3.0 / HO / H.O / pow(f_lyr ,h2.0xalphaGWB) x
pow((1.0 / avToverlap), 2.0alphaGWB + 2.0— alphaOmegaGWB);
double errOmegaGWB = eA2[0] x 2.0 * M_Pl «+ M_PI / 3.0 / HO / H.0 / pow(f.1yr ,h2.0«alphaGWB)
x pow((1.0 / avToverlap), 2.9alphaGWB + 2.0— alphaOmegaGWB) ;
double UpperOmegaGWB = omegaGWB + 1.64485 x errOmegaGWB;
if (gwamp> 0) //if we have added an input GWB with positive amplitude:
{
if (nharm == 2) //i.e. if we have fitted a clock error as well, then print outhd
parameters of the estimated clock error
fprintf (fout,”%.49\t%.49\t%.49\t%.49\t%.40\t%.40\ t%.40\ t%.49\ t%d\ t %.49\t%.409\t%.4g\n",
B_sig, gwAmp,gwample5 , UpperBoundAmp, A2[0], eA2[0], reducedhisq[0], chisqim,
totalcorr ,A2[1], eA2[1],A2[1]/eA2[1]);
else if (nharm == 1)
fprintf (fout,”%.49\t%.49\t%.409\t%.49\t%.40\t%.49\t%.40\t%.49\t%d\n", B_sig, gwAmp,
gwampx1le5 , UpperBoundAmp, A2[0], eA2[0],reducedhisq[0], chisgim , totalcorr);

}
else //no simulated GWB added
{
if (nharm == 2) //i.e. if we have fitted a clock error as well, then print outhd
parameters of the estimated clock error
fprintf (fout,"%.49\t%.49\t%.49\t%.49\t%.40\ t%.40\ t %.40\ t%d\ t %.49\ t%.49\t%.4g\n", B_sig
, gwAmp, UpperBoundAmp, A2[0], eA2[0], reducedhisq[0], chisqim ,totalcorr ,A2[1],
eA2[1] ,A2[1]/eA2[1]);
else if (nharm == 1)
fprintf (fout,"%.4g %.40\t%.49\t%.49\t%.49\t%.49\t%.49\ t%.49\ t%.49\ t%d\n", R_sig, B_sig
, gwAmp, UpperBoundAmp, A2[0], eA2[0],reducedhisq[0],chisqim,hcorr[0],totalcorr);
}
fclose (fout);
return O;
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/1 TKfindWeightedRMS is a function to find the weighted RMSam input series. x is the array
of values, wt is the array of weights, n is length of series.isThshould agree with plk
but is DIFFERENT to finding the rms of the weighted mean!!

double TKfindWeightedRMSd (double xx,double xwt,int n)

{

int i;
double mean,sdev=0.0,sumwt=0.0;
mean = TKWeightedmean (x,wt,n);
for (i=0;i<n;i++)
{
sdev += pow(x[i}-mean,2xwt[i];
sumwt += wt[i];
}
sdev/=sumwt;
sdevk=(double)n / (double) (n-1);
sdev = sqrt(sdev);
return sdev;

}

/I TKfindWeightedRMS is a function to find the weighted RMSam input series. x is the array
of values, wt is the array of weights, n is length of series.TNGns of weighted mean.

float TKfindWeightedRMSf(float *x,double xwt,int n)

{

int i;
float mean;
double sdev=0.0;
double sumwt=0.0;
mean = TKWeightedmeanmf(x,wt,n);
for (i=0;i<n;i++)
{
sdev += pow(x[i}-mean,2xwt[i];
sumwt += wt[i];
}
sdev/=sumwt;
sdevk=(double)n / (double) (n-1);
sdev = (float)sqrt(sdev);
return sdev;

/I psrangle: calculates angle on the sky between psr 1 and gsr
double psrangle double centrellong ,double centrelat ,double psr.long ,double psr_lat)
{

double dlon,dlat,a,c;

double deg2rad = MPI/180.0;

/x Apply the Haversine formulax/

dlon = (psrlong — centrelong);

dlat = (psr.lat — centrelat);

a = pow(sin(dlat/2.0),2) + cos(centréat) x*
cos(psrclat)«pow(sin(dlon/2.0) ,2);

if (a==1)
¢ = M_Pl/deg2rad;

else
c = 2.0 x atan2(sqrt(a),sqrt(l0a))/deg2rad;

return c;
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double calcSignificance flouble xcorr ,double xangle ,int ncorr ,int npsr)
{

double meanR,meanR2, meanEta, meanEta2 ,sigmaRho ,sigmaR , &tana

double hd,rho,sig,sigmag2, rEta, clockerr;

int i;

char str[100];

sigmaRho = sqrt(2)/sqrt(nps(npsr—1));

meanR = 0.0;

meanR2 = 0.0;

meanEta = 0.0;

meanEta2 = 0.0;

rEta = 0.0;
for (i=0;i<ncorr;i++)
{

meanR += corr[i]; //meanR is average correlation
meanR2 += corr[i¥corr[i];
hd = calcHD (angle[i]); //the Hellings Downs coefficient
meanEta += hd;
meanEta2 += hdhd;
rEta += corr[ilxhd; //related to a2zetaariance between HD curve and our meadure
correlations.
}

meanR /= ncorr;

meanEta /= ncorr;

rEta /= ncorr;

sigmaR = meanR2- meanRimeanR;
sigmaEta = meanEta2 meanEtameanEta;
rho = 0.0;

/x Note: subtracting the means implies that any clock error getemoved x/
for (i=0;i<ncorr;i++)
rho += (corr[i]l-meanR}(calcHD (angle[i])>meanEta)/sqrt(sigmaRsigmaEta);
sig = rho/sigmaRho;
sigmag2 = 0.0;
for (i=0;i<ncorr;i++)
sigmag2 += corr[i]xcalcHD (angle[i]);
sigmag2 /= meanEta2;
sprintf(str ,”Significance of GW background signal = %.2g3ig);
/x Calculate clock error x/
{
clockerr = (meanEtameanR-meanEtarEta)/sigmaEta;
printf(”"Variance of clock error = %g (s"2)n",clockerr);
}
/x Strength of gravity wave background/
printf ("GW background = %g (s"2) sqrt() = %g (§0h”.rhoxsqrt(sigmaR/sigmaEta),sqrt(rhkeqrt(
sigmaR /sigmaEta)));

return sig;
}
double calcHD (double angle)
{
if (angle == 0) return 0.5;

double x, ctheta;

ctheta = cos(angleM_P1/180.0);

X = (1.0—ctheta)/2.0;

return (xxlog(x)—x/6.0+1.0/3.0)*3.0/2.0;

/I This version does a fit of the HD curve only
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void fitHDcurve (double xx,double xy,double xe,int n,int wErr, int nharm ,double *A2,int *outN,
double xeA2, double xreducedchisq)

FILE xfout;
int i,j;
long idum2 = TKsetSeed();
double *xcvm;
double chisq=0.0;
cvm = (doublexx)malloc (nharmxsizeof(double x));
for (i=0;i<nharm;i++)
cvm[i] = (doublex)malloc (nharmxsizeof(double));
if (nharm == 1) TKleastSquaresvd(x,y,e,n,A2,eA2,nharm,cvm,&chisq ,HDfunc,wErr);
else if (nharm == 2) TKleastSquaresvd(x,y,e,n,A2,eA2,nharm,cvm,&chisq ,HDfuncClk ,wErr)
for (i=0;i<nharm;i++)
for (j=0;j<nharm;j++)
printf ("cvm[%d][%d] = %g\n”,i,j,cvm[il[j]);
for (i=0;i<nharm;i++)
for (j=0;j<nharm;j++)
printf("correlation matrix[%d][%d] = %gn”,i,j,cvm[i][j] / sqrt(evm[il[i] xcvm[j][i]));
«*OUtN = nharm;
reducedchisq[0] = chisq / (n— nharm); // the chi squared divided by the number of degrees
of freedom = npts— numfits
printf("chisq = %g & reducedchisq = %g and wErr = %dn\n",chisq ,reducedchisq[0],wErr);
//INOW Correct the error bars on the "nharm” fitted parameterfor the chi-squared value:
if (wErr == 1)
{
printf ("Correcting errors on fit using the square root of ehreduced chisquared”);
for (i=0;i<nharm;i++)
eA2[i] = (sqrt(reducedchisq[0]));
}
if (nharm == 2) printf("clock error = %g + %g, significance of clock error = %n", A2
[1], eA2[1],A2[1] / eA2[1]);

// This function is used when fitting for a clock error as weds the GWB
void HDfuncClk (double x1,double afunc[],int ma)
{

int i;

double x;

double ctheta;

ctheta = cos(x¥M_PI1/180.0);

X = (1.0—ctheta)/2.0;

afunc[0] = (xxlog(x)—x/6.0+1.0/3.0)3.0/2.0;

afunc[1l] = 1.0; /l fits a constant simultaneously

// This function fits only for the GWB
void HDfunc(double x1,double afunc[],int ma)
{

int i;

double x;

double ctheta;

ctheta = cos(x¥M_PI1/180.0);

X = (1.0—ctheta)/2.0;

afunc[0] = (xxlog(x)—x/6.0+1.0/3.0)3.0/2.0;

// Adapted from Stefan / George’'s plugin
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/l'interpolation (spline): this function interpolates a ta set using constrained spline onto
an input set of interpX and ninterp values

void interpolateSplineSmoothFixedXPtslouble xinX, double *inY, int inN, double xinterpX ,
double xinterpY , int nlnterp)

// array needed by TKcmonot
double yd[MAX_OBSN][4];
[/ auxilary i’
int i;
double tempX[MAX_OBSN];
int nTemp = ninterp;
for (i=0;i<nTemp;i++)

{

tempX[i] = interpX[i];

}
TKcmonot (inN, inX, inY, yd);
TKspline_interpolate (inN, inX, inY, yd, tempX, interpY , nTemp);

} /linterpolateSplineSmoothFixedXPts
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