MULTIBEAM BLOCK CONTROL COMPUTER

ATNF Electronics Group

Multibeam Block Control Computer

1. Overview

This document describes the computer system used in the Multibeam correlator. The
Multibeam Block Control Computer (MBCC) provides control for the Correlator Blocks. Each
block consists of a Block Backplane and up to 8 Correlator Module boards. Up to three blocks
can be controlled by a single MBCC.

The computer system uses an Intel 80486 computer and runs the pSOS operating
system from Integrated Systems. It receives commands from and responds to the host
Correlator Control Computer (CCC). This communication is via a RS-232 serial line or ethernet
using the TCP/IP protocol.

When communicating with the MBCC system the serial port can only be used to control
block 0. When the network communication is used commands for Correlator Blocks 0, 1 and 2
are accepted on network ports 400010, 400110, and 400210, respectively. When correlation
data is being retrieved over the network connection correlation data for Correlator Blocks 0O, 1
and 2 is retrieved on network ports 4003 15 40044, and 4005,,, respectively.

Command Format

Commands are passed from the CCC to the MBCC system as ASCII text. A command
consists of a line of text beginning with a period (*.”) character followed by a two letter command
and any command arguments. The command line is terminated by a carriage return character
(ASCIl 13), a new-line character (ASCII 10), or both. Some commands require an input data
block containing extra information required by the command. This input data block immediately
follows the command line. In addition, some commands return an output data block containing
information obtained by the command.

Lines returned by the system to the CCC are terminated by a carriage return character
(ASCII 13) followed by a new-line (ASCII 10). After any command has been executed (whether
or not any input or output data blocks were involved) the system returns a line containing a
single hexadecimal number which is an error code. If the command was successfully completed
this error code will be zero. A non-zero error code indicates that the command could not be
completed and the value indicates the nature of the error (see Return Error Codes below).

The majority of this document is used to describe the individual commands. In the
descriptions the first line gives the command name and its basic function. The second line gives
the command and its arguments. Each argument is listed in italic and optional arguments are
enclosed in square brackets ([...]). The bullet (-) character indicates a space or tab character.
The next lines contain a description of the "type" of each argument. A list of bold characters
enclosed in parenthesis means that argument may assume any of the emboldened characters.
Two numbers separated by two periods (..) means that argument may accept any numerical
value between or including the two values. Numerical values separated by commas means that
the argument may assume any of the numerical values listed. All numerical values given are in
hexadecimal. (The one exception to this rule is the ETD specification given in the .EE and .LT
commands.) Normal type is used for characters passed from the CCC to the system, bold type
for the characters passed from the system to the CCC.

Input Data Blocks

Some commands require extra input data. This is supplied in an input data block. An
input data block is one or more lines of ASCII text with each line containing a single value. Each
line is terminated by a carriage return character (ASCIl 13), a new-line character (ASCII 10), or

Paul Roberts 7/20/98

Multibeam Block Control Computer

both. The block is terminated by a line containing only the tilde character (" ~", ASCII 126). The
command error code is returned after the end of block marker is received by the system. The
one exception is the .DX command where data is sent in binary format for efficiency reasons.

The system will read as much data as it requires from an input data block ignoring any
excess. If too much or not enough information is in the input data block then an error is
returned.

OQutput Data Blocks

For the system to send data to CCC an output data block is used. The one exception is
the .GC command which returns data in binary format for efficiency reasons. An output data
block consists first of a line containing only the percent sign (“%”, ASCIl 37), followed by one or
more lines of text, and finally terminated by a line containing only the tilde character (* ~", ASCII
126). The error code for the command is returned after the block has been sent. The end of
block line will always be returned even when an error occurs and no data is sent. If an error
occurs while the data for the output data block is being generated then the output data block is
shortened by sending the end of block line and error code immediately.

The CCC software should read all required information from an output data block then
discard the rest of the data up until the end of block line. This convention allows backward
compatible upgrades to the system.

For example the .GT command is used to obtain the current atomic time. The following
is an example of the use of this command and illustrates the use of an output data block.
. GI
%
FO4D16EF33EFO

0

Return Error Codes

At the end of execution of any command the system returns an error code to the host
computer. Error codes consist of 16-bit unsigned numbers (four hexadecimal digits). The
possible error codes are given below. Note some of these error codes relate to commands not
supported on the Multibeam Correlator.

Error Description
0000 Ok. The command completed successfully.
7001 lllegalCommand. A line starting with a period (“.”) has been received but the

next two characters were not recognised as a legal command.

7002 MissingArgument. A command line argument which is required by the given
command was not present in the command line.

7003 lllegalArgument. A command line argument either contained an illegal
character and could not be converted, or contained an illegal value.

7004 lllegalMode. The command line contained an illegal mode.

Multibeam Block Control Computer

7005

7006

7007

7008

7009

700A

700B

700C

700D

700E

700F

7010

7011

7012

7013

7014

7015

7016

7018

7019

Paul Roberts

MemoryAllocError. An error occurred when the system attempted to allocate
a memory block.

DataBlockValueError. An input data block element either contained illegal
characters and could not be converted, or contained an illegal value.

MissingDataBlockElement. There were not enough lines in the input data
block following the command.

TooManyDataBlockElement. There were too many lines in the input data
block following the command.

ExceededRecursiveLimit. Calls to the system shell were nested too deeply.
This can only occur when using the .EX command.

FileNotFound. The given disk file name was not found. This can only occur
when using the .EX command.

ProgFileNotFound. The given memory file name was not found. This can
only occur when using the .PA, .PD, .PE, and .PX commands.

ProgFileCRCError. A CRC error occurred when reading the given memory
file. This can only occur when using the .PA, .PD, .PE, and .PX commands.

NonExistentMemory. The interface status register indicated an attempt was
made to access a memory location which does not exist.

MemoryAddressOverflow. The interface status register indicated that the
address register overflowed while accessing a memory location.

UnknownETD. The Event Timing Description for the given index has not
been defined with .LT command. This can only occur when using the .EE
command.

BATOffLine. The event generator indicates the BAT clock signal is not
present or broken.

EGFIFOError. An event generator FIFO memory fault occurred.

EGPreambleError. The system failed to find the preamble to the event
generator version/serial number string.

EGSerNumTooLong. The event generator version/serial nhumber string was
longer than expected.

ETDTooLong. The given Event Timing Description was too long. This can
only occur when using the .LT command.

BadETDDesc. An error occurred while the .LT command was parsing an
Event Timing Description. This can only occur when using the .LT
command.

NoEventGen. No event generator is present in the system.

NonexistentModule. The addressed Correlator Module is not present.

lllegalModuleCombination. Only one Correlator Module can be selected for
the command.

7/20/98

Multibeam Block Control Computer

701A DelayUnitOwned. A delay unit in the given delay unit block is already
assigned. This can only occur when using the .DB command.

701B UnknownDelayTable. The given delay unit block index has not be defined
with the .DB command.

701C OutOfDelayBulkTables. All available delay unit blocks have been used.
This can only occur when using the .DB command.

701D ETDQueueOverflow. The message queue where ETD processing requests
are placed is full. This usually indicates previous ETD processing has not
been completed. This can only occur when using the .EE command.

701E CorrDataNoSend. The requested correlator data could not be sent.

701F DoneNotHigh. The Done pin did not go high indicating the Xilinx chip failed
to program.

7020 XilinxCFG. An error occured while reading the Xilinx configuration data.

7021 DoneNotLow. The done pin did not go low indicating the Xilinx chip failed to
reset.

2. Correlator Block Commands

The following is a description of the commands which are available on the Multibeam Block
Control Computer (BCC) system. They are used to control and monitor the Correlator Block.

.PM .PM

Reads from or writes to the Multibeam Correlator registers.

.PM - address - [data(] - [datal] - [data?] -........ [data31]
address: Base address of Correlator Module
dataO - dataN: Register address and data to load into register.

This command reads from or writes to the registers of the designated Correlator Module.
To Write the command must supply the address and at least 1 register/address value. The data
is made up of 2 fields: bits O - 15 contain data, bits 16 - 20 contain the register number and bits
21 - 31 are 0; for example, the data c3456, puts the data 3456 into register ¢ (12).

To read supply only the Correlator Module base address. An output data block is
returned with 33 entries. Same data encoding is used as with the write. the 33rd entry is the
serial number and it takes the register number 3F.

Ml Ml

Initialise multibeam total power acquisition task.

.Ml - nsamplers - [address - sampler] nsamplers
nsamplers: 1..F
address: module address

Multibeam Block Control Computer

sampler: 01

This command initialises the total power task and enables collection of the total power
counts from the samplers listed in the command parameters. nsamplers is the total number of
samplers to be read. Each multibeam correlator module is capable of accessing two samplers.
The collected total power counts are retrieved with the .gp command.

.GP .GP

Get multibeam correlator total power counts.
.GP

This command retrieves the multibeam correlator total power counts read during the last
integration. The data is returned in a standard data block. The data block consists of nsamplers ~
2~ number of times the multibeam sampler SAM_DATA_READY signal switches during an
integration, four-digit hex numbers. There is a maximim of 12 values per line with each
SAM_DATA_READY period also terminated by a new line. For example, with 8 samplers and
two SAM_DATA_READY periods per integration the data block would have the format;

%

1d23 1d73 a547 a532 ¢228 c111 2344 2311 9665 9767 2343 2123
1232 1254 6547 6587

1234 1325 efll ed23 3647 3254 8342 8453 5534 5433 6289 6211
a234 a792 b232 b211

The sampler to which each pair of numbers refers is the same as specified in the .mi command,
which must have been issued previously. The number of lines of data returned is equal to the

.GC .GC

Retrieve multibeam correlator correlation data by ethernet.

.GC - address - chip
address: module address
chip: 01

This command retrieves the multibeam correlation data over the ethernet. The data is
returned in binary format for efficiency reasons. 4100 bytes of data will be sent in response to the
.gc command - (1024 lags + sample count) 32 bit words. The zeroth lag is sent first and in
increasing order thereafter. The 1025th word is the total sample count.

RX RX

Reset multibeam correlator Xilinx chip.

.RX - address - chip
address: module address
chip: [0 = DMA Interface, 1 = Data Controller]

This command resets the specified Xilinx chip on the multibeam correlator module.
This command is issued prior to programming a Xilinx chip with the .dx command.

Paul Roberts 7/20/98

Multibeam Block Control Computer

.DX .DX

Program multibeam correlator Xilinx chip.

.DX - address - chip - bytes
address: module address
chip: [0 = DMA Interface, 1 = Data Controller]
bytes: number of bytes of programming data

This command programs the specified Xilinx chip on the multibeam correlator module.
Immediately after this command is issued bytes of binary programming data, read from the
appropriate .xil file, should be sent.

.CD .CD

Program clock divider and clock switch.

.CD - divider - clksrc
divider: [0..7] divider setting
clksrc: [0 = 128 MHz, 1 = 32 MHZ]

This command is only used when the correlator is being driven by the LBA-DAS. The
command sets the divider ratio for an external clock divider which feeds the correlator and
selects the input source to the clock divider from the two clocks supplied by the DAS. The
divided clock frequency is given by

Output_clk_ freq = Input_clk_ freg/2%

3. Event Generator Commands

The event generator is a custom hardware device designed and built at the ATNF. It can
generate up to 16 timing signals and a clocking signal. It includes a frame grabber used to
obtain information from the Binary Atomic Time (BAT) clock, aka the Hunt clock. The following
is a description of the commands which are available on both the Block Control Computer (BCC)
and Delay Unit Control Computer (DUCC) systems when equipped with this device.

To control the event generator’s timing signals an Event Timing Description (ETD) is
used. An ETD is a recursive data structure which defines a stream of events for the event
generator. An ETD acts like a program which is followed to generate the data (time and events)
to send to the event generator. It consists of the ETD commands listed below. Of special
importance is the Sequence command which allows an ETD to be recursive. It is used to create
loops within an ETD.

The ETD processor contains 8 event and 8 time registers which can be manipulated by
the ETD. Each event register holds a 16-bit unsigned number, and each time register hold a 64-
bit unsigned number. The registers are accessed through the processing of the ETD. Event
register 0 has special meaning in the ETD commands and is referred to as the accumulator.
The accumulator can also be accessed by specifying $0 in the same way as the other registers.
There is also a carry register which is used in processing the Increment command. It can be
cleared using the ClearCarry command.

The input data block used to define an ETD consists of a number of text lines. Each line
contains a command and any needed arguments separated by spaces or tabs in the same way
as command lines.

Multibeam Block Control Computer

All specifications of time in an ETD definition are of a data type called reduced-BAT .
The integer part of a reduced-BAT time represents the least significant 48 -bits of atomic time in
microseconds. It can contain up to 12 hexadecimal digits. The integer part may optionally be
followed by a decimal point (*.”) and up to 8 hexadecimal digits giving the microsecond fraction.
Actual event times are truncated to the nearest microsecond but the fractional part is retained to
minimize accumulated errors.

All specifications of events in an ETD definition are of a data type called event-def.
Such a value can take two forms: It can be a literal consisting of a hexadecimal nhumber in the
range 0..FFFF, or it can be the contents of an event register. An event register is specified by a
"$" character followed by a hexadecimal number in the range 0..8. For example, $6 refers to
register 6. For compatibility with previous software versions literals maybe prefixed with the #
character.

The time offset argument of the event definition (‘e’) and sequence (‘s’) commands, and
the period argument of the sequence (‘s’) command can also take two forms. They can be a
reduce-BAT literal, or the contents of a time register. A time register is specified by a "$"
character followed by a hexadecimal number in the range 0..8. For example, $6 refers to
register 6.

Examples:

This ETD will generate a 1Hz square wave with 50% duty cycle on the least significant
bit of the event generator output. The square will be generated for 32767 19 complete cycles
starting at the time given in the .EE command.

S-0- 2 FFFE - 7A120
X - 0001
E.- 0 $0

This ETD will generate a 10 millisecond period square wave for the first half of each
second, and a 20 millisecond period wave of 8 millisecond width pulses for the second half of
each second on output bit 0. Output 1 wil be low for the first half of each second and high for the
second half. It will run for 65535 seconds and output bit 1 will be left high.

S0 -2 FFFF - F4240
-0 -2 .32 . 2710
-0 -1
1388 - 0
7A120 - 2 - 16 - 4E20
-0 -3
1F40 - 2

mmowmmow

ETD Commands

And:
A.- and-value
where:
and-value (event-def) is a number which is ANDed with the current contents of
the accumulator and the result is placed back into the accumulator.

This command performs an AND function of and-value and the current contents of the
accumulator and places the result back into the accumulator.

ClearCarry:
C

Paul Roberts 7/20/98

Multibeam Block Control Computer

This command clears the carry register. The carry register is used in conjunction with
the ETD Increment command.

EventDefinition:
E.- time-offset.- event [- mask]
where:
time-offset (reduced-bat) is the offset from the current base time at which this
event is to occur.
event (event-def) is a value which is output by the event generator at the time of
the event.
mask (event-spec) is a value which defines the output bits of the Event
Generator which are to be changed by the EventDefinition.

This is the fundamental definition of an event which is generated at the time calculated
by the elements of the ETD in which it is contained. If mask is omitted then all bits in event are
used. If mask is present then bits in mask which are low are not altered on the Event Generator
output, ie they remain as they were in the previous event. After the event is produced, the
accumulator contains the event.

Get:
G.: value
where:
value (event-def) is a number which is placed into the accumulator.

This command places the value (either a literal or the contents of one of the event
registers) into the accumulator.

Increment:
[.- mask [- increment]
where:
mask (event-def) is a bit pattern which determines the field of the accumulator
which is to be accumulated. The argument must contain a single cluster
of high bits.
increment (event-def) is the amount by which the mask field of the accumulator
is to be increased. If increment is omitted then it defaults to one.

The value of increment and the carry register is added to a bit field in the accumulator
determined by the value of mask. The result is placed back into the field of the accumulator and
the carry is placed into the carry register. The carry register may be cleared using the ETD
command ClearCarry.

Using the carry register, non-contiguous fields in the accumulator may be incremented
by an arbitrary amount. The carry register is first cleared and then the least significant field is
incremented. The rest of the fields are then incremented by zero in order from the least to the
most significant.

Not:
N

This command performs an NOT function of the current contents of the accumulator and
places the result back into the accumulator.

Or:
O - or-value
where:
or-value (event-def) is a number which is ORed with the current contents of the
accumulator and the result is placed back into the accumulator.

Multibeam Block Control Computer

This command performs an OR function of or-value and the current contents of the
accumulator and places the result back into the accumulator.

Put:
P - register
where:
register (event-def) is a register into which the contents of the accumulator are
deposited. The argument must be in the register form of event-def.

This command places the contents of the accumulator into one of the event registers.

Sequence:
S - time-offset - elements - repetitions - period
where:
time-offset (reduced-BAT) is the offset from the current base time at which the
sequence is to begin.
elements (0..FFFF) is the number of ETDs following this line which form the list
to be executed.
repetitions (event-def) is the number of times the following list of ETDs is to be
repeated. Note that this argument is of type event-def, so that the
number or repetitions can be independent of the actual ETD loaded, ie it
can be retrieved from a register.
period (reduced-BAT) is the time to be taken for one repetition. This must be
equal to or greater than the time actually taken to execute all ETDs of
the sequence once.

The Sequence command provides the control structure for the ETD. Following it should
be a list of elements ETDs which are executed sequentially repetitions times.

When an ETD is found to consist of a sequence, a base time variable is created. The
initial value for the base time is the current value for the inherited base time plus the value of the
time-offset for this sequence. Each time the sequence is repeated, the value of the period
argument is added to the base time. The base time is used as the base for the time-offset
arguments of all the ETDs within the list. The execution of a sequence does not alter the value
of the inherited base time. The inherited base time at the top level of the ETD comes from the
ETD execution command.

XOr:
X+ xor-value
where:
xor-value (event-def) is a number which is XORed with the current contents of
the accumulator and the result is placed back into the accumulator.

This command performs an XOR function of xor-value and the current contents of the
accumulator and places the result back into the accumulator.

EE EE

Execute an Event Timing Description (ETD).

.EE [- etd-spec [- start-time]]
etd-spec: 0..5010
start-time: 0..FFFF FFFF FFFF [.0..FFFFFFFF]

The .EE command executes a Event Timing Description (ETD) which was previously
loaded using the .LT command. The start-time argument specifies the time (in reduced BAT with
optional fractional part) at which the ETD is to begin execution. If the start-time argument is not
present then the ETD begins approximately 1 second after the command is received. The
Paul Roberts 7/20/98

10

Multibeam Block Control Computer

etd-spec argument specifies which ETD buffer is to be used. If it is not given it is assumed to be
zero. An ETD which has been loaded into memory may be executed any number of times using

the .EE command. The .EE command returns the error code immediately and the ETD is
executed in the background.

El El

Initialise the event generator.

.El

This command initialises the event generator. It clears the event generator outputs,
stops the generation of events, and clears the software registers and all ETD buffers. This
command should be executed before any commands which deal with the event generator.

.GT GT

Get the current atomic time and accumulated leap seconds (DUTC).

.GT

This command returns the current atomic time and DUTC. The command uses the
event generator to grab a frame from the clock and then decodes the time and DUTC from it.
The output data block consists of a single line containing a 64 -bit unsigned hexadecimal number
representing the Binary Atomic Time (BAT) in microseconds, followed by a space, followed by a
hexadecimal number representing the DUTC.

LT LT

Load an Event Timing Description (ETD).

.LT[- etd-spec]
etd-spec: 0..5010

This command loads an Event Timing Description (ETD). The ETD is contained in an
input data block following the command. It contains the control information for the event
generator outputs (see the introduction to this section). This command does not execute the
ETD but simply parses it into a memory data structure. Once in memory an ETD may be
executed using the .EE command which also sets the start time for the ETD. In this way an ETD
may be executed any number of times using a different starting time for each run.

A number of ETDs may be present in the system at any time and the etd-spec argument
specifies which of the ETD buffers is to hold the ETD. If it is not given it is assumed to be zero.
If the given ETD buffer contains a previous definition it is overwritten.

