Benchmarking Difx

John Morgan

Istituto di Radioastronomia, Bologna, Italy

3rd DiFX Meeting Perth Sept/Oct 2009

1 To look at bottlenecks limiting DiFX

- \rightarrow Usually reading from media but not always
- 2 How to diagnose them
- 3 How to be sure you get the most out of the cluster

How?

- Run (1st, 2nd and) 3rd party software to characterise the cluster (and mark5s/network etc)
- 2 Know what kind of difx performance you can expect
- **3** Know what you should be choosing for BLOCKS PER SEND etc.
 - $\rightarrow~$ Preferred send size could even be specified in v2d

Factors which could affect DiFX performance (in principal)

- 1 Reading data from media/network
- 2 Transfering data datastream->core
- 3 CPU power
- 4 Writing to disk

Reading Data

Symptoms:-

- \Rightarrow Disk read at top speed
 - \rightarrow ganglia
 - \rightarrow nagios

When could this be a limiting factor?

 \Rightarrow Most of the time

Transferring data datastream->core

Symptoms

- \Rightarrow Maxed out network
 - \rightarrow top
 - \rightarrow ganglia
 - \rightarrow nagios

When could this be a limiting factor?

- ⇒ vlbi_fake (Chris Phillips)
- \Rightarrow ???

CPU power

Symptoms:-

- \Rightarrow CPUs maxed out
 - → top
 - \rightarrow ganglia
 - \rightarrow nagios
 - \rightarrow difxmessage

When could this be a limiting factor?

- \Rightarrow Huge number of channels??
- \Rightarrow Vlbi_fake (Chris Phillips)

Writing out to disk

Symptoms:-

 \Rightarrow Visbuffer fills up then correlator grinds to a halt

When could this be a limiting factor?

 \Rightarrow When you're writing out to a stupid place.

Reading from media/network

We need to know:-

- ⇒ Maximum speed
- \Rightarrow Optimum read size

Testing

- \Rightarrow dd
- \Rightarrow Bonnie++
 - → Read/write speed
 - \rightarrow Latency
 - \rightarrow Run multiple times to get best disk read size

bonnie + +

./bonnie++ -d /fs0/difx

Sequential Output			Sequential Input			Random Seeks		
Speed	latency	CPU	Speed	latency	CPU	Speed	latency	CPU
92002	3412ms	19	94209	347ms	13	584.9	218ms	13

Transferring data datastream->core

We need to know:-

- \Rightarrow Network speed
- ⇒ Network latency
- \Rightarrow Optimum mpi packet size

Testing

- \Rightarrow ttcp
- \Rightarrow netPIPE

wn01\$ ttcp -t -s -fg -n640000 -u wn02 ttcp-t: buflen=8192, nbuf=640000, align=16384/0, port=5001 udp -> wn02 ttcp-t: socket ttcp-t: 5242880000 bytes in 43.76 real seconds = 0.89 Gbit/sec +++ ttcp-t: 640006 I/0 calls, msec/call = 0.07, calls/sec = 14624.35 ttcp-t: 0.2user 12.5sys 0:43real 29% 0i+0d Omaxrss 0+4pf 87559+30csw

```
wn01$ mpirun -np 2 --machinefile wn.machine NPmpi -I
Performance measured without cache effects
0: wn01
Performance measured without cache effects
1: wn02
Now starting the main loop
                    1407 times -->
 0:
           1 bytes
                                         0.12 Mbps in
                                                          62.57 usec
  1:
           2 bytes 1598 times -->
                                         0.24 Mbps in
                                                          62.69 usec
 2:
           3 bytes 1595 times -->
                                         0.37 Mbps in
                                                          62.45 usec
 3:
           4 bytes 1067 times -->
                                         0.47 Mbps in
                                                           64.77 usec
 4:
           6 bytes
                    1157 times -->
                                         0.73 Mbps in
                                                           62.42 usec
. . .
                       3 times -->
123: 8388611 bytes
                                      1684.40 Mbps in
                                                        37995.85 usec
```

CPU speed

We need to know:-

 \Rightarrow how good the cpu is at vector crunching

Testing

- \Rightarrow lapack
- \Rightarrow non-difx (Chris)

Do tests so we know the maximum our correlator could handle if:-

- \Rightarrow Disk limited
- \Rightarrow Network limited
- \Rightarrow CPU limited

Know exactly how to optimise our parameter files.

Discussion

- 1 How do we get all this into automated script?
- **2** How do we build a database of all this?

1 http://www.coker.com.au/bonnie++/experimental/

Benchmarking Difx

16