Millimetre Science with the AT

Astrochemistry with mm-Wave Arrays

G.A. Blake, Caltech

29Nov 2001

mm-Arrays: Important Features

- Spatial Filtering
- Transform to image plane
- Cross Correlation

(Sub)Millimeter Astrophysics

Thermal emission from cool dust, gas
High frequency non-thermal tail
Uniquely high spectral resolution possible Orion KL, CSO

Late Type Stars and mm-ArraysIRC+10216Plateau de Bure (6 15 m's)

Young Stars & Arrays

What size ranges are present?

Component	Size (AU)	Taurus ('')	Orion ('')	Chemical Characteristics
Pre-stellar core	>10,000	> 70	> 20	Ions, Long-chains (HC ₅ N, DCO+,)
Cold envelope	5000	35	10	Simple species, Heavy depletions (CS, N ₂ H ⁺ ,)
Warm inner envelope	500	3	1	Evaporated species, High-T products (CH ₃ OH, HCN,)
Hot core (high-mass only?)	500		2	Complex organics (CH ₃ OCH ₃ , CH ₃ CN, vib. excited mol.)
Outflow: direct impact	<100-500	<0.7-4	<0.2-1	Si- and S-species (SiO, SO ₂ ,)
Outflow: walls, entrainment	100-1000	0.7 - 7	0.2 - 2	Evaporated ices (CH ₃ OH,)
Disk	100	0.7	0.2	Ions, D-rich species, Photoproducts (HCO ⁺ , DCN, CN,)
PDR, compact H II regions (high-mass only)	100-3000		0.2 - 7	Ions, Radicals (CN/HCN, CO ⁺)

Hogerheijde 1998, after Shrietal. 1987

Absorption Spectroscopy w/mm-Arrays

IRAM 30m

PKS1830 High z

features

Arrays filter out extended cloud!

SIRTF

- IRAC (mid-IR cameras, 3.6 4.5, 5.8, 8.0 mm)
- MIPS (far-IR cameras, 24, 70 160 mm, R=20 SED mode)
- IRS (5-40 **m**m long slit,R=150,
 - 10-38 **m** echelle, R=600)

01 Dec 2002 launch

- GTO observations
- Legacy program
- General observations

SIRTF – Mapping Large Clouds

Evans et al. Legacy Team Perseus, Cha, Lupus, Oph, Serpens + Isolated cores

Large Scale Structure? Single dish or...

National Astronomical Observatory of Japan Nobeyama Radio Observatory

Nobeyama Millimeter Array

with the new 10 m submillimeter telescope (ASTE) Ideally, single dish should be ~twice array dish diameter for good (u,v) overlap...Use Mopra to start, good single dish pointing essential.

Heterogeneous Arrays:

CARMA = BIMA + OVRO + SZ Array (8 3.5m telescopes)

SUP submitted 2002 road 2003 move OVRO 2004 move BIMA 2005 full operations

Juniper Flat

Chemistry and Massive Stars:

- Embedded at main sequence
- Large area heated, shocked
- Extensive chemistry

Orion as a Hot Core Test Case:

Bright lines, complex spatial structure!

The Dynamic Envelopes Around YSOs

Horesheijde 1998, after Shu etal. 1987

- Dust + Gas = n(R), T(R), f(R)
- Polarization (B field support)?

Millimeter interferometry of L1489 with BIMA and OVRO HCO I=1-0 and 3-2

11" = 4000 AU

Disklike structure with 2000 AU radius Velocity gradient suggests rotation

Hogerhelide 2001

The Dynamic Envelopes Around YSOs. II

Complementary IR Envelope/Disk Studies

CO M-band, infall to ~0.1 AU in L1489.

VLT

43 at

. . .

Molecules in the Outflows from Young Stars

Hog eshe ijde 1998, afte z Shu e tal. 1987

mm-arrays can be used to study all outflow phases, even those that are highly extincted. Velocity resolution critical!

Chemistry in YSO Accretion Disks. I

DM Tau,

PdBI

8000 AU envelope;

Pre-main-sequence star

remnant disk

t~106 -107 yr

dick: outflow

Hogerheijde 1998, after Shu etal. 1987

- Line shapes constrain disk orientation, size
- T Tauri, HAe disks well isolated
- Line ratios constrain n,T,chemistry (1 map+spectra)

Chemistry in YSO Accretion Disks. II

7000

6000

Roto

6000

LkCa 15 Disk, OVRO

Disk transport timescales?

Photochemistry near the disk surface?

Complementary IR Envelope/Disk Studies

CO emission at 4.7 µm, 0.1-10] AU gaps? Other species?

Planetary Science with Millimeter Arrays. I.

Mars Opposition - March 1997

HST WFPC2-Color composite¹ <u>Surface features</u> HST WFPC2-Blue filter (410 nm)¹ *Cloud structure* OVRO - Integrated HDO Emission (1.3 mm)² Water vapor distribution

¹ P. James (U. Toledo), T. Clancy (SSI), S. Lee (U. Colorado), and NASA

² M. Gurwell (CfA), D. Muhleman (Caltech)

Planetary Science with Millimeter Arrays. II. Titan's Atmosphere - December 2000

Keck I - Near IR Adaptive Optics¹ Cloud/haze structure and surface features OVRO -Integrated CH₃CN Emission (239.1GHz)² OVRO -Integrated HC₃N Emission (236.5 GHz)²

Latitudinal (seasonal?) variation of molecular abundances in the upper atmosphere

¹ 3-color image from J,H, and K' AO images (Keck AO team)

² M. Gurwell (CfA), D. Muhleman (Caltech)

Comets with mm-Arrays

Hale-Bopp Jets, OVRO

Comae are LARGE, so good zero spacing flux or models mandatory! Jets, however, are compact.

Future Submm Arrays - ALMA

64 12m's SIS, 8 GHz IF

Construction FY02 approved.

Atmospheric transmission at Chajnantor, pwv = 0.5 mm

Future Submm Arrays – ALMA. II

LOGIC BUT TO DO

ALMA will be incredibly sensitive – Disk images will be possible in continuum to a resolution of <1 AU!

Little is known about the Southern sky at high angular resolution...

Conclusions

-Wealth of opportunities for the ATCA, start with small sources that exploit the excellent sensitivity (disks, absorption line studies...), then move toward mosaics as the system improves.

- Make aggressive use of public datasets on nearby clouds and galaxy (2MASS, SIRTF) and on the new submillimeter single dish capabilities in Chile.

- ATCA not just an ALMA pathfinder, excellent complementary science even after 2011.