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(Notes supplied by Dr Frank Stootman, UWS, 2001) 
 
The Fourier Transform 
1.0 Basic Ideas 

• Any general periodic signal  has the automatic property )
2

()(
T

t
ftf

π=  where T is 

the period of the signal. The π2 is “snuck” in because we know that trigonometric 
functions are good examples of repetition. The complexity of )(tf  is irrelevant as 
long as it repeats itself faithfully. Please keep in mind that ‘t’ for radioastronomy 
is usually time, but in fact it is an arbitrary variable and so what follows below is 
applicable provided the variable has functional repetition in some way with a 
repeat T. Thus spatial repetition is another important variable to which we may 
apply the theory. 

 
 
• Fourier discovered that such a complex signal could be decomposed into an 

infinite series made up of cosine and sine terms and a whole bunch of coefficients 
which can (surprisingly) be readily determined. 
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• If you like, we have decomposed the original function )(tf into a series of basis 

states.  For those of you who like to be creative this immediately begs the question 
of: is this the only decomposition possible? The answer is no. 

 
 
• The coefficients are “readily” determined by integration. 
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• Introducing complex notation we can simplify all of the above to what you often 

see in textbooks. 
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• The graphical example below indicates how addition of cosine time function 

terms are Fourier transformed into coefficients. In this case only 2/nn ac = . Take 

care the centre line with the big arrow is to mark the axis only – it is not part of 
the coefficient display. Notice also that two coefficient lines appear for every 
frequency. The latter is related to the Nyquist sampling theorem (see below) and is 
also why the coefficient magnitudes are halved. Notice also the spacing of the 
coefficients to be an integral multiple of Tf /10 =  with the sign consistent with the 

input waveform.  
 

 
 

(after ‘The Fast Fourier Transform’, E.O. Brigham, Prentice Hall, 1974) 



 3

• It is important to stress that it is an intrinsic property that the nc are discrete. This 

is sometimes very confusing in text books because they draw them as continuous 
functions. It is possible to make them a continuous function by doing a simple 
trick and imagining that T is enormously large, or better still it tends to infinity. 
Thus the repeat period is infinite. 

 
 

• Thus with a little pure mathematics and the substitutions, 
T

n
s

π2=  , leading 

smoothly to dn
T

ds
π2=   as ∞→T , and also introducing the continuous function 

)(sF  to replace the discrete nc , we get a lovely functional symmetry: 
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(Reminder: t and s are arbitrary variables!) 
 
• For a number of functions of time )(tf the corresponding continuous transform 

shapes )(sF are given in the accompanying diagrams below. It is immediately 
obvious that ‘s’ has units of frequency and so we talk of transforming the 
repetitive time function into the frequency domain. We have analysed time 
behaviour into its corresponding frequency components. 

 
 
 
2.0 Digital Fourier Transform 
 
In the real world of experimental physics we do not have the luxury of infinite time 
nor can we necessarily describe analytically our  function )(tf . It is normally derived 
from the experimental equipment attached to something (eg., receiver voltage from an 
antenna). Thus we need something practical to do an FT. 
 
The above has three simple consequences: 
 
1) We need to choose a total sample time T recognising 1/T will then be the 

frequency spacing or resolution we can get out of the transform. Thus if T=1.5s 
we obtain our frequency coefficients at a spacing of 0.67 Hz. 

 
2) During T, we need to sample our waveform N times to produce a sampling vector 

representing our continuous time domain. Thus  
 

{ }nxtf ↔)(  with 10 −<< Nn  
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(after ‘The Fast Fourier Transform’, E.O. Brigham, Prentice Hall, 1974) 
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3) We need to modify our Fourier transform to cope with a discrete input vector. 
Following our previous work we intuitively make integrals go to sums, T go to N, 

)(tf  go to nx , and nc  go to nX  (though this is just a notation change since nc  are 

already a discrete set!).  We are left with the practical Digital Fourier Transform. 
or DFT pair.  
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Notes:  

1) 1−=i  and is easily confused with the integer counters n and k. 
2) The placement of 1/N factor is somewhat arbitrary, but convention places it as 

shown. It is important for normalisation – don’t lose it!   
 
 
• The above is readily programmed and the N input samples in time are converted 

to N frequency samples spaced at 1/T. Essentially the transform is a coefficient 
matrix multiplication from which you can see the output frequency vector is a 
weighted sum of input time samples.  
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From this it can be seen, for instance, that 0X is the DC average of nx  since 10 =nW . 

 
 
• Practically for large N the above straight forward calculation becomes a massive 

computational burden of order 2N . Happily, a number of people have discovered 
patterns in nkW  which can be exploited.  The best has a computational burden of 

NN log and is called a Fast Fourier Transform or FFT. Please explore “Numerical 
Recipes in C “, 2nd Ed, Cambridge, 1992) . It is important to note the FFT is only a 
computational device and nothing more! 

 
 
3.0 Power Spectra 
 
• The complex representation is compact, but needs to be converted to something 

useful otherwise you end up with two axes of coefficients.  Practically we form 
the power coefficient spectrum as a function of frequency as follows 

 
*
nnn XXP ×=  

 
It is this which is displayed on spectrum analysers and how most spectra are drawn. 
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• Fourier transforms have a conservation law which is ultimately related, physically,  
to the conservation of energy. Thus: 

 

∑∑∑ ==
N

n
N

nn
N

kk PXX
N

xx ** 1
 

 
Effectively, we are redistributing the input vector into a new basis system but 
retaining coefficient conservation which is always nice in physics. It is also called 
Parseval’s theorem. 
 
 
 
4.0 Imperfections, Limitations and Trade-Offs 
 

• Consider the frequency coefficient rNX − . 
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If the input vector kx is real (and it usually is since it is a time varying voltage) 

then *
rrN XX =−  from which it follows that rNr PP −= . 

 
• This means that in any Fourier derived power spectrum there is a duplication of 

frequency coefficients. Thus only N/2 points are unique and so by reverse 
implication if you have your heart set on a particular BW analysed with a 
resolution of M points you will require 2M samples of the time spectra. This is 
called the Nyquist sampling theorem.  

 
 
• The finite sampling time T creates an artificial effect in which the value of the 

frequency coefficients “leaks” into adjacent coefficient positions. This means you 
get a reduced value of the wanted coefficient and an adulteration of adjacent 
coefficients.  It is customary therefore to pre-multiply your input time coefficients 

kx  with a windowing or weighting function over all the time points to reduce this 

coefficient leakage in nX . An old friend is the Hanning window which applies a 

weighting kw  to each kx given by, 
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The above is sometimes also called Hanning smoothing. There are other 
functions. See “Numerical Recipes in C” referred to above for these.  
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• The maths for the above revolve around convolution and the Fourier transform of 
convolution. Here is the sketch. 
 
1. Remember the convolution product, which is a function of time, is defined as 

∫ ∞−
−=∗

t
dtgfgf τττ )()( .  Good physical examples of this process are 

“flywheel” action seen in analogue filters, the flywheels in cars and door 
dampeners. The past affects the present! 

 

2. The Fourier transform of this is ( )∫ ∫
+∞

∞−
−= dtistdtgfsR )exp()()()( τττ , which 

on making the simple substitution τ−= tu ,  leads after a small fiddle,  to 
)()()( sGsFsR = .  This is an important result which states that  convolution in 

time space is multiplication in frequency space and vice versa. 
 

3. The window problem occurs because you are multiplying the input time 
samples with a square sampling window. This leads to the convolution of 
these two in frequency space and thus to practical problems. Provided you 
pick it well, pre-smoothing with a suitable function minimises this convolution 
effect. 

 
 
• Finally, the you must pick a sample time which ensures that all the frequencies in 

your time signal are resolved in the resulting bandwidth of the frequency 
coefficients. How do you do this since you don’t know what is there beforehand? 
In practical systems you filter out frequencies you are not interested in before the 
FFT process. Failure to do this leads to signal aliasing or the unwanted higher 
frequencies folding back into your spectrum in unwanted places. 

 
 
 
4.0  Thinking in terms of the Fourier Transform 
 
• Digital filtering on a static input time sample can be done taking a FFT of the 

vector and then applying the desired filter shape to the resultant coefficients. Now 
apply an inverse FFT and the result is a filtered time set. Clean up your old 
records this way by converting the sound to digital sample files and process them 
on a PC. 

 
• Continuous digital filtering on a continuous time sample can be thought of as 

deliberately convolving the incoming signal with a function which is the inverse 
FT of the filter shape. This is how many digital filters called FIR filters work. 
They do the job on the fly. 

 
 
There are a number of techniques to do FFT’s quickly and so get power spectra. 
Correlators use the following simple idea: 
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1. The autocorrelation of a signal )(tf  with a time shifted version of itself )( τ+tf  is 

given by  ∫ += τττ dtftfA )()()( . 

 
2. If we take the FT of this in τ  space we get, after a fiddle with variable 

substitution, ∫ = )()()2exp()( * sFsFdsiA ττπτ , provided we assume )(tf  is a real 

function (which of course it will be in our case). But this is exactly the desired 
power spectrum since )()()( * sFsFsP = . 

 
3. Producing a fast autocorrelator using a shift register and a bit of electronics allows 

)(τA to be produced efficiently by continually multiplying a sampled signal with 
previous samples of itself. The final vector can then be converted into a power 
spectrum with a single FFT. 

 
  


