

Millimetre Astronomy

- Introduction
- Molecular lines
- Science overview
- Toward the future

At $100 \mathrm{GHz}(\lambda=3 \mathrm{~mm})$:
$\mathrm{E}=\mathrm{h} v / \mathrm{q}=4 \times 10^{-4} \mathrm{eV}$
$\mathrm{T}=\mathrm{h} \nu / \mathrm{k}=5 \mathrm{~K}$

This tells us what kind of phenomena we will be dealing with.

But first, a few words about the earth's atmosphere...

Millimetre Astronomy

- Introduction
- Molecular lines
- Science overview
- Toward the future

So, we have $v=2 \mathrm{BJ}$.
The energy levels must be given by $\mathrm{E}(\mathrm{J})=\mathrm{BJ}(\mathrm{J}+1)$

Line Intensities (linear molecules)

Only certain transitions are permitted.
For dipole-allowed transitions they are those
with $\Delta \mathrm{J}= \pm 1$.
We have $\mathrm{A}_{\mathrm{ij}} \alpha v^{3}\left|\mu_{\mathrm{ij}}\right|^{2}$,
Where A_{ij} is the dipole moment matrix element connecting the two states i and j , and depends on the molecule's dipole moment, μ.

For $\mathrm{CO}, \mu=0.10 \mathrm{D}$. For $\mathrm{HCN}, \mu=3.00 \mathrm{D}$.

Line Intensities (any molecule)

The observed emission line intensity depends on the A coefficient, A_{ij}, and the column density of molecules in the upper state, which in turn depends on:

- The column density of H_{2}
- The molecular abundance relative to H_{2}
- The molecular partition function
- The temperature of the gas
- The density of the gas.
(Assuming, of course, that the line is optically thin. If it is optically thick, the intensity depends only on the gas temperature.)

For 2- and 3-dimensional molecules, such as methyl cyanide $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$,

we identify the three principal axes and then define $\mathrm{A}, \mathrm{B}, \mathrm{C}$ as $\mathrm{A}=\mathrm{h} / 8 \pi^{2} \mathrm{I}_{\mathrm{A}}$ etc., with $\mathrm{A}>\mathrm{B}>\mathrm{C}$.

$$
\begin{aligned}
& \text { We then set up a Hamiltonian } \\
& \qquad \mathrm{H}=\mathrm{AP}_{\mathrm{a}}{ }^{2}+\mathrm{BP}_{\mathrm{b}}{ }^{2}+\mathrm{CP}_{\mathrm{c}}{ }^{2}
\end{aligned}
$$

where P_{a} etc is the component of angular momentum along that axis.

We then solve Schrödinger's equation to
obtain the energy levels.

If $\mathrm{A}=\mathrm{B}=\mathrm{C}$, we have a spherical top, which
is unlikely to be interesting (eg, methane).

$$
\text { If } \mathrm{A}>\mathrm{B}=\mathrm{C} \text {, we have prolate (ie, cigar }
$$

shaped) symmetric top (eg methyl cyanide).
If $\mathrm{A}=\mathrm{B}>\mathrm{C}$, we have an oblate (ie pancake shaped) symmetric top (eg ammonia).

If $\mathrm{A}>\mathrm{B}>\mathrm{C}$, we have an asymmetric top (eg water) and a very complicated spectrum.

Asymmetric tops

The three rotational constants (A, B \& C) are all different.

Each energy level is characterised by three quantum numbers: $\mathrm{J}, \mathrm{K}_{-1}, \mathrm{~K}_{+1}$.
In the worst-case scenario, we will have 3 dipole moment components ($\mu_{\mathrm{A}}, \mu_{\mathrm{B}}, \mu_{\mathrm{C}}$) and lines all over the place.

While we could calculate their frequencies, we will more likely just look them

up at:
http://physics.nist.gov/PhysRefData/micro/html/contents.html
(a) Symmetric-top molecule

Whereas linear molecules and symmetric tops have nice orderly spectra, those of asymmetric tops are a complete mess...

Non-comformist molecules.

- OH has an unpaired electron and a ${ }^{2} \Pi$ ground state, leading to Λ-doublet transitions at cm wavelengths.
- O_{2} is symmetrical like N_{2}, but has a ${ }^{3} \Sigma$
electronic ground state (instead of ${ }^{1} \Sigma$), leading to magnetic dipole-allowed transitions.
- NH_{3} can undergo an inversion motion, like an umbrella on a windy day, leading to transitions throughout the 12 mm region.

Millimetre Astronomy

- Introduction
- Molecular lines
- Science overview
- Toward the future

Science

- Atmospheric science
- Planetary science
- Star formation
- Post AGB stars and planetary nebulae
- AGNs, Galaxy evolution and cosmology
- Cosmic microwave background

Mm observations provide data on trace atmospheric gasses important to ozone depletion and global warming studies.

Millimetre Astronomy

- Introduction
- Molecular lines
- Science overview
- Toward the future

Chanjantor, Chile. 5,000 metre elevation.

References

W. Gordy \& R.L. Cook 1970, Microwave Molecular Spectra,

Wiley (NY)
IAU Symposium \#197, 2000, Astrochemistry: from Molecular Clouds to Planetary Systems, eds. Y.C. Minh \& E.F. van Dihoeck
H.W. Kroto 1975, Molecular Rotation Spectra, Wiley (London)
R.B. Loren \& L.G. Mundy 1984, ApJ, 286, 232
T.G. Phillips \& J. Keene 1992, Proc. IEEE, 80, 1662
C.H. Townes \& A.L. Schawlow 1955, Microwave Spectroscopy
(reprinted by Dover, NY, 1975)

