

Outline

Background

- What SUSI is and is not!
- > What SUSI is designed to do
- SUSI
- The instrument
 - The problems faced by optical stellar
 - interferometry
- Solutions adopted/developed for SUSI
- Example SUSI observations & results

SUSI is not an imaging instrument! $\gamma_{12}(\tau) = |\gamma_{12}(\tau)| \exp i\phi_{12}(\tau)$ $V_{12}(0) = |\gamma_{12}(0)|$

- Atmospheric turbulence introduces phase fluctuations - the phase of the interference fringes is corrupted
- It uses 2 apertures at a time (i.e. a single baseline) so phase closure and image reconstruction is not possible - SUSI measures "correlation" C = V²

Aperture Diameter Spectral Range 440 < λ < 900nm **Resolution**

The Basic Problems to be Solved

I. Wavefront distortion due to atmospheric turbulence

A SUSI Siderostat & Housing

Siderostat & Relay Mirrors

The Basic Problems to be Solved

- I. Wavefront distortion due to atmospheric turbulence
- II. Need for extreme mechanical stability
- III. Need to match the optical paths

The SUSI Programme

Observing Programme Single stars for Te, R and L

- Spectroscopic binaries for M and d, as well as Te, R and L
- > Pulsating stars (e.g. Cepheids) for d
- Technical Programme
 - Installation and commissioning of "red" beam combination system

Interferometers						
Instrument Acronym	Institution	Location	Aperture Diameter (m)	Maximum Baseline (m)	Wavelength Range (µm)	Status
NSI1	Sydney U.	Narrabri, Australia	2×6,8	188	0.44	С
SUSI (P'type)	Sydney U.	Sydney, Australia	2×0.10	11	0.4-0.5	С
Mark III	NRL/MIT/CfA	Mt. Wilson, USA	2×0.05	32	0.45-0.8	С
12T	CERGA	Calern, France	2×0.26	144	Visible	С
GI2T	CERGA	Calern, France	2×1.5	65	Visible/IR	W
COAST	Cambridge U.	Cambridge, UK	5×0.4	100	Red/near IR	W
SUSI	Sydney U.	Narrabri, Australia	2×0.14	640	0.4-0.9	W
IOTA	CfA	Mt. Hopkins, USA	3×0.45	38	Visible/IR	W
ISI	UC Berkeley	Mt. Wilson, USA	2×1.65	70	10	W
NPO1	USNO/NRL	Anderson Mesa, USA	2×6.17	435	0.45-0.9	W
PTI	JPL/Caltech	Mt. Palomar, USA	2×0.4	110	2.2	W
CHARA	Georgia St. U.	Mt. Wilson, USA	6×1.0	350	0.45-2.4	UC
Keck	CARA	Mauna Kea, USA	2(4)×10(1.5)	165	2.2-10	UC
VLTI	ESO	Cerro Paranal, Chile	4(3)×8(1.8)	200	0.45-20	UC