

Conventional telescopes

- Main reflector; possibly a secondary
- Focal plane
- single-pixel camera
- Fully-steerable

Fixed Spherical Reflector

- Large focal plane
- "Steering" : probe the focal plane
- Simplified mechanical structure

Arecibo - 300m

Conventional Imaging Arrays

- Multiplicity of antennas - multiplicity of baselines

Evolution : Mills Cross -> VLA
Linear array -> fan beam
Correlation between orthogonal fan beams -> high resolution pencil beam
= central pixel of the array's synthesised image.

Procedure:

- Correlate the EW arm against the NS (multiply and average)
- Since each source on the sky has its own noise signal, only sources common to the two beams give a non-zero signal

Mills Cross with multiple E-W beams

Fully implemented Mills Cross :

Given enough hardware, we could map a square patch of sky, each pointing defined by $\tau_{\mathrm{x}} \mathrm{EW}$ and $\tau_{\mathrm{y}} \mathrm{NS}$ - we are doing the FT in hardware.

$$
\begin{aligned}
\left\langle V_{x} V_{y}^{\prime \prime}>\right. & =\sum \sum\left\langle v_{x}(n) v_{y}(m)>e^{-j\left(n \theta_{-}-m_{\theta}\right)}\right. \\
& =\Sigma \sum P\left(\underline{u} e^{-j\left(n \theta_{0}-m_{\phi}\right)}\right. \\
& =S\left(\theta_{x}, \phi_{y}\right)
\end{aligned}
$$

$\left(\theta_{x}=c \tau_{x} / \lambda\right)$

A correctly focussed antenna has constant path length for all rays from wavefront to the focus -

Rx output $=\left\langle V(\underline{x}) V^{*}(\underline{x})\right\rangle$

Molonglo Synthesis Telescope :

2 East-West arms, each $1 / 2$ mile long. Continuous tracking (part mechanical, part electrical, adjusting the delays).

Equivalent to an East-West array (eg, ATCA).

