

Overview

- The technique how is it similar, how is it different to connected element interferometry;
- VLBI instrumentation;
- VLBI science
 - Black hole masses NGC 4258/Circinus;
 - Low redshift AGN M87/Centaurus A;
 - Wide field imaging;
 - Astrometry/low mass stellar companions;
 - "superluminal" motion 3C120;
 - Microquasars GRO J1655-40.

The Technique Elements are not connected Electronics are locked using station clocks; Data are recorded on tape for post-observation processing Elements can therefore be placed, in principle, anywhere, including in space; Resolution between an Earth-based antenna and a space antenna in a 20,000 km orbit at 5 GHz is approximately 0,25 mas — Earth baseline, 15 GHz; VLBI is thus very sensitive to errors in the geometric model used by the correlator Source and station positions (these change with time); Vastly different weather conditions at each Element

Item	Approx max Magnitude b	Time scale
Zero order geometry.	6000 km	1 day
Nutation	~ 20"	< 18.6 yr
Precession	~ 0.5 arcmin/yr	years
Annual aberration	20"	1 year
Retarded baseline	20 m	1 day
Gravitational delay	4 mas @ 90° from sun	1 year
Tectonic motion	10 cm/yr	years
Solid Earth Tide	50 cm	12 hr
Pole Tide	2 cm	~1 yı
Ocean Loading	2 cm	12 hr
Atmospheric Loading	2 cm	weeks
Post-glacial Rebound	several mm/yr	years
Polar motion	0.5"	$\sim 1.2 \text{ years}$
UT1 (Earth rotation)	Random at several mas	Various
Ionosphere	$\sim 2 \text{ m at } 2 \text{ GHz}$	seconds to years
Dry Troposphere	2.3 m at zenith	hours to days
Wet Troposphere	0 - 30 cm at zenith	seconds to seasonal
Antenna structure	<10 m. 1cm thermal	2 - 10 - 2 - 10 - <u>1</u>
Parallactic angle	0.5 turn	hours
Station clocks	few microsec	hours
Source structure	5 cm	years

- A time-variable delay error in the geometric model used by the correlator causes slopes of phase with frequency and time;
- Several schemes (some closely related to selfcalibration) have been developed to determine these errors directly from the data;
- Modern (last ten years) correlators have access to geometric models that are good to a few cm at worst at all stations and GPS for time-keeping – the atmosphere becomes the limiting factor for determination of the astronomical phase – similar to connected element arrays like the ATCA.

