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(Notes Supplied by Dr Frank Stootman. UWS, 2001) 
 

The Wavelet Transform 
1.0 Basic Ideas 
 
• The Discrete Fourier Transform (DFT) may be thought of in general terms as a 

matrix multiplication in which the original vector kx is decomposed into a series 

of coefficients nX . Both k and n are integers which range over the same value N. 
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In the above we may derive the transformed coefficients nX by inverting the matrix. 

 
• The form of knW  has many possibilities but physically we would like the option of 

forward and backward transforms ie., an inverse ought to exist. 
 
• The Discrete Wavelet Transform (DWT) generates a matrix knW  which is now 

widely used for image compression instead of the FT since it is able to localise 
preserve photographic detail such that many of the coefficients may be ignored 
(tantamount to filtering) and yet the reconstruction remains effective. For certain 
types of problems the filtering may be much more aggressive than corresponding 
FT coefficient filtering. (see “Numerical Recipes in C”, Prentice Hall, 2nd Ed. 
1992, chapter 13). 

 
 
• DWT’s are particularly effective in analysing waveforms which have spikes or 

pulses buried in noise. The noise may be more effectively removed than with  FT 
filtering and the shape of the pulses preserved. Conservation of Energy similar to 
a Parseval theorem would also be nice. 

 
 
 
2.0 The Haar Transform to get that Wavelet feel  
 
• Suppose for simplicity we assume an input vector kx  with 70 << k .  This is 

readily decomposed into an obvious basis set as shown. 
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• Other basis systems are of course possible (remember your QM and spinors?). In 

1910 Haar proposed the following decomposition. 
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or  knkn aHx =  with the columns of H being simply the above basis vectors and the 

ka obtained by matrix inversion of H. 

 
• These basis vectors have characteristic “shapes” when drawn on their side as 

shown in the figure on the next page and it is these shapes which show the 
essential features of what DWT decomposition does. 

 
Notice: 
1) A mother or scaling function at the start with a non-zero average. This will 

normally be normalised to 1. 
2) Wavelet functions with zero average which are both compressed and 

translated. It is this compression and translation which finds peaks or pulses 
well. 

3) The wavelet functions are orthogonal. You can see this directly by multiplying 
any two together. 

4) The wavelet functions have compact support which means they are all 
localised. This is unlike the FT in which the basis functions 

)/2exp( Nnkπ− are continuous. 
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• How do we use other shapes and make a wavelet basis system out of them? 
 
step 1: Mother functions 
 
Let )(xφ be some mother function. The )2( xφ  is the same function compressed by a 

factor of 2. Binary compression can therefore be denoted as )2( xj
j φφ = . Likewise 

)12( −xφ  is our compressed function translated by 1. Multiple translation and 

compression of the mother function can therefore be denoted as )2( kxj
jk −= φφ  

 
We do not choose )(xφ  arbitrarily but impose two conditions. 
 
1) ∑ −=

k
k kxcx )2()( φφ  or  more generally  ∑ −=−

k

jj
k

j kxcx )2()2( 1 φφ . That is it 

lends itself to a fractal like summing behaviour. 
 

2) ∫ = 1)( dxxφ , the normalisation condition. This leads to 2=∑
k

kc . Alas, life is not 

easy and there is much confusion in the literature at this point. If you accept this as is 
then you will NOT get coefficients which produce a reversible transform. Since this is 
desirable in physics we need to  do what Numerical Recipes suggests and force 

12 =∑
k

kc .  This means reducing the coefficients by a further factor 
2

1 . The reason 

lies buried deep in matrix inversion. 
 
 
• Here are two examples, our friend Haar and the “top hat” 
 

 
 
 

• Again a 21  multiplication factor ensures reversibility of the transform 
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• Ingrid Daubechies invented a four coefficient fractal which is not a simple mother 
function shape as above, but instead must be constructed by working backwards 
from the coefficients. They are: 

 

)31(4
1),33(4

1),33(4
1),31(4

1
3210 −=−=+=+= cccc  

 

• Again “Numerical Recipes” surreptitiously adds a further 21  and with good 
reason! 

 
 

 
Constructed Mother function from the Daubechies coefficients. This function is not differentialble. see 

Daubechies I., Comm. on Pure and Applied Mathematics, 41, 909, 1988 
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step2: Wavelet functions 
 
• From the mother or scaling function and the coefficients we construct wavelet 

functions )(xψ . 
 

)2()1()( kxcx kM
k

k −−= −∑ φψ  or at other compression  levels  

)2()1()2( 1 kxcx j
kM

k

kj −−= −
− ∑ φψ  with generally 

)2()1( kxc j
kM

k

k
jk −−= −∑ φψ  

 
Three things to note: 
 
1) The introduction of an alternating negative sign on the coefficients. 
2) The inversion of the order of coefficients assuming there are M coefficients. 
3) If you have multiplied by the requisite fudge factor to get a reversible 

transform you don’t need to do any more on these coefficients. 
 
• Here are the basic wavelet shapes at the highest level. The Daubechies wavelet is 

a construction. 
 
 

 
 
Please note the wavelet function for the top hat is strictly 

)22(2
1)12()2(2

1)( −+−−= xxxx φφφψ   and inverted to the above diagram. The areas sum to 

zero as does the sum of the coefficients. 
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step3: Multi Resolution Analysis (MRA) 
 
• Although we have quite general definitions for jkφ  and jkψ  we need only use the 

j=0 level over and over again. This was a discovery by Mallet. 
 
 
Here is the technique: 
 
1) Multiply each a pair of input coefficients  with the mother function coefficients 

on the top line and the wavelet coefficients in the bottom line. 
 
 
eg For the non-reversible Haar transform this is  
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2) Now sort (an effective permutation) the above column matrix and bring all the 

mother generated coefficients  to the top. 
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3) Now  repeat step 2 only on the coefficients labelled ‘m’  
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4) repeat step 2) and 3) until only the top coefficient has the ‘m’ label.  
 
 
• The complete sequence looks like: 
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• Reversing the above procedure is used to compose the original vector. In this case 

the multiplying matrix has to be.  
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


− 2121

2121
  

 
which is the inverse of the original coefficient matrix. But this is messy and could 

be fixed with a universal 2/1  to retain the symmetry of the mathematics and is 
why “Numerical Recipes” adds the factor to the coefficients. 
 

 
 
 
 
 



 9

 
• Check for yourself reverse sequence is: 
 
 

































⇒

































⇒

































⇒

































⇒

































⇒

































1

3

2

4

1

4

2

3

2

4

2

6

3

5

1

5

2

2

3

1

4

6

5

5

2

2

3

1

2

10

0

10

2

2

3

1

2

0

10

10

2

2

3

1

2

0

0

20

TPTPT

 

 
 
• The Haar Transform  is square. If we have multiplying coefficients which do not 

form a neat square (eg., the Daubechies coefficients) we still use the same 
technique of producing the ‘m’ and ‘w’ terms. “Numerical Recipes” illustrates 
how this is done. Also shown is how to handle the end points in this case. 

 

 
 
 
 
 
• The reverse procedure is created by multiplying pairs by the transpose of the 

original matrix of coefficients as shown. This also effectively changes the order of 
the coefficients. 
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• One of the intrinsic advantages of the wavelet transform is that  only requires an 

order(N) computational effort and is much faster than the FFT at vector 
transformation.. 

 
 
 
 
3.0 Filtering the Coefficients 
 
• Filtering of wavelet coefficients is done by removing the smaller coefficients in 

the difference terms. In these terms are the detail which can often be removed 
without making a large difference to the overall structure. Two types of filtering 
exist. 

 
 
1. Hard Thresholding 
 
A difference term is treated as follows: 
 
   0=d  if λ<d  and otherwise is not touched. 

 
2. Soft Thresholding 
 
As above but all other values for which λ>d  have the following operation done to 
them: 
 
   ))(sgn( λ−← ddd  

 
This repositions the remainder of the coefficients. 
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• The literature suggests that λ  is best set to 
n

nln2σ
. The standard deviation σ is 

taken over all the difference terms. ‘n’ is the number of difference terms. 
 
 
 
 
 
 
 
 
 


