An investigation of the Carina Nebula

K. J. Brooks

Abstract

It is well known that the radiation fields and stellar winds of massive stars can drastically affect the physical conditions, structure and chemistry of the giant molecular cloud (GMC) from which they formed. It is also thought that massive stars are at least partly responsible for triggering further star formation within a GMC. The details of this interaction, however, are not well understood and additional detailed study of massive star-forming regions is needed. This study has focused on a multi-wavelength investigation of the Carina Nebula. This is a spectacular massive star-forming region that contains two of the most massive star clusters in our galaxy, Trumpler 14 and Trumpler 16, and one of the most massive stars known -- Eta Car. The goal of this study has been to obtain information on the molecular gas, ionized gas and photodissociation regions (PDRs) from a collection of instruments which have the highest angular resolution and sensitivity available to date. The Mopra Telescope and the Swedish-ESO Submillimeter Telescope (SEST) were used to obtain a series of molecular line observations of the GMC between 150 and 230 GHz. Observations of H110$\alpha$ recombination-line emission at 4.874 GHz and the related continuum emission were obtained with the Australia Telescope Compact Array and used to study the ionized gas associated with the two HII regions, Car I and Car II. H_2 1--0 S(1) (2.12 um) and Br Gamma (2.16 um) observations using the University of New South Wales Infrared Fabry-Perot (UNSWIRF) and 3.29 um narrow-band observations obtained with the SPIREX/Abu thermal infrared camera were used to study the PDRs on the surface of molecular clumps in the Keyhole region, a dark optical feature in the vicinity of Eta Car. The results of these observations provide detailed information on the excitation conditions, kinematics and morphology of regions within the HII region/molecular cloud complex of the Carina Nebula. In addition, the results confirm that the Carina Nebula is one of the most extreme and complex cases of massive stars interacting with their environment and show that there is still a wealth of information to be gained from future studies of this region.


Back to Kate's home page
Staff space
Public